X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Anti-VGAT antibody

RRID:AB_887872

Antibody ID

AB_887872

Target Antigen

VGAT (cytoplasmic domain) human, rat, mouse, guinea pig, monkey

Proper Citation

(Synaptic Systems Cat# 131 011, RRID:AB_887872)

Clonality

monoclonal antibody

Comments

Applications: WB,IP,ICC,IHC,IHC-P,EM. KO validated

Clone ID

117G4

Host Organism

mouse

Excitatory and Inhibitory Neurons Utilize Different Ca2+ Sensors and Sources to Regulate Spontaneous Release.

  • Courtney NA
  • Neuron
  • 2018 Jun 6

Literature context:


Abstract:

Spontaneous neurotransmitter release (mini) is an important form of Ca2+-dependent synaptic transmission that occurs in the absence of action potentials. A molecular understanding of this process requires an identification of the underlying Ca2+ sensors. Here, we address the roles of the relatively low- and high-affinity Ca2+ sensors, synapotagmin-1 (syt1) and Doc2α/β, respectively. We found that both syt1 and Doc2 regulate minis, but, surprisingly, their relative contributions depend on whether release was from excitatory or inhibitory neurons. Doc2α promoted glutamatergic minis, while Doc2β and syt1 both regulated GABAergic minis. We identified Ca2+ ligand mutations in Doc2 that either disrupted or constitutively activated the regulation of minis. Finally, Ca2+ entry via voltage-gated Ca2+ channels triggered miniature GABA release by activating syt1, but had no effect on Doc2-driven minis. This work reveals an unexpected divergence in the regulation of spontaneous excitatory and inhibitory transmission in terms of both Ca2+ sensors and sources.

Funding information:
  • Intramural NIH HHS - (United States)
  • NIGMS NIH HHS - T32 GM008692()

Dopamine receptors in the rat entopeduncular nucleus.

  • Lavian H
  • Brain Struct Funct
  • 2018 Mar 24

Literature context:


Abstract:

Dopamine is critical for the normal functioning of the basal ganglia, modulating both input and output nuclei of this system. The distribution and function of each of the five dopamine receptor subtypes have been studied extensively in the striatum. However, the role of extrastriatal dopamine receptors in basal ganglia information processing is less clear. Here, we studied the anatomical distribution of dopamine receptors in one of the output nuclei of the rodent basal ganglia, the entopeduncular nucleus (EP). The presence of all dopamine receptor subtypes was verified in the EP using immunostaining. We detected co-localization of dopamine receptors with VGAT, which suggests presynaptic expression on GABAergic terminals. D1R and D2R were strongly colocalized with VGAT, whereas DR3-5 showed only sparse co-localization. We further labeled striatal or pallidal neurons with GFP and showed that only D1 receptors were co-localized with striatal terminals, while only D2R and D3R were co-localized with pallidal terminals. Dopamine receptors were also strongly co-localized with MAP2, indicating postsynaptic expression. Overall, these findings suggest that the dopaminergic system modulates activity in the EP both directly via postsynaptic receptors, and indirectly via GABAergic synapses stemming from the direct and indirect pathways.

Funding information:
  • Israel Science Foundation - 138/15()
  • NIDDK NIH HHS - R24 DK064400(United States)
  • Paul Feder foundation - N/A()

Loss of CLOCK Results in Dysfunction of Brain Circuits Underlying Focal Epilepsy.

  • Li P
  • Neuron
  • 2017 Oct 11

Literature context:


Abstract:

Because molecular mechanisms underlying refractory focal epilepsy are poorly defined, we performed transcriptome analysis on human epileptogenic tissue. Compared with controls, expression of Circadian Locomotor Output Cycles Kaput (CLOCK) is decreased in epileptogenic tissue. To define the function of CLOCK, we generated and tested the Emx-Cre; Clockflox/flox and PV-Cre; Clockflox/flox mouse lines with targeted deletions of the Clock gene in excitatory and parvalbumin (PV)-expressing inhibitory neurons, respectively. The Emx-Cre; Clockflox/flox mouse line alone has decreased seizure thresholds, but no laminar or dendritic defects in the cortex. However, excitatory neurons from the Emx-Cre; Clockflox/flox mouse have spontaneous epileptiform discharges. Both neurons from Emx-Cre; Clockflox/flox mouse and human epileptogenic tissue exhibit decreased spontaneous inhibitory postsynaptic currents. Finally, video-EEG of Emx-Cre; Clockflox/flox mice reveals epileptiform discharges during sleep and also seizures arising from sleep. Altogether, these data show that disruption of CLOCK alters cortical circuits and may lead to generation of focal epilepsy.

Inter-Synaptic Lateral Diffusion of GABAA Receptors Shapes Inhibitory Synaptic Currents.

  • de Luca E
  • Neuron
  • 2017 Jul 5

Literature context:


Abstract:

The lateral mobility of neurotransmitter receptors has been shown to tune synaptic signals. Here we report that GABAA receptors (GABAARs) can diffuse between adjacent dendritic GABAergic synapses in long-living desensitized states, thus laterally spreading "activation memories" between inhibitory synapses. Glutamatergic activity limits this inter-synaptic diffusion by trapping GABAARs at excitatory synapses. This novel form of activity-dependent hetero-synaptic interplay is likely to modulate dendritic synaptic signaling.

Probabilistic fluorescence-based synapse detection.

  • Simhal AK
  • PLoS Comput. Biol.
  • 2017 Apr 17

Literature context:


Abstract:

Deeper exploration of the brain's vast synaptic networks will require new tools for high-throughput structural and molecular profiling of the diverse populations of synapses that compose those networks. Fluorescence microscopy (FM) and electron microscopy (EM) offer complementary advantages and disadvantages for single-synapse analysis. FM combines exquisite molecular discrimination capacities with high speed and low cost, but rigorous discrimination between synaptic and non-synaptic fluorescence signals is challenging. In contrast, EM remains the gold standard for reliable identification of a synapse, but offers only limited molecular discrimination and is slow and costly. To develop and test single-synapse image analysis methods, we have used datasets from conjugate array tomography (cAT), which provides voxel-conjugate FM and EM (annotated) images of the same individual synapses. We report a novel unsupervised probabilistic method for detection of synapses from multiplex FM (muxFM) image data, and evaluate this method both by comparison to EM gold standard annotated data and by examining its capacity to reproduce known important features of cortical synapse distributions. The proposed probabilistic model-based synapse detector accepts molecular-morphological synapse models as user queries, and delivers a volumetric map of the probability that each voxel represents part of a synapse. Taking human annotation of cAT EM data as ground truth, we show that our algorithm detects synapses from muxFM data alone as successfully as human annotators seeing only the muxFM data, and accurately reproduces known architectural features of cortical synapse distributions. This approach opens the door to data-driven discovery of new synapse types and their density. We suggest that our probabilistic synapse detector will also be useful for analysis of standard confocal and super-resolution FM images, where EM cross-validation is not practical.

Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons.

  • Ripamonti S
  • Elife
  • 2017 Feb 23

Literature context:


Abstract:

Beyond its role in parturition and lactation, oxytocin influences higher brain processes that control social behavior of mammals, and perturbed oxytocin signaling has been linked to the pathogenesis of several psychiatric disorders. However, it is still largely unknown how oxytocin exactly regulates neuronal function. We show that early, transient oxytocin exposure in vitro inhibits the development of hippocampal glutamatergic neurons, leading to reduced dendrite complexity, synapse density, and excitatory transmission, while sparing GABAergic neurons. Conversely, genetic elimination of oxytocin receptors increases the expression of protein components of excitatory synapses and excitatory synaptic transmission in vitro. In vivo, oxytocin-receptor-deficient hippocampal pyramidal neurons develop more complex dendrites, which leads to increased spine number and reduced γ-oscillations. These results indicate that oxytocin controls the development of hippocampal excitatory neurons and contributes to the maintenance of a physiological excitation/inhibition balance, whose disruption can cause neurobehavioral disturbances.

Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb.

  • Hamamoto M
  • J. Comp. Neurol.
  • 2017 Feb 15

Literature context:


Abstract:

Odor information is regulated by olfactory inputs, bulbar interneurons, and centrifugal inputs in the olfactory bulb (OB). Cholinergic neurons projecting from the nucleus of the horizontal limb of the diagonal band of Broca and the magnocellular preoptic nucleus are one of the primary centrifugal inputs to the OB. In this study, we focused on cholinergic regulation of the OB and analyzed neural morphology with a particular emphasis on the projection pathways of cholinergic neurons. Single-cell imaging of a specific neuron within dense fibers is critical to evaluate the structure and function of the neural circuits. We labeled cholinergic neurons by infection with virus vector and then reconstructed them three-dimensionally. We also examined the ultramicrostructure of synapses by electron microscopy tomography. To further clarify the function of cholinergic neurons, we performed confocal laser scanning microscopy to investigate whether other neurotransmitters are present within cholinergic axons in the OB. Our results showed the first visualization of complete cholinergic neurons, including axons projecting to the OB, and also revealed frequent axonal branching within the OB where it innervated multiple glomeruli in different areas. Furthermore, electron tomography demonstrated that cholinergic axons formed asymmetrical synapses with a morphological variety of thicknesses of the postsynaptic density. Although we have not yet detected the presence of other neurotransmitters, the range of synaptic morphology suggests multiple modes of transmission. The present study elucidates the ways that cholinergic neurons could contribute to the elaborate mechanisms involved in olfactory processing in the OB. J. Comp. Neurol. 525:574-591, 2017. © 2016 Wiley Periodicals, Inc.

Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity.

  • Lowe MT
  • J. Comp. Neurol.
  • 2015 Apr 1

Literature context:


Abstract:

Creatine is a molecule that supports energy metabolism in cells. It is carried across the plasma membrane by the creatine transporter. There has been recent interest in creatine for its neuroprotective effects in neurodegenerative diseases and its potential as a therapeutic agent. This study represents the first systematic investigation of the distribution of the creatine transporter in the human brain. We have used immunohistochemical techniques to map out its location and the intensity of staining. The transporter was found to be strongly expressed, especially in the large projection neurons of the brain and spinal cord. These include the pyramidal neurons in the cerebral cortex, Purkinje cells in the cerebellar cortex, and motor neurons of the somatic motor and visceromotor cranial nerve nuclei and the ventral horn of the spinal cord. Many other neurons in the brain also had some degree of creatine transporter immunoreactivity. By contrast, the medium spiny neurons of the striatum and the catecholaminergic neurons of the substantia nigra and locus coeruleus, which are implicated in neurodegenerative diseases, showed a very low to almost absent level of immunoreactivity for the transporter. We propose that the distribution may reflect the energy consumption by different cell types and that the extent of creatine transporter expression is proportional to the cell's energy requirements. Furthermore, the distribution indicates that supplemented creatine would be widely taken up by brain cells, although possibly less by those cells that degenerate in Huntington's and Parkinson's diseases.

Funding information:
  • NIDA NIH HHS - R01 DA030161(United States)

Bridging the gap: a reticulo-propriospinal detour bypassing an incomplete spinal cord injury.

  • Filli L
  • J. Neurosci.
  • 2014 Oct 1

Literature context:


Abstract:

Anatomically incomplete spinal cord injuries are often followed by considerable functional recovery in patients and animal models, largely because of processes of neuronal plasticity. In contrast to the corticospinal system, where sprouting of fibers and rearrangements of circuits in response to lesions have been well studied, structural adaptations within descending brainstem pathways and intraspinal networks are poorly investigated, despite the recognized physiological significance of these systems across species. In the present study, spontaneous neuroanatomical plasticity of severed bulbospinal systems and propriospinal neurons was investigated following unilateral C4 spinal hemisection in adult rats. Injection of retrograde tracer into the ipsilesional segments C3-C4 revealed a specific increase in the projection from the ipsilesional gigantocellular reticular nucleus in response to the injury. Substantial regenerative fiber sprouting of reticulospinal axons above the injury site was demonstrated by anterograde tracing. Regrowing reticulospinal fibers exhibited excitatory, vGLUT2-positive varicosities, indicating their synaptic integration into spinal networks. Reticulospinal fibers formed close appositions onto descending, double-midline crossing C3-C4 propriospinal neurons, which crossed the lesion site in the intact half of the spinal cord and recrossed to the denervated cervical hemicord below the injury. These propriospinal projections around the lesion were significantly enhanced after injury. Our results suggest that severed reticulospinal fibers, which are part of the phylogenetically oldest motor command system, spontaneously arborize and form contacts onto a plastic propriospinal relay, thereby bypassing the lesion. These rearrangements were accompanied by substantial locomotor recovery, implying a potential physiological relevance of the detour in restoration of motor function after spinal injury.

Funding information:
  • NIAID NIH HHS - R01 AI118985(United States)

Inhibitory and excitatory amino acid neurotransmitters are utilized by the projection from the dorsal deep mesencephalic nucleus to the sublaterodorsal nucleus REM sleep induction zone.

  • Liang CL
  • Brain Res.
  • 2014 Jun 3

Literature context:


Abstract:

The sublaterodorsal nucleus (SLD) in the pons of the rat is a locus supporting short-latency induction of a REM sleep-like state following local application of a GABAA receptor antagonist or kainate, glutamate receptor agonist. One putatively relevant source of these neurotransmitters is from the region of the deep mesencephalic nucleus (DpMe) just ventrolateral to the periaquiductal gray, termed the dorsal DpMe (dDpMe). Here, the amino acid neurotransmitter innervation of SLD from dDpMe was studied utilizing anterograde tract-tracing with biotinylated dextranamine (BDA) and fluorescence immunohistochemistry visualized with laser scanning confocal microscopy. Both markers for inhibitory and excitatory amino acid neurotransmitters were found in varicose axon fibers in SLD originating from dDpMe. Vesicular glutamate transporter2 (VGLUT2) represented the largest number of anterogradely labeled varicosities followed by vesicular GABA transporter (VGAT). Numerous VGAT and VGLUT2 labeled varicosities were observed apposed to dDpMe-labeled axon fibers indicating both excitatory and inhibitory presynaptic, local modulation within the SLD. Some double-labeled BDA/VGAT varicosities were seen apposed to small somata labeled for glutamate consistent with being presynaptic to the phenotype of REM sleep-active SLD neurons. Results found support the current theoretical framework of the interaction of dDpMe and SLD in control of REM sleep, while also indicating operation of mechanisms with a greater level of complexity.

Funding information:
  • Wellcome Trust - 100140(United Kingdom)

Expression of voltage-gated calcium channel α(2)δ(4) subunits in the mouse and rat retina.

  • De Sevilla Müller LP
  • J. Comp. Neurol.
  • 2013 Aug 1

Literature context:


Abstract:

High-voltage activated Ca channels participate in multiple cellular functions, including transmitter release, excitation, and gene transcription. Ca channels are heteromeric proteins consisting of a pore-forming α(1) subunit and auxiliary α(2)δ and β subunits. Although there are reports of α(2)δ(4) subunit mRNA in the mouse retina and localization of the α(2)δ(4) subunit immunoreactivity to salamander photoreceptor terminals, there is a limited overall understanding of its expression and localization in the retina. α(2)δ(4) subunit expression and distribution in the mouse and rat retina were evaluated by using reverse transcriptase polymerase chain reaction, western blot, and immunohistochemistry with specific primers and a well-characterized antibody to the α(2)δ(4) subunit. α(2)δ(4) subunit mRNA and protein are present in mouse and rat retina, brain, and liver homogenates. Immunostaining for the α(2)δ(4) subunit is mainly localized to Müller cell processes and endfeet, photoreceptor terminals, and photoreceptor outer segments. This subunit is also expressed in a few displaced ganglion cells and bipolar cell dendrites. These findings suggest that the α(2)δ(4) subunit participates in the modulation of L-type Ca(2+) current regulating neurotransmitter release from photoreceptor terminals and Ca(2+)-dependent signaling pathways in bipolar and Müller cells.

Funding information:
  • NIAID NIH HHS - U19AI110820(United States)

The sodium-driven chloride/bicarbonate exchanger in presynaptic terminals.

  • Burette AC
  • J. Comp. Neurol.
  • 2012 May 1

Literature context:


Abstract:

The sodium-driven chloride/bicarbonate exchanger (NDCBE), a member of the SLC4 family of bicarbonate transporters, was recently found to modulate excitatory neurotransmission in hippocampus. By using light and electron microscopic immunohistochemistry, we demonstrate here that NDCBE is expressed throughout the adult rat brain, and selectively concentrates in presynaptic terminals, where it is closely associated with synaptic vesicles. NDCBE is in most glutamatergic axon terminals, and is also present in the terminals of parvalbumin-positive γ-aminobutyric acid (GABA)ergic cells. These findings suggest that NDCBE can regulate glutamatergic transmission throughout the brain, and point to a role for NDCBE as a possible regulator of GABAergic neurotransmission.

Funding information:
  • NIAAA NIH HHS - U01 AA020942(United States)

Guinea pig horizontal cells express GABA, the GABA-synthesizing enzyme GAD 65, and the GABA vesicular transporter.

  • Guo C
  • J. Comp. Neurol.
  • 2010 May 15

Literature context:


Abstract:

Gamma-aminobutyric acid (GABA) is likely expressed in horizontal cells of all species, although conflicting physiological findings have led to considerable controversy regarding its role as a transmitter in the outer retina. This study has evaluated key components of the GABA system in the outer retina of guinea pig, an emerging retinal model system. The presence of GABA, its rate-limiting synthetic enzyme glutamic acid decarboxylase (GAD(65) and GAD(67) isoforms), the plasma membrane GABA transporters (GAT-1 and GAT-3), and the vesicular GABA transporter (VGAT) was evaluated by using immunohistochemistry with well-characterized antibodies. The presence of GAD(65) mRNA was also evaluated by using laser capture microdissection and reverse transcriptase-polymerase chain reaction. Specific GABA, GAD(65), and VGAT immunostaining was localized to horizontal cell bodies, as well as to their processes and tips in the outer plexiform layer. Furthermore, immunostaining of retinal whole mounts and acutely dissociated retinas showed GAD(65) and VGAT immunoreactivity in both A-type and B-type horizontal cells. However, these cells did not contain GAD(67), GAT-1, or GAT-3 immunoreactivity. GAD(65) mRNA was detected in horizontal cells, and sequencing of the amplified GAD(65) fragment showed approximately 85% identity with other mammalian GAD(65) mRNAs. These studies demonstrate the presence of GABA, GAD(65), and VGAT in horizontal cells of the guinea pig retina, and support the idea that GABA is synthesized from GAD(65), taken up into synaptic vesicles by VGAT, and likely released by a vesicular mechanism from horizontal cells.

Neuroanatomical plasticity in the gonadotropin-releasing hormone system of the ewe: seasonal variation in glutamatergic and gamma-aminobutyric acidergic afferents.

  • Sergeeva A
  • J. Comp. Neurol.
  • 2009 Aug 20

Literature context:


Abstract:

Temperate zone animals time the onset of reproductive events to coincide with specific portions of the sidereal year. Although the neural mechanisms involved remain poorly understood, a marked annual variation in the brain's sensitivity to estradiol negative feedback is thought to mediate many of the changes in neuroendocrine hormone secretion, especially that of the gonadotropin-releasing hormone (GnRH) neurons, via neural afferents. The aim of the present study was to determine whether glutamatergic inputs to GnRH neurons in sheep vary seasonally and to expand our previous observations of seasonal changes in gamma-aminobutyric acid (GABA)-ergic inputs. Brains from adult sheep were collected during the breeding season (N = 8) or the nonbreeding season (anestrus; N = 7). Confocal microscopy and optical sectioning were used to quantify the density of labeled VGLUT2 and VGAT immunoreactivity onto GnRH neurons. The results reveal a significantly greater number of VGLUT2-ir inputs to GnRH dendrites during the breeding season vs. the nonbreeding season but no seasonal changes on GnRH cell somas. The number of VGAT-ir terminals onto GnRH dendrites was reduced in the breeding season compared with the nonbreeding season. GnRH neurons were also found to receive dual-phenotype (VGLUT + VGAT) inputs; these varied with season in a manner similar to VGAT inputs. Morphologically, the numbers of branches of proximal dendrites increased significantly in a subset of GnRH neurons located near the midline. Together these results reveal a dynamic seasonal reorganization of identified inputs onto GnRH neurons and lend additional support to the overall hypothesis that seasonal modulation of GnRH neurons involves glutamatergic and GABAergic neural plasticity.

Funding information:
  • Wellcome Trust - 076976(United Kingdom)

Plasmalemmal and vesicular gamma-aminobutyric acid transporter expression in the developing mouse retina.

  • Guo C
  • J. Comp. Neurol.
  • 2009 Jan 1

Literature context:


Abstract:

Plasmalemmal and vesicular gamma-aminobutyric acid (GABA) transporters influence neurotransmission by regulating high-affinity GABA uptake and GABA release into the synaptic cleft and extracellular space. Postnatal expression of the plasmalemmal GABA transporter-1 (GAT-1), GAT-3, and the vesicular GABA/glycine transporter (VGAT) were evaluated in the developing mouse retina by using immunohistochemistry with affinity-purified antibodies. Weak transporter immunoreactivity was observed in the inner retina at postnatal day 0 (P0). GAT-1 immunostaining at P0 and at older ages was in amacrine and displaced amacrine cells in the inner nuclear layer (INL) and ganglion cell layer (GCL), respectively, and in their processes in the inner plexiform layer (IPL). At P10, weak GAT-1 immunostaining was in Müller cell processes. GAT-3 immunostaining at P0 and older ages was in amacrine cells and their processes, as well as in Müller cells and their processes that extended radially across the retina. At P10, Müller cell somata were observed in the middle of the INL. VGAT immunostaining was present at P0 and older ages in amacrine cells in the INL as well as processes in the IPL. At P5, weak VGAT immunostaining was also observed in horizontal cell somata and processes. By P15, the GAT and VGAT immunostaining patterns appear similar to the adult immunostaining patterns; they reached adult levels by about P20. These findings demonstrate that GABA uptake and release are initially established in the inner retina during the first postnatal week and that these systems subsequently mature in the outer retina during the second postnatal week.

Anatomical and neurochemical characterization of dopaminergic interplexiform processes in mouse and rat retinas.

  • Witkovsky P
  • J. Comp. Neurol.
  • 2008 Sep 10

Literature context:


Abstract:

Dopaminergic (DA) neurons of mouse and rat retinas are of the interplexiform subtype (DA-IPC), i.e., they send processes distally toward the outer retina, exhibiting numerous varicosities along their course. The primary question we addressed was whether distally located DA-IPC varicosities, identified by tyrosine hydroxylase (TH) immunoreactivity, had the characteristic presynaptic proteins associated with calcium-dependent vesicular release of neurotransmitter. We found that TH immunoreactive varicosities in the outer retina possessed vesicular monoamine transporter 2 and vesicular GABA transporter, but they lacked immunostaining for any of nine subtypes of voltage-dependent calcium channel. Immunoreactivity for other channels that may permit calcium influx such as certain ionotropic glutamate receptors and canonical transient receptor potential channels (TRPCs) was similarly absent, although DA-IPC varicosities did show ryanodine receptor immunoreactivity, indicating the presence of intracellular calcium stores. The synaptic vesicle proteins sv2a and sv2b and certain other proteins associated with the presynaptic membrane were absent from DA-IPC varicosities, but the vesicular SNARE protein, vamp2, was present in a fraction of those varicosities. We identified a presumed second class of IPC that is GABAergic but not dopaminergic. Outer retinal varicosities of this putative GABAergic IPC did colocalize synaptic vesicle protein 2a, suggesting they possessed a conventional vesicular release mechanism.

GABAergic phenotype of periglomerular cells in the rodent olfactory bulb.

  • Panzanelli P
  • J. Comp. Neurol.
  • 2007 Jun 20

Literature context:


Abstract:

Periglomerular (PG) cells in the rodent olfactory bulb are heterogeneous anatomically and neurochemically. Here we investigated whether major classes of PG cells use gamma-aminobutyric acid (GABA) as a neurotransmitter. In addition to three known subtypes of PG cells expressing tyrosine hydroxylase (TH), calbindin D-28k (CB), and calretinin (CR), we identified a novel PG cell population containing the GABAA receptor alpha5 subunit. Consistent with previous studies in the rat, we found that TH-positive cells were also labeled with antibodies against GABA, whereas PG cells expressing CB or the alpha5 subunit were GABA-negative. Using GAD67-GFP knockin mice, we found that all PG cell subtypes expressed GAD67-GFP. Calretinin labeled the major fraction (44%) of green fluorescent protein (GFP)-positive cells, followed by TH (16%), CB (14%), and the alpha5 subunit (13%). There was no overlap between these neuronal populations, which accounted for approximately 85% of GAD67-GFP-positive cells. We then demonstrated that PG cells labeled for TH, CB, or CR established dendrodendritic synapses expressing glutamic acid decarboxylase (GAD) or the vesicular inhibitory amino acid transporter, VGAT, irrespective of their immunoreactivity for GABA. In addition, CB-, CR-, and TH-positive dendrites were apposed to GABAA receptor clusters containing the alpha1 or alpha3 subunits, which are found in mitral and tufted cells, and the alpha2 subunit, which is expressed by PG cells. Together, these findings indicate that all major subtypes of PG cells are GABAergic. In addition, they show that PG cells provide GABAergic input to the dendrites of principal neurons and are interconnected with other GABAergic interneurons, which most likely are other PG cells.

Funding information:
  • NINDS NIH HHS - NS065960(United States)
  • NINDS NIH HHS - NS07437(United States)