Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

CTGF (L-20) antibody


Antibody ID


Target Antigen

CTGF (L-20) mouse, rat, human, mouse, rat, human

Proper Citation

(Santa Cruz Biotechnology Cat# sc-14939, RRID:AB_638805)


polyclonal antibody


Discontinued: 2016; validation status unknown check with seller; recommendations: Immunoprecipitation; Immunocytochemistry; Immunofluorescence; ELISA; Immunohistochemistry; Western Blot; WB, IP, IF, IHC(P), ELISA

Host Organism



Santa Cruz Biotechnology

αII Spectrin Forms a Periodic Cytoskeleton at the Axon Initial Segment and Is Required for Nervous System Function.

  • Huang CY
  • J. Neurosci.
  • 2017 Nov 22

Literature context: growth factor (ctgf, sc-14939; RRID:AB_638805) were from Santa Cruz Biotechno


Spectrins form a submembranous cytoskeleton proposed to confer strength and flexibility to neurons and to participate in ion channel clustering at axon initial segments (AIS) and nodes of Ranvier. Neuronal spectrin cytoskeletons consist of diverse β subunits and αII spectrin. Although αII spectrin is found in neurons in both axonal and somatodendritic domains, using proteomics, biochemistry, and superresolution microscopy, we show that αII and βIV spectrin interact and form a periodic AIS cytoskeleton. To determine the role of spectrins in the nervous system, we generated Sptan1f/f mice for deletion of CNS αII spectrin. We analyzed αII spectrin-deficient mice of both sexes and found that loss of αII spectrin causes profound reductions in all β spectrins. αII spectrin-deficient mice die before 1 month of age and have disrupted AIS and many other neurological impairments including seizures, disrupted cortical lamination, and widespread neurodegeneration. These results demonstrate the importance of the spectrin cytoskeleton both at the AIS and throughout the nervous system.SIGNIFICANCE STATEMENT Spectrin cytoskeletons play diverse roles in neurons, including assembly of excitable domains such as the axon initial segment (AIS) and nodes of Ranvier. However, the molecular composition and structure of these cytoskeletons remain poorly understood. Here, we show that αII spectrin partners with βIV spectrin to form a periodic cytoskeleton at the AIS. Using a new αII spectrin conditional knock-out mouse, we show that αII spectrin is required for AIS assembly, neuronal excitability, cortical lamination, and to protect against neurodegeneration. These results demonstrate the broad importance of spectrin cytoskeletons for nervous system function and development and have important implications for nervous system injuries and diseases because disruption of the spectrin cytoskeleton is a common molecular pathology.

TGF-β1 Inhibits Human Trophoblast Cell Invasion by Upregulating Connective Tissue Growth Factor Expression.

  • Cheng JC
  • Endocrinology
  • 2017 Oct 1

Literature context: 14939 Goat; polyclonal 1000× RRID:AB_638805


Appropriate trophoblast invasion into the maternal endometrium is essential for successful human implantation and placentation. Connective tissue growth factor (CTGF), also known as CCN2, is a matricellular protein that is expressed in the placenta. Interestingly, the CTGF expression levels in the placenta and serum from patients with severe preeclampsia or fetal growth restriction are higher than those from healthy controls. However, to date, the role of CTGF in the regulation of trophoblast cell invasion remains unclear. Transforming growth factor-β1 (TGF-β1) is a potent stimulator of CTGF expression and has been shown to inhibit trophoblast cell invasiveness. However, whether CTGF mediates TGF-β1-inhibited human trophoblast cell invasion is unknown. In the present study, we show that treatment with TGF-β1 upregulates CTGF expression in a human trophoblast cell line, HTR-8/SVneo, and in primary human trophoblast cells. Our results also demonstrate that the SMAD2/3 signaling pathways are required for TGF-β1-induced upregulation of CTGF. Importantly, CTGF knockdown attenuates TGF-β1-inhibited cell invasion. Furthermore, cell invasiveness is decreased by treatment with recombinant CTGF. These results provide evidence that CTGF mediates TGF-β1-inhibited human trophoblast cell invasion.

TIAM1 Antagonizes TAZ/YAP Both in the Destruction Complex in the Cytoplasm and in the Nucleus to Inhibit Invasion of Intestinal Epithelial Cells.

  • Diamantopoulou Z
  • Cancer Cell
  • 2017 May 8

Literature context: sc-14939 RRID:AB_638805 Mouse anti


Aberrant WNT signaling drives colorectal cancer (CRC). Here, we identify TIAM1 as a critical antagonist of CRC progression through inhibiting TAZ and YAP, effectors of WNT signaling. We demonstrate that TIAM1 shuttles between the cytoplasm and nucleus antagonizing TAZ/YAP by distinct mechanisms in the two compartments. In the cytoplasm, TIAM1 localizes to the destruction complex and promotes TAZ degradation by enhancing its interaction with βTrCP. Nuclear TIAM1 suppresses TAZ/YAP interaction with TEADs, inhibiting expression of TAZ/YAP target genes implicated in epithelial-mesenchymal transition, cell migration, and invasion, and consequently suppresses CRC cell migration and invasion. Importantly, high nuclear TIAM1 in clinical specimens associates with increased CRC patient survival. Together, our findings suggest that in CRC TIAM1 suppresses tumor progression by regulating YAP/TAZ activity.

YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis.

  • Lin C
  • Elife
  • 2017 Mar 21

Literature context: sc-14939; RRID:AB_638805), mouse an


Branching morphogenesis is a fundamental program for tissue patterning. We show that active YAP, a key mediator of Hippo signaling, is distributed throughout the murine lung epithelium and loss of epithelial YAP severely disrupts branching. Failure to branch is restricted to regions where YAP activity is removed. This suggests that YAP controls local epithelial cell properties. In support of this model, mechanical force production is compromised and cell proliferation is reduced in Yap mutant lungs. We propose that defective force generation and insufficient epithelial cell number underlie the branching defects. Through genomic analysis, we also uncovered a feedback control of pMLC levels, which is critical for mechanical force production, likely through the direct induction of multiple regulators by YAP. Our work provides a molecular pathway that could control epithelial cell properties required for proper morphogenetic movement and pattern formation.

Funding information:
  • NINDS NIH HHS - K99 NS097627()