X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Anti-VGLUT 3 antibody

RRID:AB_887886

Antibody ID

AB_887886

Target Antigen

VGLUT 3 rat, mouse

Vendor

Synaptic Systems Go To Vendor

Cat Num

135 203

Proper Citation

(Synaptic Systems Cat# 135 203, RRID:AB_887886)

Clonality

polyclonal antibody

Host Organism

rabbit

Comments

Applications: WB,ICC,IHC,IHC-P,FACS. KO validated

Publications that use this research resource

Synaptotagmins I and II in the developing rat auditory brainstem: Synaptotagmin I is transiently expressed in glutamate-releasing immature inhibitory terminals.

  • Cooper AP
  • J. Comp. Neurol.
  • 2011 Aug 15

Literature context:


Abstract:

The lateral superior olive (LSO), a nucleus in the auditory brainstem, computes interaural intensity differences for sound localization by comparing converging excitatory and inhibitory inputs that carry tonotopically matched information from the two ears. Tonotopic refinement in the inhibitory projection pathway from the medial nucleus of the trapezoid body (MNTB) is known to be established during the first postnatal week in rats. During this period, immature MNTB terminals in the LSO contain vesicular transporters for both inhibitory and excitatory amino acids and release glutamate. The primary Ca(2+) sensors for vesicular release in the CNS are understood to be synaptotagmins, and in adult auditory brainstem synaptotagmin 2 is the predominant synaptotagmin. We asked here whether a different Ca(2+) sensor might be expressed in the immature auditory brainstem. We have found that synaptotagmin 1 is indeed expressed transiently in the immature auditory brainstem, most highly in those areas that receive glutamate-releasing immature inhibitory inputs from the MNTB, and that during the first postnatal week synaptotagmin 1 co-localizes with the vesicular glutamate transporter VGLUT3, a marker of glutamate-releasing immature inhibitory terminals from the MNTB. We suggest that immature MNTB terminals may contain two populations of synaptic vesicles, one expressing the vesicular inhibitory amino acid transporter together with synaptotagmin 2 and another expressing VGLUT3 together with synaptotagmin 1. Because Ca(2+) sensing is an important determinant of release properties for the presynaptic terminal, differential expression of the synaptotagmins might allow the differential release of excitatory and inhibitory neurotransmitters in response to differing patterns of neural activity.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/C507253/1(United Kingdom)