Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Lamin B (C-20) antibody


Antibody ID


Target Antigen

Lamin B (C-20) human, mouse, rat, mouse, rat, human

Proper Citation

(Santa Cruz Biotechnology Cat# sc-6216, RRID:AB_648156)


polyclonal antibody


Discontinued: 2016; validation status unknown check with seller; recommendations: WB, IP, IF, IHC(P), ELISA; Immunofluorescence; ELISA; Western Blot; Immunocytochemistry; Immunoprecipitation; Immunohistochemistry

Host Organism



Santa Cruz Biotechnology

AIDA Selectively Mediates Downregulation of Fat Synthesis Enzymes by ERAD to Retard Intestinal Fat Absorption and Prevent Obesity.

  • Luo H
  • Cell Metab.
  • 2018 Apr 3

Literature context:


The efficiency of intestinal absorption of dietary fat constitutes a primary determinant accounting for individual vulnerability to obesity. However, how fat absorption is controlled and contributes to obesity remains unclear. Here, we show that inhibition of endoplasmic-reticulum-associated degradation (ERAD) increases the abundance of triacylglycerol synthesis enzymes and fat absorption in small intestine. The C2-domain protein AIDA acts as an essential factor for the E3-ligase HRD1 of ERAD to downregulate rate-limiting acyltransferases GPAT3, MOGAT2, and DGAT2. Aida-/- mice, when grown in a thermal-neutral condition or fed high-fat diet, display increased intestinal fatty acid re-esterification, circulating and tissue triacylglycerol, accompanied with severely increased adiposity without enhancement of adipogenesis. Intestine-specific knockout of Aida largely phenocopies its whole-body knockout, strongly indicating that increased intestinal TAG synthesis is a primary impetus to obesity. The AIDA-mediated ERAD system may thus represent an anti-thrifty mechanism impinging on the enzymes for intestinal fat absorption and systemic fat storage.

Funding information:
  • NCI NIH HHS - R01 CA064140(United States)

Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis.

  • Khajuria RK
  • Cell
  • 2018 Mar 22

Literature context:


Blood cell formation is classically thought to occur through a hierarchical differentiation process, although recent studies have shown that lineage commitment may occur earlier in hematopoietic stem and progenitor cells (HSPCs). The relevance to human blood diseases and the underlying regulation of these refined models remain poorly understood. By studying a genetic blood disorder, Diamond-Blackfan anemia (DBA), where the majority of mutations affect ribosomal proteins and the erythroid lineage is selectively perturbed, we are able to gain mechanistic insight into how lineage commitment is programmed normally and disrupted in disease. We show that in DBA, the pool of available ribosomes is limited, while ribosome composition remains constant. Surprisingly, this global reduction in ribosome levels more profoundly alters translation of a select subset of transcripts. We show how the reduced translation of select transcripts in HSPCs can impair erythroid lineage commitment, illuminating a regulatory role for ribosome levels in cellular differentiation.

Funding information:
  • NHLBI NIH HHS - R33 HL120791()
  • NHLBI NIH HHS - T32 HL007574()
  • NIDDK NIH HHS - R01 DK103794()
  • NIGMS NIH HHS - R01 GM062917-06(United States)

Lithium Chloride Increases COX-2 Expression and PGE2 Production in a Human Granulosa-Lutein SVOG Cell Line Via a GSK-3β/β-Catenin Signaling Pathway.

  • Bai L
  • Endocrinology
  • 2017 Sep 1

Literature context:


Lithium chloride (LiCl) is widely prescribed for the treatment of bipolar disorders and is associated with a higher incidence of reproductive adverse effects. Cyclooxygenase (COX)-2 and its derivative, prostaglandin E2 (PGE2), play regulatory roles in the human ovulatory process. Whether LiCl affects ovulation by regulating COX2 expression and PGE2 production in the human ovary is still largely unknown. The aim of this study was to investigate the effect of LiCl on the expression of COX-2 and production of PGE2 in human granulosa-lutein (hGL) cells, as well as the mechanisms underlying this effect. Both immortalized and primary hGL cells were used as research models. Using dual inhibition approaches, our results show that LiCl initiates the hGL cellular action by inhibiting the activity of glycogen synthase kinase-3β [GSK-3β (phosphorylation of GSK-3β)] and activation of extracellular signal-regulated kinase 1/2 (ERK1/2), but not by affecting protein kinase B or cAMP response element binding protein signaling. Additionally, the phosphorylation of GSK-3β, but not ERK1/2, resulted in the stabilization and nuclear localization of β-catenin. Furthermore, knockdown of either β-catenin or GSK-3β reversed the LiCl-induced upregulation of COX-2 expression. These results indicate that LiCl upregulates the expression of COX-2 and the subsequent production of PGE2 through the canonical GSK-3β/β-catenin signaling pathway in hGL cells.

Funding information:
  • NHGRI NIH HHS - R01 HG005085-02(United States)
  • NIEHS NIH HHS - R01 ES023316(United States)

The Wound Microenvironment Reprograms Schwann Cells to Invasive Mesenchymal-like Cells to Drive Peripheral Nerve Regeneration.

  • Clements MP
  • Neuron
  • 2017 Sep 27

Literature context:


Schwann cell dedifferentiation from a myelinating to a progenitor-like cell underlies the remarkable ability of peripheral nerves to regenerate following injury. However, the molecular identity of the differentiated and dedifferentiated states in vivo has been elusive. Here, we profiled Schwann cells acutely purified from intact nerves and from the wound and distal regions of severed nerves. Our analysis reveals novel facets of the dedifferentiation response, including acquisition of mesenchymal traits and a Myc module. Furthermore, wound and distal dedifferentiated Schwann cells constitute different populations, with wound cells displaying increased mesenchymal character induced by localized TGFβ signaling. TGFβ promotes invasion and crosstalks with Eph signaling via N-cadherin to drive collective migration of the Schwann cells across the wound. Consistently, Tgfbr2 deletion in Schwann cells resulted in misdirected and delayed reinnervation. Thus, the wound microenvironment is a key determinant of Schwann cell identity, and it promotes nerve repair through integration of multiple concerted signals. VIDEO ABSTRACT.

Chronic Cigarette Smoke-Induced Epigenomic Changes Precede Sensitization of Bronchial Epithelial Cells to Single-Step Transformation by KRAS Mutations.

  • Vaz M
  • Cancer Cell
  • 2017 Sep 11

Literature context:


We define how chronic cigarette smoke-induced time-dependent epigenetic alterations can sensitize human bronchial epithelial cells for transformation by a single oncogene. The smoke-induced chromatin changes include initial repressive polycomb marking of genes, later manifesting abnormal DNA methylation by 10 months. At this time, cells exhibit epithelial-to-mesenchymal changes, anchorage-independent growth, and upregulated RAS/MAPK signaling with silencing of hypermethylated genes, which normally inhibit these pathways and are associated with smoking-related non-small cell lung cancer. These cells, in the absence of any driver gene mutations, now transform by introducing a single KRAS mutation and form adenosquamous lung carcinomas in mice. Thus, epigenetic abnormalities may prime for changing oncogene senescence to addiction for a single key oncogene involved in lung cancer initiation.

Funding information:
  • NCI NIH HHS - P30 CA006973()
  • NCI NIH HHS - R01 CA043318()
  • NCI NIH HHS - R01 CA121113()
  • NCI NIH HHS - R01 CA170550()
  • NCI NIH HHS - R01 CA185357()
  • NCI NIH HHS - U10 CA180950()
  • NIEHS NIH HHS - R01 ES011858()
  • NIEHS NIH HHS - R01 ES023183()

Modulation of Autophagy by BDNF Underlies Synaptic Plasticity.

  • Nikoletopoulou V
  • Cell Metab.
  • 2017 Jul 5

Literature context:


Autophagy is crucial for neuronal integrity. Loss of key autophagic components leads to progressive neurodegeneration and structural defects in pre- and postsynaptic morphologies. However, the molecular mechanisms regulating autophagy in the brain remain elusive. Similarly, while it is widely accepted that protein turnover is required for synaptic plasticity, the contribution of autophagy to the degradation of synaptic proteins is unknown. Here, we report that BDNF signaling via the tropomyosin receptor kinase B (TrkB) and the phosphatidylinositol-3' kinase (PI3K)/Akt pathway suppresses autophagy in vivo. In addition, we demonstrate that suppression of autophagy is required for BDNF-induced synaptic plasticity and for memory enhancement under conditions of nutritional stress. Finally, we identify three key remodelers of postsynaptic densities as cargo of autophagy. Our results establish autophagy as a pivotal component of BDNF signaling, which is essential for BDNF-induced synaptic plasticity. This molecular mechanism underlies behavioral adaptations that increase fitness in times of scarcity.

Funding information:
  • NIDDK NIH HHS - R01 DK094141(United States)
  • NIDDK NIH HHS - U24 DK093000(United States)

FOXA3 Is Expressed in Multiple Cell Lineages in the Mouse Testis and Regulates Pdgfra Expression in Leydig Cells.

  • Garon G
  • Endocrinology
  • 2017 Jun 1

Literature context:


The three FOXA transcription factors are mainly known for their roles in the liver. However, Foxa3-deficient mice become progressively sub/infertile due to germ cell loss. Because no data were available regarding the localization of the FOXA3 protein in the testis, immunohistochemistry was performed on mouse testis sections. In the fetal testis, a weak but consistent staining for FOXA3 is detected in the nucleus of Sertoli cells. In prepubertal and adult life, FOXA3 remains present in Sertoli cells of some but not all seminiferous tubules. FOXA3 is also detected in the nucleus of some peritubular cells. From postnatal day 20 onward, FOXA3 is strongly expressed in the nucleus of Leydig cells. To identify FOXA3 target genes in Leydig cells, MLTC-1 Leydig cells were transfected with a series of Leydig cell gene reporters in the presence of a FOXA3 expression vector. The platelet-derived growth factor receptor α (Pdgfra) promoter was significantly activated by FOXA3. The Pdgfra promoter contains three potential FOX elements and progressive 5' deletions and site-directed mutagenesis revealed that the most proximal element at -78 bp was sufficient to confer FOXA3 responsiveness. FOXA3 from Leydig cells could bind to this element in vitro (electrophoretic mobility shift assay) and was recruited to the proximal Pdgfra promoter in vivo (chromatin immunoprecipitation). Finally, endogenous Pdgfra messenger RNA levels were reduced in FOXA3-deficient MLTC-1 Leydig cells. Taken together, our data identify FOXA3 as a marker of the Sertoli cell lineage and of the adult Leydig cell population, and as a regulator of Pdgfra transcription in Leydig cells.

PPARγ Links BMP2 and TGFβ1 Pathways in Vascular Smooth Muscle Cells, Regulating Cell Proliferation and Glucose Metabolism.

  • Calvier L
  • Cell Metab.
  • 2017 May 2

Literature context:


BMP2 and TGFβ1 are functional antagonists of pathological remodeling in the arteries, heart, and lung; however, the mechanisms in VSMCs, and their disturbance in pulmonary arterial hypertension (PAH), are unclear. We found a pro-proliferative TGFβ1-Stat3-FoxO1 axis in VSMCs, and PPARγ as inhibitory regulator of TGFβ1-Stat3-FoxO1 and TGFβ1-Smad3/4, by physically interacting with Stat3 and Smad3. TGFβ1 induces fibrosis-related genes and miR-130a/301b, suppressing PPARγ. Conversely, PPARγ inhibits TGFβ1-induced mitochondrial activation and VSMC proliferation, and regulates two glucose metabolism-related enzymes, platelet isoform of phosphofructokinase (PFKP, a PPARγ target, via miR-331-5p) and protein phosphatase 1 regulatory subunit 3G (PPP1R3G, a Smad3 target). PPARγ knockdown/deletion in VSMCs activates TGFβ1 signaling. The PPARγ agonist pioglitazone reverses PAH and inhibits the TGFβ1-Stat3-FoxO1 axis in TGFβ1-overexpressing mice. We identified PPARγ as a missing link between BMP2 and TGFβ1 pathways in VSMCs. PPARγ activation can be beneficial in TGFβ1-associated diseases, such as PAH, parenchymal lung diseases, and Marfan's syndrome.

Funding information:
  • NIDDK NIH HHS - R55 DK061935(United States)
  • NIMH NIH HHS - R21 MH098506(United States)

PCGF6-PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes.

  • Endoh M
  • Elife
  • 2017 Mar 17

Literature context:


The ring finger protein PCGF6 (polycomb group ring finger 6) interacts with RING1A/B and E2F6 associated factors to form a non-canonical PRC1 (polycomb repressive complex 1) known as PCGF6-PRC1. Here, we demonstrate that PCGF6-PRC1 plays a role in repressing a subset of PRC1 target genes by recruiting RING1B and mediating downstream mono-ubiquitination of histone H2A. PCGF6-PRC1 bound loci are highly enriched for promoters of germ cell-related genes in mouse embryonic stem cells (ESCs). Conditional ablation of Pcgf6 in ESCs leads to robust de-repression of such germ cell-related genes, in turn affecting cell growth and viability. We also find a role for PCGF6 in pre- and peri-implantation mouse embryonic development. We further show that a heterodimer of the transcription factors MAX and MGA recruits PCGF6 to target loci. PCGF6 thus links sequence specific target recognition by the MAX/MGA complex to PRC1-dependent transcriptional silencing of germ cell-specific genes in pluripotent stem cells.

The Transcription Factor MEF2 Is a Novel Regulator of Gsta Gene Class in Mouse MA-10 Leydig Cells.

  • Di-Luoffo M
  • Endocrinology
  • 2015 Dec 21

Literature context:


Testosterone is essential for spermatogenesis and the development of male sexual characteristics. However, steroidogenesis produces a significant amount of reactive oxygen species (ROS), which can disrupt testosterone production. The myocyte enhancer factor 2 (MEF2) is an important regulator of organogenesis and cell differentiation in various tissues. In the testis, MEF2 is present in Sertoli and Leydig cells throughout fetal and adult life. MEF2-deficient MA-10 Leydig cells exhibit a significant decrease in steroidogenesis concomitant with a reduction in glutathione S-transferase (GST) activity and in the expression of the 4 Gsta members (GST) that encode ROS inactivating enzymes. Here, we report a novel role for MEF2 in ROS detoxification by directly regulating Gsta expression in Leydig cells. Endogenous Gsta1-4 mRNA levels were decreased in MEF2-deficient MA-10 Leydig cells. Conversely, overexpression of MEF2 increased endogenous Gsta1 levels. MEF2 recruitment to the proximal Gsta1 promoter and direct binding on the -506-bp MEF2 element were confirmed by chromatin immunoprecipitation and DNA precipitation assays. In MA-10 Leydig cells, MEF2 activates the Gsta1 promoter and cooperates with Ca(2+)/calmodulin-dependent kinases I to further enhance Gsta1 promoter activity. These effects were lost when the -506-bp MEF2 element was mutated or when a MEF2-Engrailed dominant negative protein was used. Similar results were obtained on the Gsta2, Gsta3, and Gsta4 promoters, suggesting a global role for MEF2 factors in the regulation of all 4 Gsta genes. Altogether, our results identify a novel role for MEF2 in the expression of genes involved in ROS detoxification, a process essential for adequate testosterone production in Leydig cells.

Funding information:
  • NHGRI NIH HHS - R01 HG008728(United States)

MEF2 Cooperates With Forskolin/cAMP and GATA4 to Regulate Star Gene Expression in Mouse MA-10 Leydig Cells.

  • Daems C
  • Endocrinology
  • 2015 Jul 20

Literature context:


In Leydig cells, steroidogenic acute regulatory protein (STAR) participates in cholesterol shuttling from the outer to the inner mitochondrial membrane, the rate-limiting step in steroidogenesis. Steroid hormone biosynthesis and steroidogenic gene expression are regulated by LH, which activates various signaling pathways and transcription factors, including cAMP/Ca(2+)/CAMK (Ca(2+)/calmodulin-dependent kinase)-myocyte enhancer factor 2 (MEF2). The 4 MEF2 transcription factors are essential regulators of cell differentiation and organogenesis in numerous tissues. Recently, MEF2 was identified in Sertoli and Leydig cells of the testis. Here, we report that MEF2 regulates steroidogenesis in mouse MA-10 Leydig cells by acting on the Star gene. In MA-10 cells depleted of MEF2 using siRNAs (small interfering RNAs), STAR protein levels, Star mRNA levels, and promoter activity were significantly decreased. On its own, MEF2 did not activate the mouse Star promoter but was found to cooperate with forskolin/cAMP. By chromatin immunoprecipitation and DNA precipitation assays, we confirmed MEF2 binding to a consensus element located at -232 bp of the Star promoter. Mutation or deletion of the MEF2 element reduced but did not abrogate the MEF2/cAMP cooperation, indicating that MEF2 cooperates with other DNA-bound transcription factor(s). We identified GATA4 (GATA binding protein 4) as a partner for MEF2 in Leydig cells, because mutation of the GATA element abrogated the MEF2/cAMP cooperation on a reporter lacking a MEF2 element. MEF2 and GATA4 interact as revealed by coimmunoprecipitation, and MEF2 and GATA4 transcriptionally cooperate on the Star promoter. Altogether, our results define MEF2 as a novel regulator of steroidogenesis and Star transcription in Leydig cells and identify GATA4 as a key partner for MEF2-mediated action.

Funding information:
  • NHGRI NIH HHS - R01 HG002668(United States)

Tat 101-mediated enhancement of brain pericyte migration involves platelet-derived growth factor subunit B homodimer: implications for human immunodeficiency virus-associated neurocognitive disorders.

  • Niu F
  • J. Neurosci.
  • 2014 Aug 27

Literature context:


In the era of antiretroviral therapy, although the human immunodeficiency virus (HIV) replication can be successfully controlled, complications of the CNS continue to affect infected individuals. Viral Tat protein is not only neurotoxic but has also been shown to disrupt the integrity of the blood-brain barrier (BBB). Although the role of brain microvascular endothelial cells and astrocytes in Tat-mediated impairment has been well documented, pericytes, which are important constituents of the BBB and play a key role in maintaining the integrity of the barrier, remain poorly studied in the context of HIV-associated neurocognitive disorders (HAND). In the present study, we demonstrated that exposure of human brain microvascular pericytes and C3H/10T1/2 cells to HIV-1 Tat101 resulted in increased expression of platelet-derived growth factor subunit B homodimer (PDGF-BB) and increased migration of the treated cells. Furthermore, we also demonstrated that this effect of Tat was mediated via activation of mitogen-activated protein kinases and nuclear factor-κB pathways. Secreted PDGF-BB resulted in autocrine activation of the PDGF-BB/PDGF β receptor signaling pathway, culminating ultimately into increased pericyte migration. Ex vivo relevance of these findings was further corroborated in isolated microvessels of HIV Tg26 mice that demonstrated significantly increased expression of PDGF-BB in isolated brain microvessels with a concomitant loss of pericytes. Intriguingly, loss of pericyte coverage was also detected in sections of frontal cortex from humans with HIV-encephalitis compared with the uninfected controls. These findings thus implicate a novel role of PDGF-BB in the migration of pericytes, resulting in loss of pericyte coverage from the endothelium with a subsequent breach of the BBB.