X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

c-myc, avian myelocytomatosis viral oncogene homolog antibody

RRID:AB_631274

Antibody ID

AB_631274

Target Antigen

Raised against a peptide mapping near the C-terminus of c-Myc of human origin.

Proper Citation

(Santa Cruz Biotechnology Cat# sc-789, RRID:AB_631274)

Clonality

polyclonal antibody

Comments

Discontinued: 2016; Used By NYUIHC-1092

Host Organism

rabbit

Vendor

Santa Cruz Biotechnology

Regulated Crossing-Over Requires Inactivation of Yen1/GEN1 Resolvase during Meiotic Prophase I.

  • Arter M
  • Dev. Cell
  • 2018 Jun 18

Literature context:


Abstract:

During meiosis, crossover recombination promotes the establishment of physical connections between homologous chromosomes, enabling their bipolar segregation. To ensure that persistent recombination intermediates are disengaged prior to the completion of meiosis, the Yen1(GEN1) resolvase is strictly activated at the onset of anaphase II. Whether controlled activation of Yen1 is important for meiotic crossing-over is unknown. Here, we show that CDK-mediated phosphorylation of Yen1 averts its pervasive recruitment to recombination intermediates during prophase I. Yen1 mutants that are refractory to phosphorylation resolve DNA joint molecules prematurely and form crossovers independently of MutLγ, the central crossover resolvase during meiosis. Despite bypassing the requirement for MutLγ in joint molecule processing and promoting crossover-specific resolution, unrestrained Yen1 impairs the spatial distribution of crossover events, genome-wide. Thus, active suppression of Yen1 function, and by inference also of Mus81-Mms4(EME1) and Slx1-Slx4(BTBD12) resolvases, avoids precocious resolution of recombination intermediates to enable meiotic crossover patterning.

Funding information:
  • European Research Council - 294343(International)
  • NIGMS NIH HHS - R01 GM116895()

A Dendritic Guidance Receptor Complex Brings Together Distinct Actin Regulators to Drive Efficient F-Actin Assembly and Branching.

  • Zou W
  • Dev. Cell
  • 2018 May 7

Literature context:


Abstract:

Proper morphogenesis of dendrites plays a fundamental role in the establishment of neural circuits. The molecular mechanism by which dendrites grow highly complex branches is not well understood. Here, using the Caenorhabditis elegans PVD neuron, we demonstrate that high-order dendritic branching requires actin polymerization driven by coordinated interactions between two membrane proteins, DMA-1 and HPO-30, with their cytoplasmic interactors, the RacGEF TIAM-1 and the actin nucleation promotion factor WAVE regulatory complex (WRC). The dendrite branching receptor DMA-1 directly binds to the PDZ domain of TIAM-1, while the claudin-like protein HPO-30 directly interacts with the WRC. On dendrites, DMA-1 and HPO-30 form a receptor-associated signaling complex to bring TIAM-1 and the WRC to close proximity, leading to elevated assembly of F-actin needed to drive high-order dendrite branching. The synergistic activation of F-actin assembly by scaffolding distinct actin regulators might represent a general mechanism in promoting complex dendrite arborization.

Funding information:
  • Canadian Institutes of Health Research - MOP-74650(Canada)

lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic lncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer.

  • Wang Z
  • Cancer Cell
  • 2018 Apr 9

Literature context:


Abstract:

We characterized the epigenetic landscape of genes encoding long noncoding RNAs (lncRNAs) across 6,475 tumors and 455 cancer cell lines. In stark contrast to the CpG island hypermethylation phenotype in cancer, we observed a recurrent hypomethylation of 1,006 lncRNA genes in cancer, including EPIC1 (epigenetically-induced lncRNA1). Overexpression of EPIC1 is associated with poor prognosis in luminal B breast cancer patients and enhances tumor growth in vitro and in vivo. Mechanistically, EPIC1 promotes cell-cycle progression by interacting with MYC through EPIC1's 129-283 nt region. EPIC1 knockdown reduces the occupancy of MYC to its target genes (e.g., CDKN1A, CCNA2, CDC20, and CDC45). MYC depletion abolishes EPIC1's regulation of MYC target and luminal breast cancer tumorigenesis in vitro and in vivo.

Funding information:
  • Intramural NIH HHS - Z01 ES100485(United States)

Neuroplastin and Basigin Are Essential Auxiliary Subunits of Plasma Membrane Ca2+-ATPases and Key Regulators of Ca2+ Clearance.

  • Schmidt N
  • Neuron
  • 2017 Nov 15

Literature context:


Abstract:

Plasma membrane Ca2+-ATPases (PMCAs), a family of P-type ATPases, extrude Ca2+ ions from the cytosol to the extracellular space and are considered to be key regulators of Ca2+ signaling. Here we show by functional proteomics that native PMCAs are heteromeric complexes that are assembled from two pore-forming PMCA1-4 subunits and two of the single-span membrane proteins, either neuroplastin or basigin. Contribution of the two Ig domain-containing proteins varies among different types of cells and along postnatal development. Complex formation of neuroplastin or basigin with PMCAs1-4 occurs in the endoplasmic reticulum and is obligatory for stability of the PMCA proteins and for delivery of PMCA complexes to the surface membrane. Knockout and (over)-expression of both neuroplastin and basigin profoundly affect the time course of PMCA-mediated Ca2+ transport, as well as submembraneous Ca2+ concentrations under steady-state conditions. Together, these results establish neuroplastin and basigin as obligatory auxiliary subunits of native PMCAs and key regulators of intracellular Ca2+ concentration.

Wnt-Dependent Inactivation of the Groucho/TLE Co-repressor by the HECT E3 Ubiquitin Ligase Hyd/UBR5.

  • Flack JE
  • Mol. Cell
  • 2017 Jul 20

Literature context:


Abstract:

Extracellular signals are transduced to the cell nucleus by effectors that bind to enhancer complexes to operate transcriptional switches. For example, the Wnt enhanceosome is a multiprotein complex associated with Wnt-responsive enhancers through T cell factors (TCF) and kept silent by Groucho/TLE co-repressors. Wnt-activated β-catenin binds to TCF to overcome this repression, but how it achieves this is unknown. Here, we discover that this process depends on the HECT E3 ubiquitin ligase Hyd/UBR5, which is required for Wnt signal responses in Drosophila and human cell lines downstream of activated Armadillo/β-catenin. We identify Groucho/TLE as a functionally relevant substrate, whose ubiquitylation by UBR5 is induced by Wnt signaling and conferred by β-catenin. Inactivation of TLE by UBR5-dependent ubiquitylation also involves VCP/p97, an AAA ATPase regulating the folding of various cellular substrates including ubiquitylated chromatin proteins. Thus, Groucho/TLE ubiquitylation by Hyd/UBR5 is a key prerequisite that enables Armadillo/β-catenin to activate transcription.

Meru couples planar cell polarity with apical-basal polarity during asymmetric cell division.

  • Banerjee JJ
  • Elife
  • 2017 Jun 30

Literature context:


Abstract:

Polarity is a shared feature of most cells. In epithelia, apical-basal polarity often coexists, and sometimes intersects with planar cell polarity (PCP), which orients cells in the epithelial plane. From a limited set of core building blocks (e.g. the Par complexes for apical-basal polarity and the Frizzled/Dishevelled complex for PCP), a diverse array of polarized cells and tissues are generated. This suggests the existence of little-studied tissue-specific factors that rewire the core polarity modules to the appropriate conformation. In Drosophila sensory organ precursors (SOPs), the core PCP components initiate the planar polarization of apical-basal determinants, ensuring asymmetric division into daughter cells of different fates. We show that Meru, a RASSF9/RASSF10 homologue, is expressed specifically in SOPs, recruited to the posterior cortex by Frizzled/Dishevelled, and in turn polarizes the apical-basal polarity factor Bazooka (Par3). Thus, Meru belongs to a class of proteins that act cell/tissue-specifically to remodel the core polarity machinery.

p27Kip1 promotes invadopodia turnover and invasion through the regulation of the PAK1/Cortactin pathway.

  • Jeannot P
  • Elife
  • 2017 Mar 13

Literature context:


Abstract:

p27Kip1 (p27) is a cyclin-CDK inhibitor and negative regulator of cell proliferation. p27 also controls other cellular processes including migration and cytoplasmic p27 can act as an oncogene. Furthermore, cytoplasmic p27 promotes invasion and metastasis, in part by promoting epithelial to mesenchymal transition. Herein, we find that p27 promotes cell invasion by binding to and regulating the activity of Cortactin, a critical regulator of invadopodia formation. p27 localizes to invadopodia and limits their number and activity. p27 promotes the interaction of Cortactin with PAK1. In turn, PAK1 promotes invadopodia turnover by phosphorylating Cortactin, and expression of Cortactin mutants for PAK-targeted sites abolishes p27's effect on invadopodia dynamics. Thus, in absence of p27, cells exhibit increased invadopodia stability due to impaired PAK1-Cortactin interaction, but their invasive capacity is reduced compared to wild-type cells. Overall, we find that p27 directly promotes cell invasion by facilitating invadopodia turnover via the Rac1/PAK1/Cortactin pathway.

An Interaction Landscape of Ubiquitin Signaling.

  • Zhang X
  • Mol. Cell
  • 2017 Mar 2

Literature context:


Abstract:

Intracellular signaling via the covalent attachment of different ubiquitin linkages to protein substrates is fundamental to many cellular processes. Although linkage-selective ubiquitin interactors have been studied on a case-by-case basis, proteome-wide analyses have not been conducted yet. Here, we present ubiquitin interactor affinity enrichment-mass spectrometry (UbIA-MS), a quantitative interaction proteomics method that makes use of chemically synthesized diubiquitin to enrich and identify ubiquitin linkage interactors from crude cell lysates. UbIA-MS reveals linkage-selective diubiquitin interactions in multiple cell types. For example, we identify TAB2 and TAB3 as novel K6 diubiquitin interactors and characterize UCHL3 as a K27-linkage selective interactor that regulates K27 polyubiquitin chain formation in cells. Additionally, we show a class of monoubiquitin and K6 diubiquitin interactors whose binding is induced by DNA damage. We expect that our proteome-wide diubiquitin interaction landscape and established workflows will have broad applications in the ongoing efforts to decipher the complex language of ubiquitin signaling.

Substrate specificity of TOR complex 2 is determined by a ubiquitin-fold domain of the Sin1 subunit.

  • Tatebe H
  • Elife
  • 2017 Mar 7

Literature context:


Abstract:

The target of rapamycin (TOR) protein kinase forms multi-subunit TOR complex 1 (TORC1) and TOR complex 2 (TORC2), which exhibit distinct substrate specificities. Sin1 is one of the TORC2-specific subunit essential for phosphorylation and activation of certain AGC-family kinases. Here, we show that Sin1 is dispensable for the catalytic activity of TORC2, but its conserved region in the middle (Sin1CRIM) forms a discrete domain that specifically binds the TORC2 substrate kinases. Sin1CRIM fused to a different TORC2 subunit can recruit the TORC2 substrate Gad8 for phosphorylation even in the sin1 null mutant of fission yeast. The solution structure of Sin1CRIM shows a ubiquitin-like fold with a characteristic acidic loop, which is essential for interaction with the TORC2 substrates. The specific substrate-recognition function is conserved in human Sin1CRIM, which may represent a potential target for novel anticancer drugs that prevent activation of the mTORC2 substrates such as AKT.

NBS1 Phosphorylation Status Dictates Repair Choice of Dysfunctional Telomeres.

  • Rai R
  • Mol. Cell
  • 2017 Mar 2

Literature context:


Abstract:

Telomeres employ TRF2 to protect chromosome ends from activating the DNA damage sensor MRE11-RAD50-NBS1 (MRN), thereby repressing ATM-dependent DNA damage checkpoint responses. How TRF2 prevents MRN activation at dysfunctional telomeres is unclear. Here, we show that the phosphorylation status of NBS1 determines the repair pathway choice of dysfunctional telomeres. The crystal structure of the TRF2-NBS1 complex at 3.0 Å resolution shows that the NBS1 429YQLSP433 motif interacts specifically with the TRF2TRFH domain. Phosphorylation of NBS1 serine 432 by CDK2 in S/G2 dissociates NBS1 from TRF2, promoting TRF2-Apollo/SNM1B complex formation and the protection of leading-strand telomeres. Classical-NHEJ-mediated repair of telomeres lacking TRF2 requires phosphorylated NBS1S432 to activate ATM, while interaction of de-phosphorylated NBS1S432 with TRF2 promotes alternative-NHEJ repair of telomeres lacking POT1-TPP1. Our work advances understanding of how the TRF2TRFH domain orchestrates telomere end protection and reveals how the phosphorylation status of the NBS1S432 dictates repair pathway choice of dysfunctional telomeres.

Funding information:
  • NCI NIH HHS - P30 CA016359()
  • NIA NIH HHS - R01 AG028888()

Phosphorylation-Dependent Feedback Inhibition of RIG-I by DAPK1 Identified by Kinome-wide siRNA Screening.

  • Willemsen J
  • Mol. Cell
  • 2017 Feb 2

Literature context:


Abstract:

Cell-autonomous induction of type I interferon must be stringently regulated. Rapid induction is key to control virus infection, whereas proper limitation of signaling is essential to prevent immunopathology and autoimmune disease. Using unbiased kinome-wide RNAi screening followed by thorough validation, we identified 22 factors that regulate RIG-I/IRF3 signaling activity. We describe a negative-feedback mechanism targeting RIG-I activity, which is mediated by death associated protein kinase 1 (DAPK1). RIG-I signaling triggers DAPK1 kinase activation, and active DAPK1 potently inhibits RIG-I stimulated IRF3 activity and interferon-beta production. DAPK1 phosphorylates RIG-I in vitro at previously reported as well as other sites that limit 5'ppp-dsRNA sensing and virtually abrogate RIG-I activation.

Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5.

  • Nuñez I
  • Elife
  • 2016 Jul 30

Literature context:


Abstract:

RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis.

Funding information:
  • NIMH NIH HHS - T32 MH067631(United States)

Molecular cloning and characterization of chicken neuronal intermediate filament protein α-internexin.

  • Liu CH
  • J. Comp. Neurol.
  • 2013 Jun 15

Literature context:


Abstract:

α-Internexin is one of the neuronal intermediate filament (IF) proteins, which also include low-, middle-, and high-molecular-weight neurofilament (NF) triplet proteins, designated NFL, NFM, and NFH, respectively. The expression of α-internexin occurs in most neurons as they begin differentiation and precedes the expression of the NF triplet proteins in mammals. However, little is known about the gene sequence and physiological function of α-internexin in avians. In this study we describe the molecular cloning of the mRNA sequence encoding the chicken α-internexin (chkINA) protein from embryonic brains. The gene structure and predicted amino acid sequence of chkINA exhibited high similarity to those of its zebrafish, mouse, rat, bovine, and human homologs. Data from transient-transfection experiments show that the filamentous pattern of chkINA was found in transfected cells and colocalized with other endogenous IFs, as demonstrated via immunocytochemistry using a chicken-specific antibody. The expression of chkINA was detected at the early stage of development and increased during the developmental process of the chicken. chkINA was expressed widely in chicken brains and colocalized with NF triplet proteins in neuronal processes, as assessed using immunohistochemistry. We also found that chkINA was expressed abundantly in the developing cerebellum and was the major IF protein in the parallel processes of granule neurons. Thus, we suggest that chkINA is a neuron-specific IF protein that may be a useful marker for studies of chicken brain development.

Funding information:
  • NCRR NIH HHS - RR 13642(United States)
  • NEI NIH HHS - EY17130(United States)