X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mouse Anti-Actin, beta Monoclonal antibody, Unconjugated, Clone c4

RRID:AB_626632

Antibody ID

AB_626632

Target Antigen

ACTB chicken/avian, human, mouse, rat, mouse, rat, human and chicken

Proper Citation

(Santa Cruz Biotechnology Cat# sc-47778, RRID:AB_626632)

Clonality

monoclonal antibody

Comments

validation status unknown check with seller; recommendations: ELISA; Immunocytochemistry; Immunofluorescence; Immunohistochemistry; Immunoprecipitation; Western Blot; Western Blotting, Immunoprecipitation, Immunofluorescence, Immunohistochemistry(P), ELISA

Clone ID

C4

Host Organism

mouse

Pathology of nNOS-Expressing GABAergic Neurons in Mouse Model of Alzheimer's Disease.

  • Choi S
  • Neuroscience
  • 2018 Aug 1

Literature context:


Abstract:

Alzheimer's disease (AD) is the most common form of dementia that is often accompanied by mood and emotional disturbances and seizures. There is growing body of evidence that neurons expressing γ-aminobutyric acid (GABA) play an important role in regulation of cognition, mood, and emotion as well as seizure susceptibility, but participation of GABAergic neuronal pathology in Alzheimer's disease (AD) is not understood well at present. Here, we report that transgenic mice expressing human amyloid precursor protein Swedish-Dutch-Iowa mutant (APPSweDI) exhibit early loss of neurons expressing GAD67, a GABA-synthesizing enzyme, in advance of the loss of pyramidal neurons in hippocampal CA1 region. The loss of GAD67+ neurons in APPSweDI mice accompanied with decreased spatial cognition as well as increased anxiety-like behaviors and kainic acid-induced seizure susceptibility at early phase. In the hippocampal CA1 region, GAD67+ neurons expressed high basal levels of neuronal nitric oxide synthase (nNOS) and nitrosative stress (nitrotyrosine). Similarly, GAD67+ neurons in primary cortical and hippocampal neuron cultures also expressed high basal levels of nNOS and degenerated in response to lower Aβ concentrations due to their high basal levels of nitrosative stress. Given the role of GABAergic neurons in cognitive and neuropsychiatric functions, this study reports the role of nNOS-mediated nitrosative stress in dysfunction of GABAergic neurons and its potential participation in early development of cognitive and neuropsychiatric symptoms in AD.

Funding information:
  • NIDDK NIH HHS - R01 DK073722(United States)
  • NINDS NIH HHS - R01 NS037766()
  • NINDS NIH HHS - R01 NS072511()

PTPσ drives excitatory presynaptic assembly via various extracellular and intracellular mechanisms.

  • Han KA
  • J. Neurosci.
  • 2018 Jun 22

Literature context:


Abstract:

Leukocyte common antigen-receptor protein tyrosine phosphatases (LAR-RPTPs) are hub proteins that organize excitatory and inhibitory synapse development through binding to various extracellular ligands. Here, we report that knockdown (KD) of the LAR-RPTP family member PTPσ reduced excitatory synapse number and transmission in cultured rat hippocampal neurons, whereas KD of PTPδ produced comparable decreases at inhibitory synapses, in both cases without altering expression levels of interacting proteins. An extensive series of rescue experiments revealed that extracellular interactions of PTPσ with Slitrks are important for excitatory synapse development. These experiments further showed that the intracellular D2 domain of PTPσ is required for induction of heterologous synapse formation by Slitrk1 or TrkC, suggesting that interaction of LAR-RPTPs with distinct intracellular presynaptic proteins drives presynaptic machinery assembly. Consistent with this, double-KD of liprin-α2 and -α3 or KD of PTPσ substrates (N-cadherin and p250RhoGAP) in neurons inhibited Slitrk6-induced, PTPσ-mediated heterologous synapse formation activity. We propose a synaptogenesis model in presynaptic neurons involving LAR-RPTP-organized retrograde signaling cascades, in which both extracellular and intracellular mechanisms are critical in orchestrating distinct synapse types.SIGNIFICANCE STATEMENTIn this study, we sought to test the unproven hypothesis that PTPσ and PTPδ are required for excitatory and inhibitory synapse formation/transmission, respectively, in cultured hippocampal neurons, using knockdown-based loss-of-function analyses. We further performed extensive structure-function analyses, focusing on PTPσ-mediated actions, to address the mechanisms of presynaptic assembly at excitatory synaptic sites. Utilizing interdisciplinary approaches, we systematically applied varied set of PTPσ deletion variants, point mutants, and splice variants to demonstrate that both extracellular and intracellular mechanisms are involved in organizing presynaptic assembly. Strikingly, extracellular interactions of PTPσ with heparan sulfates and Slitrks, intracellular interactions of PTPσ with liprin-α and its associated proteins through the D2 domain, as well as distinct substrates are all critical.

Funding information:
  • NIDCR NIH HHS - DE14036(United States)

A Sialylated Voltage-Dependent Ca2+ Channel Binds Hemagglutinin and Mediates Influenza A Virus Entry into Mammalian Cells.

  • Fujioka Y
  • Cell Host Microbe
  • 2018 Jun 13

Literature context:


Abstract:

Influenza A virus (IAV) infection is initiated by the attachment of the viral glycoprotein hemagglutinin (HA) to sialic acid on the host cell surface. However, the sialic acid-containing receptor crucial for IAV infection has remained unidentified. Here, we show that HA binds to the voltage-dependent Ca2+ channel Cav1.2 to trigger intracellular Ca2+ oscillations and subsequent IAV entry and replication. IAV entry was inhibited by Ca2+ channel blockers (CCBs) or by knockdown of Cav1.2. The CCB diltiazem also inhibited virus replication in vivo. Reintroduction of wild-type but not the glycosylation-deficient mutants of Cav1.2 restored Ca2+ oscillations and virus infection in Cav1.2-depleted cells, demonstrating the significance of Cav1.2 sialylation. Taken together, we identify Cav1.2 as a sialylated host cell surface receptor that binds HA and is critical for IAV entry.

Funding information:
  • Wellcome Trust - 089275(United Kingdom)

The TWIK2 Potassium Efflux Channel in Macrophages Mediates NLRP3 Inflammasome-Induced Inflammation.

  • Di A
  • Immunity
  • 2018 Jun 4

Literature context:


Abstract:

Potassium (K+) efflux across the plasma membrane is thought to be an essential mechanism for ATP-induced NLRP3 inflammasome activation, yet the identity of the efflux channel has remained elusive. Here we identified the two-pore domain K+ channel (K2P) TWIK2 as the K+ efflux channel triggering NLRP3 inflammasome activation. Deletion of Kcnk6 (encoding TWIK2) prevented NLRP3 activation in macrophages and suppressed sepsis-induced lung inflammation. Adoptive transfer of Kcnk6-/- macrophages into mouse airways after macrophage depletion also prevented inflammatory lung injury. The K+ efflux channel TWIK2 in macrophages has a fundamental role in activating the NLRP3 inflammasome and consequently mediates inflammation, pointing to TWIK2 as a potential target for anti-inflammatory therapies.

Funding information:
  • NCI NIH HHS - R01 CA108420(United States)

Iron Drives T Helper Cell Pathogenicity by Promoting RNA-Binding Protein PCBP1-Mediated Proinflammatory Cytokine Production.

  • Wang Z
  • Immunity
  • 2018 Jun 21

Literature context:


Abstract:

Iron deposition is frequently observed in human autoinflammatory diseases, but its functional significance is largely unknown. Here we showed that iron promoted proinflammatory cytokine expression in T cells, including GM-CSF and IL-2, via regulating the stability of an RNA-binding protein PCBP1. Iron depletion or Pcbp1 deficiency in T cells inhibited GM-CSF production by attenuating Csf2 3' untranslated region (UTR) activity and messenger RNA stability. Pcbp1 deficiency or iron uptake blockade in autoreactive T cells abolished their capacity to induce experimental autoimmune encephalomyelitis, an animal model for multiple sclerosis. Mechanistically, intracellular iron protected PCBP1 protein from caspase-mediated proteolysis, and PCBP1 promoted messenger RNA stability of Csf2 and Il2 by recognizing UC-rich elements in the 3' UTRs. Our study suggests that iron accumulation can precipitate autoimmune diseases by promoting proinflammatory cytokine production. RNA-binding protein-mediated iron sensing may represent a simple yet effective means to adjust the inflammatory response to tissue homeostatic alterations.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/G007802/1(United Kingdom)

Listeria Adhesion Protein Induces Intestinal Epithelial Barrier Dysfunction for Bacterial Translocation.

  • Drolia R
  • Cell Host Microbe
  • 2018 Apr 11

Literature context:


Abstract:

Intestinal epithelial cells are the first line of defense against enteric pathogens, yet bacterial pathogens, such as Listeria monocytogenes, can breach this barrier. We show that Listeria adhesion protein (LAP) induces intestinal epithelial barrier dysfunction to promote bacterial translocation. These disruptions are attributed to the production of pro-inflammatory cytokines TNF-α and IL-6, which is observed in mice challenged with WT and isogenic strains lacking the surface invasion protein Internalin A (ΔinlA), but not a lap- mutant. Additionally, upon engagement of its surface receptor Hsp60, LAP activates canonical NF-κB signaling, facilitating myosin light-chain kinase (MLCK)-mediated opening of the epithelial barrier via cellular redistribution of the epithelial junctional proteins claudin-1, occludin, and E-cadherin. Pharmacological inhibition of MLCK or NF-κB in cells or genetic ablation of MLCK in mice prevents mislocalization of junctional proteins and L. monocytogenes translocation. Thus, L. monocytogenes uses LAP to exploit epithelial defenses and cross the intestinal epithelial barrier.

Funding information:
  • Howard Hughes Medical Institute - HD043569(United States)

Soluble TNFα Signaling within the Spinal Cord Contributes to the Development of Autonomic Dysreflexia and Ensuing Vascular and Immune Dysfunction after Spinal Cord Injury.

  • Mironets E
  • J. Neurosci.
  • 2018 Apr 25

Literature context:


Abstract:

Cardiovascular disease and susceptibility to infection are leading causes of morbidity and mortality for individuals with spinal cord injury (SCI). A major contributor to these is autonomic dysreflexia (AD), an amplified reaction of the autonomic nervous system (hallmarked by severe hypertension) in response to sensory stimuli below the injury. Maladaptive plasticity of the spinal sympathetic reflex circuit below the SCI results in AD intensification over time. Mechanisms underlying this maladaptive plasticity are poorly understood, restricting the identification of treatments. Thus, no preventative treatments are currently available. Neuroinflammation has been implicated in other pathologies associated with hyperexcitable neural circuits. Specifically, the soluble form of TNFα (sTNFα) is known to play a role in neuroplasticity. We hypothesize that persistent expression of sTNFα in spinal cord underlies AD exacerbation. To test this, we intrathecally administered XPro1595, a biologic that renders sTNFα nonfunctional, after complete, high-level SCI in female rats. This dramatically attenuated the intensification of colorectal distension-induced and naturally occurring AD events. This improvement is mediated via decreased sprouting of nociceptive primary afferents and activation of the spinal sympathetic reflex circuit. We also examined peripheral vascular function using ex vivo pressurized arterial preparations and immune function via flow cytometric analysis of splenocytes. Diminishing AD via pharmacological inhibition of sTNFα mitigated ensuing vascular hypersensitivity and immune dysfunction. This is the first demonstration that neuroinflammation-induced sTNFα is critical for altering the spinal sympathetic reflex circuit, elucidating a novel mechanism for AD. Importantly, we identify the first potential pharmacological, prophylactic treatment for this life-threatening syndrome.SIGNIFICANCE STATEMENT Autonomic dysreflexia (AD), a disorder that develops after spinal cord injury (SCI) and is hallmarked by sudden, extreme hypertension, contributes to cardiovascular disease and susceptibility to infection, respectively, two leading causes of mortality and morbidity in SCI patients. We demonstrate that neuroinflammation-induced expression of soluble TNFα plays a critical role in AD, elucidating a novel underlying mechanism. We found that intrathecal administration after SCI of a biologic that inhibits soluble TNFα signaling dramatically attenuates AD and significantly reduces AD-associated peripheral vascular and immune dysfunction. We identified mechanisms behind diminished plasticity of neuronal populations within the spinal sympathetic reflex circuit. This study is the first to pinpoint a potential pharmacological, prophylactic strategy to attenuate AD and ensuing cardiovascular and immune dysfunction.

Funding information:
  • NHLBI NIH HHS - R01 HL139754()
  • NIDDK NIH HHS - DK62434(United States)
  • NINDS NIH HHS - R01 NS085426()
  • NINDS NIH HHS - R01 NS106908()

Insulinlike Growth Factor-Binding Protein-1 Improves Vascular Endothelial Repair in Male Mice in the Setting of Insulin Resistance.

  • Aziz A
  • Endocrinology
  • 2018 Feb 1

Literature context:


Abstract:

Insulin resistance is associated with impaired endothelial regeneration in response to mechanical injury. We recently demonstrated that insulinlike growth factor-binding protein-1 (IGFBP1) ameliorated insulin resistance and increased nitric oxide generation in the endothelium. In this study, we hypothesized that IGFBP1 would improve endothelial regeneration and restore endothelial reparative functions in the setting of insulin resistance. In male mice heterozygous for deletion of insulin receptors, endothelial regeneration after femoral artery wire injury was enhanced by transgenic expression of human IGFBP1 (hIGFBP1). This was not explained by altered abundance of circulating myeloid angiogenic cells. Incubation of human endothelial cells with hIGFBP1 increased integrin expression and enhanced their ability to adhere to and repopulate denuded human saphenous vein ex vivo. In vitro, induction of insulin resistance by tumor necrosis factor α (TNFα) significantly inhibited endothelial cell migration and proliferation. Coincubation with hIGFBP1 restored endothelial migratory and proliferative capacity. At the molecular level, hIGFBP1 induced phosphorylation of focal adhesion kinase, activated RhoA and modulated TNFα-induced actin fiber anisotropy. Collectively, the effects of hIGFBP1 on endothelial cell responses and acceleration of endothelial regeneration in mice indicate that manipulating IGFBP1 could be exploited as a putative strategy to improve endothelial repair in the setting of insulin resistance.

Funding information:
  • NIGMS NIH HHS - GM076990(United States)

Small interfering RNAs based on huntingtin trinucleotide repeats are highly toxic to cancer cells.

  • Murmann AE
  • EMBO Rep.
  • 2018 Feb 15

Literature context:


Abstract:

Trinucleotide repeat (TNR) expansions in the genome cause a number of degenerative diseases. A prominent TNR expansion involves the triplet CAG in the huntingtin (HTT) gene responsible for Huntington's disease (HD). Pathology is caused by protein and RNA generated from the TNR regions including small siRNA-sized repeat fragments. An inverse correlation between the length of the repeats in HTT and cancer incidence has been reported for HD patients. We now show that siRNAs based on the CAG TNR are toxic to cancer cells by targeting genes that contain long reverse complementary TNRs in their open reading frames. Of the 60 siRNAs based on the different TNRs, the six members in the CAG/CUG family of related TNRs are the most toxic to both human and mouse cancer cells. siCAG/CUG TNR-based siRNAs induce cell death in vitro in all tested cancer cell lines and slow down tumor growth in a preclinical mouse model of ovarian cancer with no signs of toxicity to the mice. We propose to explore TNR-based siRNAs as a novel form of anticancer reagents.

Funding information:
  • NCI NIH HHS - R01 CA167041()
  • NCI NIH HHS - R01CA127645(United States)
  • NCI NIH HHS - R35 CA197450()
  • NCI NIH HHS - T32 CA009560()
  • NCI NIH HHS - T32 CA070085()

Palmitate-induced C/EBP homologous protein activation leads to NF-κB-mediated increase in BACE1 activity and amyloid beta genesis.

  • Marwarha G
  • J. Neurochem.
  • 2018 Jan 10

Literature context:


Abstract:

The etiology of Alzheimer's disease (AD) is egregiously comprehended, but epidemiological studies have posited that diets rich in the saturated fatty acid palmitic acid (palmitate) are a significant risk factor. The production and accumulation of amyloid beta peptide (Aβ) is considered the core pathological molecular event in the pathogenesis of AD. The rate-limiting step in Aβ genesis from amyloid-β precursor protein (AβPP) is catalyzed by the enzyme β-site amyloid precursor protein cleaving enzyme 1 (BACE1), the expression and enzymatic activity of which is significantly up-regulated in the AD brain. In this study, we determined the molecular mechanisms that potentially underlie the palmitate-induced up-regulation in BACE1 expression and augmented Aβ production. We demonstrate that a palmitate-enriched diet and exogenous palmitate treatment evoke an increase in BACE1 expression and activity leading to enhanced Aβ genesis in the mouse brain and SH-SY5Y-APPSwe cells, respectively, through the activation of the transcription factor NF-κB. Chromatin immunoprecipitation (ChIP) assays and luciferase reporter assays revealed that palmitate enhances BACE1 expression by increasing the binding of NF-κB in the BACE1 promoter followed by an enhancement in the transactivation of the BACE1 promoter. Elucidation and delineation of upstream molecular events unveiled a critical role of the endoplasmic reticulum stress-associated transcription factor, C/EBP homologous protein (CHOP) in the palmitate-induced NF-κB activation, as CHOP knock-down cells and Chop-/- mice do not exhibit the same degree of NF-κB activation in response to the palmitate challenge. Our study delineates a novel CHOP-NF-κB signaling pathway that mediates palmitate-induced up-regulation of BACE1 expression and Aβ genesis.

Funding information:
  • NIA NIH HHS - R01AG044420(United States)

Caveolin-1, a binding protein of CD26, is essential for the anti-inflammatory effects of dipeptidyl peptidase-4 inhibitors on human and mouse macrophages.

  • Hiromura M
  • Biochem. Biophys. Res. Commun.
  • 2018 Jan 1

Literature context:


Abstract:

We previously reported that inhibition of dipeptidyl peptidase (DPP)-4, the catalytic site of CD26, prevents atherosclerosis in animal models through suppression of inflammation; however, the underlying molecular mechanisms have not been fully elucidated. Caveolin-1 (Cav-1), a major structural protein of caveolae located on the surface of the cellular membrane, has been reported to modulate inflammatory responses by binding to CD26 in T cells. In this study, we investigated the role of Cav-1 in the suppression of inflammation mediated by the DPP-4 inhibitor, teneligliptin, using mouse and human macrophages. Mouse peritoneal macrophages were isolated from Cav-1+/+ and Cav-1-/- mice after stimulation with 3% thioglycolate. Inflammation was induced by the toll-like receptor (TLR)4 agonist, lipopolysaccharide (LPS), isolated from Escherichia coli. The expression of pro-inflammatory cytokines was determined using reverse transcription-polymerase chain reaction. Co-expression of Cav-1 and CD26 was detected using immunohistochemistry in both mouse and human macrophages. Teneligliptin treatment (10 nmol/L) suppressed the LPS-induced expression of interleukin (IL)-6 (70%) and tumor necrosis factor-α (37%) in peritoneal macrophages isolated from Cav-1+/+ mice. However, teneligliptin did not have any effect on the macrophages from Cav-1-/- mice. In human monocyte/macrophage U937 cells, teneligliptin treatment suppressed LPS-induced expression of pro-inflammatory cytokines in a dose-dependent manner (1-10 nmol/L). These anti-inflammatory effects of teneligliptin were mimicked by gene knockdown of Cav-1 or CD26 using small interfering RNA transfection. Furthermore, neutralization of these molecules using an antibody against CD26 or Cav-1 also showed similar suppression. Teneligliptin treatment specifically inhibited TLR4 and TLR5 agonist-mediated inflammatory responses, and suppressed LPS-induced phosphorylation of IL-1 receptor-associated kinase 4, a downstream molecule of TLR4. Next, we determined whether teneligliptin could directly inhibit the physical interaction between Cav-1 and CD26 using the Biacore system. Binding of CD26 to Cav-1 protein was detected. Unexpectedly, teneligliptin also bound to Cav-1, but did not interfere with CD26-Cav-1 binding, suggesting that teneligliptin competes with CD26 for binding to Cav-1. In conclusion, we demonstrated that Cav-1 is a target molecule for DPP-4 inhibitors in the suppression of TLR4-mediated inflammation in mouse and human macrophages.

Neuroprotective effects of quercetin 4'-O-β-d-diglucoside on human striatal precursor cells in nutrient deprivation condition.

  • Sarchielli E
  • Acta Histochem.
  • 2018 Jan 18

Literature context:


Abstract:

Several investigations have demonstrated neuroprotective effects of quercetin, a polyphenol widely present in nature, against neurotoxic chemicals, as well as in neuronal injury/neurodegenerative disease models. Most of these studies have been performed with quercetin aglycone and its metabolites, while scanty data are available on its glycosides. This study is aimed at investigating the neuroprotective effects of quercetin 3,4'-O-β-d-diglucoside (Q3,4'dG), isolated from the bulbs of the white cultivar (Allium cepa L.), using an in vitro model of human striatal precursor cells (HSPs), a primary culture isolated from the striatal primordium and previously characterized. To study the effect of Q3,4'dG on cell survival, HSPs were exposed to nutrient deprivation created by replacing culture medium with phosphate buffer saline (PBS). Our findings showed that Q3,4'dG treatment significantly promoted cell survival and strongly decreased apoptosis induced by nutrient deprivation, as evaluated by cell proliferation/death analyses. In addition, since the adhesive capacities of cells are essential for cell survival, the expression of some adhesion molecules, such as pancadherin and focal adhesion kinase, was evaluated. Interestingly, PBS exposure significantly decreased the expression of both molecules, while in the presence of Q3,4'dG this effect was prevented. This study provides evidence of a neuroprotective role exerted by Q3,4'dG and suggests its possible implication in sustaining neuronal survival for prevention and treatment of neurodegenerative disorders.

Funding information:
  • NHLBI NIH HHS - U01HL098166(United States)

Insulin-Like Growth Factor II Targets the mTOR Pathway to Reverse Autism-Like Phenotypes in Mice.

  • Steinmetz AB
  • J. Neurosci.
  • 2018 Jan 24

Literature context:


Abstract:

Autism spectrum disorder (ASD) is a developmental disability characterized by impairments in social interaction and repetitive behavior, and is also associated with cognitive deficits. There is no current treatment that can ameliorate most of the ASD symptomatology; thus, identifying novel therapies is urgently needed. We used male BTBR T+Itpr3tf /J (BTBR) mice, a model that reproduces most of the core behavioral phenotypes of ASD, to test the effects of systemic administration of insulin-like growth factor II (IGF-II), a polypeptide that crosses the blood-brain barrier and acts as a cognitive enhancer. We show that systemic IGF-II treatments reverse the typical defects in social interaction, cognitive/executive functions, and repetitive behaviors reflective of ASD-like phenotypes. In BTBR mice, IGF-II, via IGF-II receptor, but not via IGF-I receptor, reverses the abnormal levels of the AMPK-mTOR-S6K pathway and of active translation at synapses. Thus, IGF-II may represent a novel potential therapy for ASD.SIGNIFICANCE STATEMENT Currently, there is no effective treatment for autism spectrum disorder (ASD), a developmental disability affecting a high number of children. Using a mouse model that expresses most of the key core as well as associated behavioral deficits of ASD, that are, social, cognitive, and repetitive behaviors, we report that a systemic administration of the polypeptide insulin-like growth factor II (IGF-II) reverses all these deficits. The effects of IGF-II occur via IGF-II receptors, and not IGF-I receptors, and target both basal and learning-dependent molecular abnormalities found in several ASD mice models, including those of identified genetic mutations. We suggest that IGF-II represents a potential novel therapeutic target for ASD.

Funding information:
  • NCATS NIH HHS - UL1 TR000135(United States)
  • NIMH NIH HHS - F31 MH090636()
  • NIMH NIH HHS - R01 MH074736()
  • NIMH NIH HHS - R37 MH065635()
  • NIMH NIH HHS - T32 MH019524()
  • NIMH NIH HHS - T32 MH087004()

Behavioral Changes in Mice Lacking Interleukin-33.

  • Dohi E
  • eNeuro
  • 2018 Jan 31

Literature context:


Abstract:

Interleukin (IL)-33 is a member of the IL-1 family of cytokines. IL-33 is expressed in nuclei and secreted as alarmin upon cellular damage to deliver a danger signal to the surrounding cells. Previous studies showed that IL-33 is expressed in the brain and that it is involved in neuroinflammatory and neurodegenerative processes in both humans and rodents. Nevertheless, the role of IL-33 in physiological brain function and behavior remains unclear. Here, we have investigated the behaviors of mice lacking IL-33 (Il33-/- mice). IL-33 is constitutively expressed throughout the adult mouse brain, mainly in oligodendrocyte-lineage cells and astrocytes. Notably, Il33-/- mice exhibited reduced anxiety-like behaviors in the elevated plus maze (EPM) and the open field test (OFT), as well as deficits in social novelty recognition, despite their intact sociability, in the three-chamber social interaction test. The immunoreactivity of c-Fos proteins, an indicator of neuronal activity, was altered in several brain regions implicated in anxiety-related behaviors, such as the medial prefrontal cortex (mPFC), amygdala, and piriform cortex (PCX), in Il33-/- mice after the EPM. Altered c-Fos immunoreactivity in Il33-/- mice was not correlated with IL-33 expression in wild-type (WT) mice nor was IL-33 expression affected by the EPM in WT mice. Thus, our study has revealed that Il33-/- mice exhibit multiple behavioral deficits, such as reduced anxiety and impaired social recognition. Our findings also indicate that IL-33 may regulate the development and/or maturation of neuronal circuits, rather than control neuronal activities in adult brains.

Funding information:
  • NIMH NIH HHS - R00 MH093458()
  • Wellcome Trust - 078285(United Kingdom)

Steroidogenic Acute Regulatory Protein (StAR) Overexpression Reduces Inflammation and Insulin Resistance in Obese Mice.

  • Qiu Y
  • J. Cell. Biochem.
  • 2018 Jan 2

Literature context:


Abstract:

Steroidogenic acute regulatory protein (StAR), a mitochondrial cholesterol delivery protein, plays a beneficial role in hyperlipidemia, NAFLD, and endothelial inflammation. Elevated circulating fatty acids and low grade inflammation are known as key risk factors of insulin resistance and type 2 diabetes. In the present study, C57BL/6J mice were fed with HFD and infected with recombinant adenovirus expressing StAR by tail-vein injection. Intraperitoneal glucose/insulin tolerance test was performed to assess the insulin sensitivity. Morphological analysis and intramuscular lipid determination were used to illustrate the adipose hypertrophy and ectopic fat accumulation in skeletal muscle. The levels of inflammatory factor and nitric oxide were determined by ELISA and classic Griess reagent methods, respectively. The fatty acids composition was analysis using gas chromatography-mass spectrometry (GC-MS). The expression of genes associated with inflammation and insulin resistance were determined by Western blotting and qPCR to elucidate the underlying mechanism. We demonstrated that StAR overexpression ameliorated insulin resistance and systemic inflammatory response with the reduction of adipose hypertrophy and intramuscular lipid in HFD-fed mice. In addition, StAR overexpression increased serum unsaturated fatty acids (UFAs) and PPARγ expression in muscle and adipose tissue of obese mice. In conclusion, StAR may activate PPARγ by increasing UFAs, which leads to a protective role in systemic inflammation and insulin resistance in obese mice. J. Cell. Biochem. 118: 3932-3942, 2017. © 2017 Wiley Periodicals, Inc.

A Method for the Acute and Rapid Degradation of Endogenous Proteins.

  • Clift D
  • Cell
  • 2017 Dec 14

Literature context:


Abstract:

Methods for the targeted disruption of protein function have revolutionized science and greatly expedited the systematic characterization of genes. Two main approaches are currently used to disrupt protein function: DNA knockout and RNA interference, which act at the genome and mRNA level, respectively. A method that directly alters endogenous protein levels is currently not available. Here, we present Trim-Away, a technique to degrade endogenous proteins acutely in mammalian cells without prior modification of the genome or mRNA. Trim-Away harnesses the cellular protein degradation machinery to remove unmodified native proteins within minutes of application. This rapidity minimizes the risk that phenotypes are compensated and that secondary, non-specific defects accumulate over time. Because Trim-Away utilizes antibodies, it can be applied to a wide range of target proteins using off-the-shelf reagents. Trim-Away allows the study of protein function in diverse cell types, including non-dividing primary cells where genome- and RNA-targeting methods are limited.

Funding information:
  • NIDCD NIH HHS - P30 DC04657(United States)

Mutant p53 Gains Its Function via c-Myc Activation upon CDK4 Phosphorylation at Serine 249 and Consequent PIN1 Binding.

  • Liao P
  • Mol. Cell
  • 2017 Dec 21

Literature context:


Abstract:

TP53 missense mutations significantly influence the development and progression of various human cancers via their gain of new functions (GOF) through different mechanisms. Here we report a unique mechanism underlying the GOF of p53-R249S (p53-RS), a p53 mutant frequently detected in human hepatocellular carcinoma (HCC) that is highly related to hepatitis B infection and aflatoxin B1. A CDK inhibitor blocks p53-RS's nuclear translocation in HCC, whereas CDK4 interacts with p53-RS in the G1/S phase of the cells, phosphorylates it, and enhances its nuclear localization. This is coupled with binding of a peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) to p53-RS, but not the p53 form with mutations of four serines/threonines previously shown to be crucial for PIN1 binding. As a result, p53-RS interacts with c-Myc and enhances c-Myc-dependent rDNA transcription key for ribosomal biogenesis. These results unveil a CDK4-PIN1-p53-RS-c-Myc pathway as a novel mechanism for the GOF of p53-RS in HCC.

Funding information:
  • NHLBI NIH HHS - R00HL-091133(United States)

EPA blocks TNF-α-induced inhibition of sugar uptake in Caco-2 cells via GPR120 and AMPK.

  • Castilla-Madrigal R
  • J. Cell. Physiol.
  • 2017 Dec 12

Literature context:


Abstract:

The aim of the present work was to investigate in Caco-2 cells whether eicosapentaenoic acid (EPA), an omega-3 polyunsaturated fatty acid, could block the inhibitory effect of tumor necrosis factor-α (TNF-α) on sugar transport, and identify the intracellular signaling pathways involved. After pre-incubation of the Caco-2 cells with TNF-α and EPA for 1 hr, EPA prevented the inhibitory effect of the cytokine on α-methyl-d-glucose (αMG) uptake (15 min) and on SGLT1 expression at the brush border membrane, measured by Western blot. The ERK1/2 inhibitor PD98059 and the AMPK activator AICAR also prevented the inhibitory effect of TNF-α on both αMG uptake and SGLT1 expression. Interestingly, the AMPK inhibitor, Compound C, abolished the ability of EPA to prevent TNF-α-induced reduction of sugar uptake and transporter expression. The GPR120 antagonist, AH7614, also blocked the preventive effect of EPA on TNF-α-induced decrease of αMG uptake and AMPK phosphorylation. In summary, TNF-α inhibits αMG uptake by decreasing SGLT1 expression in the brush border membrane through the activation of ERK1/2 pathway. EPA prevents the inhibitory effect of TNF-α through the involvement of GPR120 and AMPK activation.

MST4 Phosphorylation of ATG4B Regulates Autophagic Activity, Tumorigenicity, and Radioresistance in Glioblastoma.

  • Huang T
  • Cancer Cell
  • 2017 Dec 11

Literature context:


Abstract:

ATG4B stimulates autophagy by promoting autophagosome formation through reversible modification of ATG8. We identify ATG4B as a substrate of mammalian sterile20-like kinase (STK) 26/MST4. MST4 phosphorylates ATG4B at serine residue 383, which stimulates ATG4B activity and increases autophagic flux. Inhibition of MST4 or ATG4B activities using genetic approaches or an inhibitor of ATG4B suppresses autophagy and the tumorigenicity of glioblastoma (GBM) cells. Furthermore, radiation induces MST4 expression, ATG4B phosphorylation, and autophagy. Inhibiting ATG4B in combination with radiotherapy in treating mice with intracranial GBM xenograft markedly slows tumor growth and provides a significant survival benefit. Our work describes an MST4-ATG4B signaling axis that influences GBM autophagy and malignancy, and whose therapeutic targeting enhances the anti-tumor effects of radiotherapy.

Funding information:
  • NCI NIH HHS - P01 CA163205()
  • NCI NIH HHS - R01 CA159467()
  • NCI NIH HHS - R21 CA175875()
  • NCI NIH HHS - T32 CA070085()
  • NIAAA NIH HHS - R01 AA021751()
  • NIGMS NIH HHS - R01 GM038660(United States)
  • NIMHD NIH HHS - L32 MD010147()
  • NINDS NIH HHS - P30 NS081774()
  • NINDS NIH HHS - R01 NS080619()
  • NINDS NIH HHS - R01 NS083767()
  • NINDS NIH HHS - R01 NS093843()
  • NINDS NIH HHS - R01 NS095634()
  • NINDS NIH HHS - R01 NS102669()
  • NLM NIH HHS - K99 LM011673()
  • NLM NIH HHS - R00 LM011673()
  • NLM NIH HHS - R01 LM012011()

Transgenic Expression of the Vitamin D Receptor Restricted to the Ileum, Cecum, and Colon of Vitamin D Receptor Knockout Mice Rescues Vitamin D Receptor-Dependent Rickets.

  • Dhawan P
  • Endocrinology
  • 2017 Nov 1

Literature context:


Abstract:

Although the intestine plays the major role in 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] action on calcium homeostasis, the mechanisms involved remain incompletely understood. The established model of 1,25(OH)2D3-regulated intestinal calcium absorption postulates a critical role for the duodenum. However, the distal intestine is where 70% to 80% of ingested calcium is absorbed. To test directly the role of 1,25(OH)2D3 and the vitamin D receptor (VDR) in the distal intestine, three independent knockout (KO)/transgenic (TG) lines expressing VDR exclusively in the ileum, cecum, and colon were generated by breeding VDR KO mice with TG mice expressing human VDR (hVDR) under the control of the 9.5-kb caudal type homeobox 2 promoter. Mice from one TG line (KO/TG3) showed low VDR expression in the distal intestine (<50% of the levels observed in KO/TG1, KO/TG2, and wild-type mice). In the KO/TG mice, hVDR was not expressed in the duodenum, jejunum, kidney, or other tissues. Growth arrest, elevated parathyroid hormone level, and hypocalcemia of the VDR KO mice were prevented in mice from KO/TG lines 1 and 2. Microcomputed tomography analysis revealed that the expression of hVDR in the distal intestine of KO/TG1 and KO/TG2 mice rescued the bone defects associated with systemic VDR deficiency, including growth plate abnormalities and altered trabecular and cortical parameters. KO/TG3 mice showed rickets, but less severely than VDR KO mice. These findings show that expression of VDR exclusively in the distal intestine can prevent abnormalities in calcium homeostasis and bone mineralization associated with systemic VDR deficiency.

Funding information:
  • NIGMS NIH HHS - SC2 GM095428(United States)

Microbiota-Dependent Induction of Colonic Cyp27b1 Is Associated With Colonic Inflammation: Implications of Locally Produced 1,25-Dihydroxyvitamin D3 in Inflammatory Regulation in the Colon.

  • Du J
  • Endocrinology
  • 2017 Nov 1

Literature context:


Abstract:

Our recent studies demonstrated that intestinal epithelial vitamin D receptor (VDR) signaling plays a critical role in regulating colonic inflammation by protecting epithelial barrier integrity. Epithelial VDR is downregulated in colitis, but how mucosal inflammation affects local 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] production is unknown. Here we showed that cytochrome P450 27b1 (Cyp27b1), a cytochrome P450 enzyme necessary for 1,25(OH)2D3 biosynthesis, is highly induced in colonic mucosa in inflammatory response. Although VDR is reduced in colon biopsies from patients with ulcerative colitis, Cyp27b1 is markedly upregulated in these samples. Colon mucosal Cyp27b1 was also markedly induced in an experimental colitis mouse model, and this local Cyp27b1 induction and colonic inflammation required the presence of commensal bacteria. Vitamin D deficiency further exaggerated colonic Cyp27b1 induction and aggravated colonic inflammation in mice. In HCT116 cells, lipopolysaccharide or tumor necrosis factor-α treatment induced Cyp27b1 in time- and dose-dependent manners, and the induced Cyp27b1 was enzymatically active. The inflammation-induced upregulation of Cyp27b1 was mediated by nuclear factor κB. Collectively these data suggest that induction of colonic epithelial Cyp27b1, which is expected to increase local production of 1,25(OH)2D3, is a protective mechanism that partially compensates for the downregulation of epithelial VDR during colonic inflammation. Increased local 1,25(OH)2D3 maintains 1,25(OH)2D3-VDR signaling to protect the mucosal barrier and reduce colonic inflammation.

Nuclear TRIM25 Specifically Targets Influenza Virus Ribonucleoproteins to Block the Onset of RNA Chain Elongation.

  • Meyerson NR
  • Cell Host Microbe
  • 2017 Nov 8

Literature context:


Abstract:

TRIM25 is an E3 ubiquitin ligase that activates RIG-I to promote the antiviral interferon response. The NS1 protein from all strains of influenza A virus binds TRIM25, although not all virus strains block the interferon response, suggesting alternative mechanisms for TRIM25 action. Here we present a nuclear role for TRIM25 in specifically restricting influenza A virus replication. TRIM25 inhibits viral RNA synthesis through a direct mechanism that is independent of its ubiquitin ligase activity and the interferon pathway. This activity can be inhibited by the viral NS1 protein. TRIM25 inhibition of viral RNA synthesis results from its binding to viral ribonucleoproteins (vRNPs), the structures containing individual viral RNA segments, the viral polymerase, and multiple viral nucleoproteins. TRIM25 binding does not inhibit initiation of capped-RNA-primed viral mRNA synthesis by the viral polymerase. Rather, the onset of RNA chain elongation is inhibited because TRIM25 prohibits the movement of RNA into the polymerase complex.

Palmitate-induced Endoplasmic Reticulum stress and subsequent C/EBPα Homologous Protein activation attenuates leptin and Insulin-like growth factor 1 expression in the brain.

  • Marwarha G
  • Cell. Signal.
  • 2017 Nov 27

Literature context:


Abstract:

The peptide hormones Insulin-like growth factor-1 (IGF1) and leptin mediate a myriad of biological effects - both in the peripheral and central nervous systems. The transcription of these two hormones is regulated by the transcription factor C/EBPα, which in turn is negatively regulated by the transcription factor C/EBP Homologous Protein (CHOP), a specific marker of endoplasmic reticulum (ER) stress. In the peripheral system, disturbances in leptin and IGF-1 levels are implicated in a variety of metabolic diseases including obesity, diabetes, atherosclerosis and cardiovascular diseases. Current research suggests a positive correlation between consumption of diets rich in saturated free fatty acids (sFFA) and metabolic diseases. Induction of ER stress and subsequent dysregulation in the expression levels of leptin and IGF-1 have been shown to mediate sFFA-induced metabolic diseases in the peripheral system. Palmitic acid (palmitate), the most commonly consumed sFFA, has been shown to be up-taken by the brain, where it may promote neurodegeneration. However, the extent to which palmitate induces ER stress in the brain and attenuates leptin and IGF1 expression has not been determined. We fed C57BL/6J mice a palmitate-enriched diet and determined effects on the expression levels of leptin and IGF1 in the hippocampus and cortex. We further determined the extent to which ER stress and subsequent CHOP activation mediate the palmitate effects on the transcription of leptin and IGF1. We demonstrate that palmitate induces ER stress and decreases leptin and IGF1 expression by inducing the expression of CHOP. The molecular chaperone 4-phenylbutyric acid (4-PBA), an inhibitor of ER stress, precludes the palmitate-evoked down-regulation of leptin and IGF1 expression. Furthermore, the activation of CHOP in response to ER stress is pivotal in the attenuation of leptin and IGF1 expression as knocking-down CHOP in mice or in SH-SY5Y and Neuro-2a (N2a) cells rescues the palmitate-induced mitigation in leptin and IGF1 expression. Our study implicates for the first time ER stress-induced CHOP activation in the brain as a mechanistic link in the palmitate-induced negative regulation of leptin and IGF1, two neurotrophic cytokines that play an indispensable role in the mammalian brain.

Funding information:
  • NCI NIH HHS - R01 CA138256-01(United States)
  • NIA NIH HHS - R01 AG045264(United States)

Increased GSNOR Expression during Aging Impairs Cognitive Function and Decreases S-Nitrosation of CaMKIIα.

  • Zhang Y
  • J. Neurosci.
  • 2017 Oct 4

Literature context:


Abstract:

As the population ages, an increasing number of people suffer from age-related cognitive impairment. However, the mechanisms underlying this process remain unclear. Here, we found that S-nitrosoglutathione reductase (GSNOR), the key enzyme that metabolizes intracellular nitric oxide (NO) and regulates S-nitrosation, was significantly increased in the hippocampus of both aging humans and mice. Transgenic mice overexpressing GSNOR exclusively in neurons showed cognitive impairment in behavioral tests, including the Morris water maze, fear conditioning, and the Y-maze test. We also found that GSNOR transgenic mice have LTP defects and lower dendrite spine density, whereas GSNOR knock-out mice rescued the age-related cognitive impairment. Analysis of S-nitrosation showed significantly decreased hippocampal CaMKIIα S-nitrosation in naturally aged mice and GSNOR transgenic mice. Consistent with the change in CaMKIIα S-nitrosation, the accumulation of CaMKIIα in the hippocampal synaptosomal fraction, as well as its downstream signaling targets p(S831)-GLUR1, was also significantly decreased. All these effects could be rescued in the GSNOR knock-out mice. We further verified that the S-nitrosation of CaMKIIα was responsible for the CaMKIIα synaptosomal accumulation by mutating CaMKIIα S-nitrosated sites (C280/C289). Upregulation of the NO signaling pathway rescued the cognitive impairment in GSNOR transgenic mice. In summary, our research demonstrates that GSNOR impairs cognitive function in aging and it could serve as a new potential target for the treatment of age-related cognitive impairment. In contrast to the free radical theory of aging, NO signaling deficiency may be the main mediator of age-related cognitive impairment.SIGNIFICANCE STATEMENT This study indicated that S-nitrosoglutathione reductase (GSNOR), a key protein S-nitrosation metabolic enzyme, is a new potential target in age-related cognitive impairment; and in contrast to the free radical theory of aging, NO signaling deficiency may be the main cause of this process. In addition, increased GSNOR expression during aging decreases S-nitrosation of CaMKIIα and reduces CaMKIIα synaptosomal accumulation. To our knowledge, it is for the first time to show the cellular function regulation of CaMKIIα by GSNOR-dependent S-nitrosation as a new post-translational modification after its phosphorylation was explored. These findings elucidate a novel mechanism of age-related cognitive impairment and may provide a new potential target and strategy for slowing down this process.

Funding information:
  • NINDS NIH HHS - NS07092(United States)

Prolyl dihydroxylation of unassembled uS12/Rps23 regulates fungal hypoxic adaptation.

  • Clasen SJ
  • Elife
  • 2017 Oct 30

Literature context:


Abstract:

The prolyl-3,4-dihydroxylase Ofd1 and nuclear import adaptor Nro1 regulate the hypoxic response in fission yeast by controlling activity of the sterol regulatory element-binding protein transcription factor Sre1. Here, we identify an extra-ribosomal function for uS12/Rps23 central to this regulatory system. Nro1 binds Rps23, and Ofd1 dihydroxylates Rps23 P62 in complex with Nro1. Concurrently, Nro1 imports Rps23 into the nucleus for assembly into 40S ribosomes. Low oxygen inhibits Ofd1 hydroxylase activity and stabilizes the Ofd1-Rps23-Nro1 complex, thereby sequestering Ofd1 from binding Sre1, which is then free to activate hypoxic gene expression. In vitro studies demonstrate that Ofd1 directly binds Rps23, Nro1, and Sre1 through a consensus binding sequence. Interestingly, Rps23 expression modulates Sre1 activity by changing the Rps23 substrate pool available to Ofd1. To date, oxygen is the only known signal to Sre1, but additional nutrient signals may tune the hypoxic response through control of unassembled Rps23 or Ofd1 activity.

Mitochondrial Fission Promotes the Continued Clearance of Apoptotic Cells by Macrophages.

  • Wang Y
  • Cell
  • 2017 Oct 5

Literature context:


Abstract:

Clearance of apoptotic cells (ACs) by phagocytes (efferocytosis) prevents post-apoptotic necrosis and dampens inflammation. Defective efferocytosis drives important diseases, including atherosclerosis. For efficient efferocytosis, phagocytes must be able to internalize multiple ACs. We show here that uptake of multiple ACs by macrophages requires dynamin-related protein 1 (Drp1)-mediated mitochondrial fission, which is triggered by AC uptake. When mitochondrial fission is disabled, AC-induced increase in cytosolic calcium is blunted owing to mitochondrial calcium sequestration, and calcium-dependent phagosome formation around secondarily encountered ACs is impaired. These defects can be corrected by silencing the mitochondrial calcium uniporter (MCU). Mice lacking myeloid Drp1 showed defective efferocytosis and its pathologic consequences in the thymus after dexamethasone treatment and in advanced atherosclerotic lesions in fat-fed Ldlr-/- mice. Thus, mitochondrial fission in response to AC uptake is a critical process that enables macrophages to clear multiple ACs and to avoid the pathologic consequences of defective efferocytosis in vivo.

Reactive Neutrophil Responses Dependent on the Receptor Tyrosine Kinase c-MET Limit Cancer Immunotherapy.

  • Glodde N
  • Immunity
  • 2017 Oct 17

Literature context:


Abstract:

Inhibitors of the receptor tyrosine kinase c-MET are currently used in the clinic to target oncogenic signaling in tumor cells. We found that concomitant c-MET inhibition promoted adoptive T cell transfer and checkpoint immunotherapies in murine cancer models by increasing effector T cell infiltration in tumors. This therapeutic effect was independent of tumor cell-intrinsic c-MET dependence. Mechanistically, c-MET inhibition impaired the reactive mobilization and recruitment of neutrophils into tumors and draining lymph nodes in response to cytotoxic immunotherapies. In the absence of c-MET inhibition, neutrophils recruited to T cell-inflamed microenvironments rapidly acquired immunosuppressive properties, restraining T cell expansion and effector functions. In cancer patients, high serum levels of the c-MET ligand HGF correlated with increasing neutrophil counts and poor responses to checkpoint blockade therapies. Our findings reveal a role for the HGF/c-MET pathway in neutrophil recruitment and function and suggest that c-MET inhibitor co-treatment may improve responses to cancer immunotherapy in settings beyond c-MET-dependent tumors.

Funding information:
  • NIAID NIH HHS - 2-U54-AI-057153(United States)

Assembly of the WHIP-TRIM14-PPP6C Mitochondrial Complex Promotes RIG-I-Mediated Antiviral Signaling.

  • Tan P
  • Mol. Cell
  • 2017 Oct 19

Literature context:


Abstract:

Mitochondrial antiviral signaling platform protein (MAVS) acts as a central hub for RIG-I receptor proximal signal propagation. However, key components in the assembly of the MAVS mitochondrial platform that promote RIG-I mitochondrial localization and optimal activation are still largely undefined. Employing pooled RNAi and yeast two-hybrid screenings, we report that the mitochondrial adaptor protein tripartite motif (TRIM)14 provides a docking platform for the assembly of the mitochondrial signaling complex required for maximal activation of RIG-I-mediated signaling, consisting of WHIP and protein phosphatase PPP6C. Following viral infection, the ubiquitin-binding domain in WHIP bridges RIG-I with MAVS by binding to polyUb chains of RIG-I at lysine 164. The ATPase domain in WHIP contributes to stabilization of the RIG-I-dsRNA interaction. Moreover, phosphatase PPP6C is responsible for RIG-I dephosphorylation. Together, our findings define the WHIP-TRIM14-PPP6C mitochondrial signalosome required for RIG-I-mediated innate antiviral immunity.

Funding information:
  • Canadian Institutes of Health Research - (Canada)

Many si/shRNAs can kill cancer cells by targeting multiple survival genes through an off-target mechanism.

  • Putzbach W
  • Elife
  • 2017 Oct 24

Literature context:


Abstract:

Over 80% of multiple-tested siRNAs and shRNAs targeting CD95 or CD95 ligand (CD95L) induce a form of cell death characterized by simultaneous activation of multiple cell death pathways preferentially killing transformed and cancer stem cells. We now show these si/shRNAs kill cancer cells through canonical RNAi by targeting the 3'UTR of critical survival genes in a unique form of off-target effect we call DISE (death induced by survival gene elimination). Drosha and Dicer-deficient cells, devoid of most miRNAs, are hypersensitive to DISE, suggesting cellular miRNAs protect cells from this form of cell death. By testing 4666 shRNAs derived from the CD95 and CD95L mRNA sequences and an unrelated control gene, Venus, we have identified many toxic sequences - most of them located in the open reading frame of CD95L. We propose that specific toxic RNAi-active sequences present in the genome can kill cancer cells.

Funding information:
  • NCI NIH HHS - R35 CA197450()
  • NCI NIH HHS - R50 CA211271()
  • NCI NIH HHS - T32 CA009560()
  • NCI NIH HHS - T32 CA070085()

Epitranscriptomic Enhancement of Influenza A Virus Gene Expression and Replication.

  • Courtney DG
  • Cell Host Microbe
  • 2017 Sep 13

Literature context:


Abstract:

Many viral RNAs are modified by methylation of the N6 position of adenosine (m6A). m6A is thought to regulate RNA splicing, stability, translation, and secondary structure. Influenza A virus (IAV) expresses m6A-modified RNAs, but the effects of m6A on this segmented RNA virus remain unclear. We demonstrate that global inhibition of m6A addition inhibits IAV gene expression and replication. In contrast, overexpression of the cellular m6A "reader" protein YTHDF2 increases IAV gene expression and replication. To address whether m6A residues modulate IAV RNA function in cis, we mapped m6A residues on the IAV plus (mRNA) and minus (vRNA) strands and used synonymous mutations to ablate m6A on both strands of the hemagglutinin (HA) segment. These mutations inhibited HA mRNA and protein expression while leaving other IAV mRNAs and proteins unaffected, and they also resulted in reduced IAV pathogenicity in mice. Thus, m6A residues in IAV transcripts enhance viral gene expression.

Funding information:
  • NCI NIH HHS - T32 CA009111()
  • NIAID NIH HHS - R21 AI130574()
  • NIGMS NIH HHS - T32 GM007184()

Cellular Retinoic Acid-Binding Protein 1 Modulates Stem Cell Proliferation to Affect Learning and Memory in Male Mice.

  • Lin YL
  • Endocrinology
  • 2017 Sep 1

Literature context:


Abstract:

Retinoic acid (RA) is the active ingredient of vitamin A. It exerts its canonical activity by binding to nuclear RA receptors (RARs) to regulate gene expression. Increasingly, RA is also known to elicit nongenomic RAR-independent activities, most widely detected in activating extracellular regulated kinase (ERK)1/2. This study validated the functional role of cellular retinoic acid-binding protein 1 (Crabp1) in mediating nongenomic activity in RA, specifically activating ERK1/2 to rapidly augment the cell cycle by expanding the growth 1 phase and slowing down embryonic stem cell and neural stem cell (NSC) proliferation. The study further uncovered the physiological activity of Crabp1 in modulating NSC proliferation and animal behavior. In the Crabp1 knockout mouse hippocampus, where Crabp1 is otherwise detected in the subgranular zone, neurogenesis and NSC proliferation increased and hippocampus-dependent brain functions such as learning and memory correspondingly improved. This study established the physiological role of Crabp1 in modulating stem cell proliferation and hippocampus-dependent brain activities such as learning and memory.

Funding information:
  • NIDDK NIH HHS - R01 DK054733()
  • NIDDK NIH HHS - R01 DK060521()
  • NINDS NIH HHS - R01 NS039444(United States)

Decomposing Oncogenic Transcriptional Signatures to Generate Maps of Divergent Cellular States.

  • Kim JW
  • Cell Syst
  • 2017 Aug 23

Literature context:


Abstract:

The systematic sequencing of the cancer genome has led to the identification of numerous genetic alterations in cancer. However, a deeper understanding of the functional consequences of these alterations is necessary to guide appropriate therapeutic strategies. Here, we describe Onco-GPS (OncoGenic Positioning System), a data-driven analysis framework to organize individual tumor samples with shared oncogenic alterations onto a reference map defined by their underlying cellular states. We applied the methodology to the RAS pathway and identified nine distinct components that reflect transcriptional activities downstream of RAS and defined several functional states associated with patterns of transcriptional component activation that associates with genomic hallmarks and response to genetic and pharmacological perturbations. These results show that the Onco-GPS is an effective approach to explore the complex landscape of oncogenic cellular states across cancers, and an analytic framework to summarize knowledge, establish relationships, and generate more effective disease models for research or as part of individualized precision medicine paradigms.

Funding information:
  • NCATS NIH HHS - UL1 TR001102(United States)
  • NCI NIH HHS - R01 CA109467(United States)
  • NCI NIH HHS - R01 CA121941(United States)
  • NCI NIH HHS - R01 CA130988(United States)
  • NCI NIH HHS - R01 CA154480(United States)
  • NCI NIH HHS - U01 CA176058(United States)
  • NCI NIH HHS - U01 CA199253(United States)
  • NCI NIH HHS - U24 CA194107(United States)
  • NHGRI NIH HHS - U01 HG008699(United States)
  • NIGMS NIH HHS - F32 GM087902(United States)
  • NIGMS NIH HHS - R01 GM074024(United States)
  • NIGMS NIH HHS - T32 GM007753(United States)

Heparan sulfate alterations in extracellular matrix structures and fibroblast growth factor-2 signaling impairment in the aged neurogenic niche.

  • Yamada T
  • J. Neurochem.
  • 2017 Aug 26

Literature context:


Abstract:

Adult neurogenesis in the subventricular zone of the lateral ventricle decreases with age. In the subventricular zone, the specialized extracellular matrix structures, known as fractones, contact neural stem cells and regulate neurogenesis. Fractones are composed of extracellular matrix components, such as heparan sulfate proteoglycans. We previously found that fractones capture and store fibroblast growth factor 2 (FGF-2) via heparan sulfate binding, and may deliver FGF-2 to neural stem cells in a timely manner. The heparan sulfate (HS) chains in the fractones of the aged subventricular zone are modified based on immunohistochemistry. However, how aging affects fractone composition and subsequent FGF-2 signaling and neurogenesis remains unknown. The formation of the FGF-fibroblast growth factor receptor-HS complex is necessary to activate FGF-2 signaling and induce the phosphorylation of extracellular signal-regulated kinase (Erk1/2). In this study, we observed a reduction in HS 6-O-sulfation, which is critical for FGF-2 signal transduction, and failure of the FGF-2-induced phosphorylation of Erk1/2 in the aged subventricular zone. In addition, we observed increased HS 6-O-endo-sulfatase, an enzyme that may be responsible for the HS modifications in aged fractones. In conclusion, the data revealed that heparan sulfate 6-O-sulfation is reduced and FGF-2-dependent Erk1/2 signaling is impaired in the aged subventricular zone. HS modifications in fractones might play a role in the reduced neurogenic activity in aging brains.

Ccdc3: A New P63 Target Involved in Regulation Of Liver Lipid Metabolism.

  • Liao W
  • Sci Rep
  • 2017 Aug 21

Literature context:


Abstract:

TAp63, a member of the p53 family, has been shown to regulate energy metabolism. Here, we report coiled coil domain-containing 3 (CCDC3) as a new TAp63 target. TAp63, but not ΔNp63, p53 or p73, upregulates CCDC3 expression by directly binding to its enhancer region. The CCDC3 expression is markedly reduced in TAp63-null mouse embryonic fibroblasts and brown adipose tissues and by tumor necrosis factor alpha that reduces p63 transcriptional activity, but induced by metformin, an anti-diabetic drug that activates p63. Also, the expression of CCDC3 is positively correlated with TAp63 levels, but conversely with ΔNp63 levels, during adipocyte differentiation. Interestingly, CCDC3, as a secreted protein, targets liver cancer cells and increases long chain polyunsaturated fatty acids, but decreases ceramide in the cells. CCDC3 alleviates glucose intolerance, insulin resistance and steatosis formation in transgenic CCDC3 mice on high-fat diet (HFD) by reducing the expression of hepatic PPARγ and its target gene CIDEA as well as other genes involved in de novo lipogenesis. Similar results are reproduced by hepatic expression of ectopic CCDC3 in mice on HFD. Altogether, these results demonstrate that CCDC3 modulates liver lipid metabolism by inhibiting liver de novo lipogenesis as a downstream player of the p63 network.

Viral Replication Complexes Are Targeted by LC3-Guided Interferon-Inducible GTPases.

  • Biering SB
  • Cell Host Microbe
  • 2017 Jul 12

Literature context:


Abstract:

All viruses with positive-sense RNA genomes replicate on membranous structures in the cytoplasm called replication complexes (RCs). RCs provide an advantageous microenvironment for viral replication, but it is unknown how the host immune system counteracts these structures. Here we show that interferon-gamma (IFNG) disrupts the RC of murine norovirus (MNV) via evolutionarily conserved autophagy proteins and the induction of IFN-inducible GTPases, which are known to destroy the membrane of vacuoles containing bacteria, protists, or fungi. The MNV RC was marked by the microtubule-associated-protein-1-light-chain-3 (LC3) conjugation system of autophagy and then targeted by immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs) upon their induction by IFNG. Further, the LC3 conjugation system and the IFN-inducible GTPases were necessary to inhibit MNV replication in mice and human cells. These data suggest that viral RCs can be marked and antagonized by a universal immune defense mechanism targeting diverse pathogens replicating in cytosolic membrane structures.

Funding information:
  • NIAID NIH HHS - R01 AI103197()

Blockade of Sphingosine 1-Phosphate Receptor 2 Signaling Attenuates High-Fat Diet-Induced Adipocyte Hypertrophy and Systemic Glucose Intolerance in Mice.

  • Kitada Y
  • Endocrinology
  • 2017 Jun 5

Literature context:


Abstract:

Sphingosine 1-phosphate (S1P) is known to regulate insulin resistance in hepatocytes, skeletal muscle cells, and pancreatic β-cells. Among its 5 cognate receptors (S1pr1-S1pr5), S1P seems to counteract insulin signaling and confer insulin resistance via S1pr2 in these cells. S1P may also regulate insulin resistance in adipocytes, but the S1pr subtype(s) involved remains unknown. Here, we investigated systemic glucose/insulin tolerance and phenotypes of epididymal adipocytes in high-fat diet (HFD)-fed wild-type and S1pr2-deficient (S1pr2(-/-)) mice. Adult S1pr2(-/-) mice displayed smaller body/epididymal fat tissue weights, but the differences became negligible after 4 weeks with HFD. However, HFD-fed S1pr2(-/-) mice displayed better scores in glucose/insulin tolerance tests and had smaller epididymal adipocytes that expressed higher levels of proliferating cell nuclear antigen than wild-type mice. Next, proliferation/differentiation of 3T3-L1 and 3T3-F442A preadipocytes were examined in the presence of various S1pr antagonists: JTE-013 (S1pr2 antagonist), VPC-23019 (S1pr1/S1pr3 antagonist), and CYM-50358 (S1pr4 antagonist). S1P or JTE-013 treatment of 3T3-L1 preadipocytes potently activated their proliferation and Erk phosphorylation, whereas VPC-23019 inhibited both of these processes, and CYM-50358 had no effects. In contrast, S1P or JTE-013 treatment inhibited adipogenic differentiation of 3T3-F442A preadipocytes, whereas VPC-23019 activated it. The small interfering RNA knockdown of S1pr2 promoted proliferation and inhibited differentiation of 3T3-F442A preadipocytes, whereas that of S1pr1 acted oppositely. Moreover, oral JTE-013 administration improved glucose tolerance/insulin sensitivity in ob/ob mice. Taken together, S1pr2 blockade induced proliferation but suppressed differentiation of (pre)adipocytes both in vivo and in vitro, highlighting a novel therapeutic approach for obesity/type 2 diabetes.

Funding information:
  • NHLBI NIH HHS - R01 HL133166(United States)

Long-Term Exposure of Pancreatic β-Cells to Palmitate Results in SREBP-1C-Dependent Decreases in GLP-1 Receptor Signaling via CREB and AKT and Insulin Secretory Response.

  • Natalicchio A
  • Endocrinology
  • 2017 Jun 5

Literature context:


Abstract:

The effects of prolonged exposure of pancreatic β-cells to high saturated fatty acids on glucagon-like peptide-1 (GLP-1) action were investigated. Murine islets, human pancreatic 1.1B4 cells, and rat INS-1E cells were exposed to palmitate for 24 hours. mRNA and protein expression/phosphorylation were measured by real-time RT-PCR and immunoblotting, respectively. Specific short interfering RNAs were used to knockdown expression of the GLP-1 receptor (Glp1r) and Srebf1. Insulin release was assessed with a specific ELISA. Exposure of murine islets, as well as of human and INS-1E β-cells, to palmitate reduced the ability of exendin-4 to augment insulin mRNA levels, protein content, and release. In addition, palmitate blocked exendin-4-stimulated cAMP-response element-binding protein and v-akt murine thymoma viral oncogene homolog phosphorylation, whereas phosphorylation of MAPK-ERK kinase-1/2 and ERK-1/2 was not altered. Similarly, RNA interference-mediated suppression of Glp1r expression prevented exendin-4-induced cAMP-response element-binding protein and v-akt murine thymoma viral oncogene homolog phosphorylation, but did not impair exendin-4 stimulation of MAPK-ERK kinase-1/2 and ERK-1/2. Both islets from mice fed a high fat diet and human and INS-1E β-cells exposed to palmitate showed reduced GLP-1 receptor and pancreatic duodenal homeobox-1 (PDX-1) and increased sterol regulatory element-binding protein (SREBP-1C) mRNA and protein levels. Furthermore, suppression of SREBP-1C protein expression prevented the reduction of PDX-1 and GLP-1 receptor levels and restored exendin-4 signaling and action. Finally, treatment of INS-1E cells with metformin for 24 h resulted in inhibition of SREBP-1C expression, increased PDX-1 and GLP-1 receptor levels, consequently, enhancement of exendin-4-induced insulin release. Palmitate impairs exendin-4 effects on β-cells by reducing PDX-1 and GLP-1 receptor expression and signaling in a SREBP-1C-dependent manner. Metformin counteracts the impairment of GLP-1 receptor signaling induced by palmitate.

Funding information:
  • NIMH NIH HHS - R01 MH066332(United States)

The complex of TRIP-Br1 and XIAP ubiquitinates and degrades multiple adenylyl cyclase isoforms.

  • Hu W
  • Elife
  • 2017 Jun 28

Literature context:


Abstract:

Adenylyl cyclases (ACs) generate cAMP, a second messenger of utmost importance that regulates a vast array of biological processes in all kingdoms of life. However, almost nothing is known about how AC activity is regulated through protein degradation mediated by ubiquitination or other mechanisms. Here, we show that transcriptional regulator interacting with the PHD-bromodomain 1 (TRIP-Br1, Sertad1), a newly identified protein with poorly characterized functions, acts as an adaptor that bridges the interaction of multiple AC isoforms with X-linked inhibitor of apoptosis protein (XIAP), a RING-domain E3 ubiquitin ligase. XIAP ubiquitinates a highly conserved Lys residue in AC isoforms and thereby accelerates the endocytosis and degradation of multiple AC isoforms in human cell lines and mice. XIAP/TRIP-Br1-mediated degradation of ACs forms part of a negative-feedback loop that controls the homeostasis of cAMP signaling in mice. Our findings reveal a previously unrecognized mechanism for degrading multiple AC isoforms and modulating the homeostasis of cAMP signaling.

Short-Chain Fatty Acid Acetate Stimulates Adipogenesis and Mitochondrial Biogenesis via GPR43 in Brown Adipocytes.

  • Hu J
  • Endocrinology
  • 2017 Jun 5

Literature context:


Abstract:

Short-chain fatty acids play crucial roles in a range of physiological functions. However, the effects of short-chain fatty acids on brown adipose tissue have not been fully investigated. We examined the role of acetate, a short-chain fatty acid formed by fermentation in the gut, in the regulation of brown adipocyte metabolism. Our results show that acetate up-regulates adipocyte protein 2, peroxisomal proliferator-activated receptor-γ coactivator-1α, and uncoupling protein-1 expression and affects the morphological changes of brown adipocytes during adipogenesis. Moreover, an increase in mitochondrial biogenesis was observed after acetate treatment. Acetate also elicited the activation of ERK and cAMP response element-binding protein, and these responses were sensitive to G(i/o)-type G protein inactivator, Gβγ-subunit inhibitor, phospholipase C inhibitor, and MAPK kinase inhibitor, indicating a role for the G(i/o)βγ/phospholipase C/protein kinase C/MAPK kinase signaling pathway in these responses. These effects of acetate were mimicked by treatment with 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide, a synthetic G protein-coupled receptor 43 (GPR43) agonist and were impaired in GPR43 knockdown cells. Taken together, our results indicate that acetate may have important physiological roles in brown adipocytes through the activation of GPR43.

Funding information:
  • NIA NIH HHS - R01AG033605(United States)
  • NIGMS NIH HHS - R35 GM118110(United States)

Prolactin-induced neuroprotection against glutamate excitotoxicity is mediated by the reduction of [Ca2+]i overload and NF-κB activation.

  • Rivero-Segura NA
  • PLoS ONE
  • 2017 May 5

Literature context:


Abstract:

Prolactin (PRL) is a peptidic hormone that displays pleiotropic functions in the organism including different actions in the brain. PRL exerts a neuroprotective effect against excitotoxicity produced by glutamate (Glu) or kainic acid in both in vitro and in vivo models. It is well known that Glu excitotoxicity causes cell death through apoptotic or necrotic pathways due to intracellular calcium ([Ca2+] i) overload. Therefore, the aim of the present study was to assess the molecular mechanisms by which PRL maintains cellular viability of primary cultures of rat hippocampal neurons exposed to Glu excitotoxicity. We determined cell viability by monitoring mitochondrial activity and using fluorescent markers for viable and dead cells. The intracellular calcium level was determined by a fluorometric assay and proteins involved in the apoptotic pathway were determined by immunoblot. Our results demonstrated that PRL afforded neuroprotection against Glu excitotoxicity, as evidenced by a decrease in propidium iodide staining and by the decrease of the LDH activity. In addition, the MTT assay shows that PRL maintains normal mitochondrial activity even in neurons exposed to Glu. Furthermore, the Glu-induced intracellular [Ca2+]i overload was attenuated by PRL. These data correlate with the reduction found in the level of active caspase-3 and the pro-apoptotic ratio (Bax/Bcl-2). Concomitantly, PRL elicited the nuclear translocation of the transcriptional factor NF-κB, which was detected by immunofluorescence and confocal microscopy. To our knowledge, this is the first report demonstrating that PRL prevents Glu excitotoxicity by a mechanism involving the restoration of the intracellular calcium homeostasis and mitochondrial activity, as well as an anti-apoptotic action possibly mediated by the activity of NF-κB. Overall, the current results suggest that PRL could be of potential therapeutic advantage in the treatment of neurodegenerative diseases.

CHD4 Has Oncogenic Functions in Initiating and Maintaining Epigenetic Suppression of Multiple Tumor Suppressor Genes.

  • Xia L
  • Cancer Cell
  • 2017 May 8

Literature context:


Abstract:

An oncogenic role for CHD4, a NuRD component, is defined for initiating and supporting tumor suppressor gene (TSG) silencing in human colorectal cancer. CHD4 recruits repressive chromatin proteins to sites of DNA damage repair, including DNA methyltransferases where it imposes de novo DNA methylation. At TSGs, CHD4 retention helps maintain DNA hypermethylation-associated transcriptional silencing. CHD4 is recruited by the excision repair protein OGG1 for oxidative damage to interact with the damage-induced base 8-hydroxydeoxyguanosine (8-OHdG), while ZMYND8 recruits it to double-strand breaks. CHD4 knockdown activates silenced TSGs, revealing their role for blunting colorectal cancer cell proliferation, invasion, and metastases. High CHD4 and 8-OHdG levels plus low expression of TSGs strongly correlates with early disease recurrence and decreased overall survival.

Decreased microRNA levels lead to deleterious increases in neuronal M2 muscarinic receptors in Spinal Muscular Atrophy models.

  • O'Hern PJ
  • Elife
  • 2017 May 2

Literature context:


Abstract:

Spinal Muscular Atrophy (SMA) is caused by diminished Survival of Motor Neuron (SMN) protein, leading to neuromuscular junction (NMJ) dysfunction and spinal motor neuron (MN) loss. Here, we report that reduced SMN function impacts the action of a pertinent microRNA and its mRNA target in MNs. Loss of the C. elegans SMN ortholog, SMN-1, causes NMJ defects. We found that increased levels of the C. elegans Gemin3 ortholog, MEL-46, ameliorates these defects. Increased MEL-46 levels also restored perturbed microRNA (miR-2) function in smn-1(lf) animals. We determined that miR-2 regulates expression of the C. elegans M2 muscarinic receptor (m2R) ortholog, GAR-2. GAR-2 loss ameliorated smn-1(lf) and mel-46(lf) synaptic defects. In an SMA mouse model, m2R levels were increased and pharmacological inhibition of m2R rescued MN process defects. Collectively, these results suggest decreased SMN leads to defective microRNA function via MEL-46 misregulation, followed by increased m2R expression, and neuronal dysfunction in SMA.

Funding information:
  • NIH HHS - P40 OD010440()
  • NIMH NIH HHS - T32 MH020068()
  • NINDS NIH HHS - F31 NS089201()
  • NINDS NIH HHS - P01 NS066888()

m6A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program.

  • Zhang S
  • Cancer Cell
  • 2017 Apr 10

Literature context:


Abstract:

The dynamic and reversible N6-methyladenosine (m6A) RNA modification installed and erased by N6-methyltransferases and demethylases regulates gene expression and cell fate. We show that the m6A demethylase ALKBH5 is highly expressed in glioblastoma stem-like cells (GSCs). Silencing ALKBH5 suppresses the proliferation of patient-derived GSCs. Integrated transcriptome and m6A-seq analyses revealed altered expression of certain ALKBH5 target genes, including the transcription factor FOXM1. ALKBH5 demethylates FOXM1 nascent transcripts, leading to enhanced FOXM1 expression. Furthermore, a long non-coding RNA antisense to FOXM1 (FOXM1-AS) promotes the interaction of ALKBH5 with FOXM1 nascent transcripts. Depleting ALKBH5 and FOXM1-AS disrupted GSC tumorigenesis through the FOXM1 axis. Our work uncovers a critical function for ALKBH5 and provides insight into critical roles of m6A methylation in glioblastoma.

Funding information:
  • Howard Hughes Medical Institute - R01 CA152309()
  • NCI NIH HHS - R01 CA157933()
  • NCI NIH HHS - R01 CA182684()
  • NCI NIH HHS - R01 CA201327()
  • NIGMS NIH HHS - R01 GM071440()

Palmitoylated SCP1 is targeted to the plasma membrane and negatively regulates angiogenesis.

  • Liao P
  • Elife
  • 2017 Mar 31

Literature context:


Abstract:

SCP1 as a nuclear transcriptional regulator acts globally to silence neuronal genes and to affect the dephosphorylation of RNA Pol ll. However, we report the first finding and description of SCP1 as a plasma membrane-localized protein in various cancer cells using EGFP- or other epitope-fused SCP1. Membrane-located SCP1 dephosphorylates AKT at serine 473, leading to the abolishment of serine 473 phosphorylation that results in suppressed angiogenesis and a decreased risk of tumorigenesis. Consistently, we observed increased AKT phosphorylation and angiogenesis followed by enhanced tumorigenesis in Ctdsp1 (which encodes SCP1) gene - knockout mice. Importantly, we discovered that the membrane localization of SCP1 is crucial for impeding angiogenesis and tumor growth, and this localization depends on palmitoylation of a conserved cysteine motif within its NH2 terminus. Thus, our study discovers a novel mechanism underlying SCP1 shuttling between the plasma membrane and nucleus, which constitutes a unique pathway in transducing AKT signaling that is closely linked to angiogenesis and tumorigenesis.

Mitochondrial Ca2+ Uniporter Is a Mitochondrial Luminal Redox Sensor that Augments MCU Channel Activity.

  • Dong Z
  • Mol. Cell
  • 2017 Mar 16

Literature context:


Abstract:

Ca2+ dynamics and oxidative signaling are fundamental mechanisms for mitochondrial bioenergetics and cell function. The MCU complex is the major pathway by which these signals are integrated in mitochondria. Whether and how these coactive elements interact with MCU have not been established. As an approach toward understanding the regulation of MCU channel by oxidative milieu, we adapted inflammatory and hypoxia models. We identified the conserved cysteine 97 (Cys-97) to be the only reactive thiol in human MCU that undergoes S-glutathionylation. Furthermore, biochemical, structural, and superresolution imaging analysis revealed that MCU oxidation promotes MCU higher order oligomer formation. Both oxidation and mutation of MCU Cys-97 exhibited persistent MCU channel activity with higher [Ca2+]m uptake rate, elevated mROS, and enhanced [Ca2+]m overload-induced cell death. In contrast, these effects were largely independent of MCU interaction with its regulators. These findings reveal a distinct functional role for Cys-97 in ROS sensing and regulation of MCU activity.

Funding information:
  • NCRR NIH HHS - S10 RR027327()
  • NHLBI NIH HHS - R01 HL086699()
  • NHLBI NIH HHS - R01 HL119306()
  • NIDA NIH HHS - P01 DA037830()
  • NIDDK NIH HHS - R01 DK103558()
  • NIGMS NIH HHS - R01 GM109882()
  • NIGMS NIH HHS - R01 GM117907()

Synaptic Activity Drives a Genomic Program That Promotes a Neuronal Warburg Effect.

  • Bas-Orth C
  • J. Biol. Chem.
  • 2017 Mar 31

Literature context:


Abstract:

Synaptic activity drives changes in gene expression to promote long lasting adaptations of neuronal structure and function. One example of such an adaptive response is the buildup of acquired neuroprotection, a synaptic activity- and gene transcription-mediated increase in the resistance of neurons against harmful conditions. A hallmark of acquired neuroprotection is the stabilization of mitochondrial structure and function. We therefore re-examined previously identified sets of synaptic activity-regulated genes to identify genes that are directly linked to mitochondrial function. In mouse and rat primary hippocampal cultures, synaptic activity caused an up-regulation of glycolytic genes and a concomitant down-regulation of genes required for oxidative phosphorylation, mitochondrial biogenesis, and maintenance. Changes in metabolic gene expression were induced by action potential bursting, but not by glutamate bath application activating extrasynaptic NMDA receptors. The specific and coordinate pattern of gene expression changes suggested that synaptic activity promotes a shift of neuronal energy metabolism from oxidative phosphorylation toward aerobic glycolysis, also known as the Warburg effect. The ability of neurons to up-regulate glycolysis has, however, been debated. We therefore used FACS sorting to show that, in mixed neuron glia co-cultures, activity-dependent regulation of metabolic gene expression occurred in neurons. Changes in gene expression were accompanied by changes in the phosphorylation-dependent regulation of the key metabolic enzyme, pyruvate dehydrogenase. Finally, increased synaptic activity caused an increase in the ratio of l-lactate production to oxygen consumption in primary hippocampal cultures. Based on these data we suggest the existence of a synaptic activity-mediated neuronal Warburg effect that may promote mitochondrial homeostasis and neuroprotection.

Low-Dose Dihydrotestosterone Drives Metabolic Dysfunction via Cytosolic and Nuclear Hepatic Androgen Receptor Mechanisms.

  • Andrisse S
  • Endocrinology
  • 2017 Mar 1

Literature context:


Abstract:

Androgen excess in women is associated with metabolic dysfunction (e.g., obesity, hyperinsulinemia, insulin resistance, and increased risk of type 2 diabetes) and reproductive dysfunction (e.g., polycystic ovaries, amenorrhea, dysregulated gonadotropin release, and infertility). We sought to identify the effects of androgen excess on glucose metabolic dysfunction and the specific mechanisms of action by which androgens are inducing pathology. We developed a mouse model that displayed pathophysiological serum androgen levels with normal body mass/composition to ensure that the phenotypes were directly from androgens and not an indirect consequence of obesity. We performed reproductive tests, metabolic tests, and hormonal assays. Livers were isolated and examined via molecular, biochemical, and histological analysis. Additionally, a low-dose dihydrotestosterone (DHT) cell model using H2.35 mouse hepatocytes was developed to study androgen effects on hepatic insulin signaling. DHT mice demonstrated impaired estrous cyclicity; few corpora lutea in the ovaries; glucose, insulin, and pyruvate intolerance; and lowered hepatic insulin action. Mechanistically, DHT increased hepatic androgen-receptor binding to phosphoinositide-3-kinase (PI3K)-p85, resulting in dissociation of PI3K-p85 from PI3K-p110, leading to reduced PI3K activity and decreased p-AKT and, thus, lowered insulin action. DHT increased gluconeogenesis via direct transcriptional regulation of gluconeogenic enzymes and coactivators. The hepatocyte model recapitulated the in vivo findings. The DHT-induced hepatocyte insulin resistance was reversed by the androgen-receptor antagonist, flutamide. These findings present a phenotype (i.e., impaired glucose tolerance and disrupted glucose metabolism) in a lean hyperandrogenemia model (low-dose DHT) and data to support 2 molecular mechanisms that help drive androgen-induced impaired glucose metabolism.

Funding information:
  • NICHD NIH HHS - R00 HD068130()
  • NIDDK NIH HHS - P60 DK079637()
  • NIDDK NIH HHS - T32 DK007751()

Loss of M1 Receptor Dependent Cholinergic Excitation Contributes to mPFC Deactivation in Neuropathic Pain.

  • Radzicki D
  • J. Neurosci.
  • 2017 Mar 1

Literature context:


Abstract:

In chronic pain, the medial prefrontal cortex (mPFC) is deactivated and mPFC-dependent tasks such as attention and working memory are impaired. We investigated the mechanisms of mPFC deactivation in the rat spared nerve injury (SNI) model of neuropathic pain. Patch-clamp recordings in acute slices showed that, 1 week after the nerve injury, cholinergic modulation of layer 5 (L5) pyramidal neurons was severely impaired. In cells from sham-operated animals, focal application of acetylcholine induced a left shift of the input/output curve and persistent firing. Both of these effects were almost completely abolished in cells from SNI-operated rats. The cause of this impairment was an ∼60% reduction of an M1-coupled, pirenzepine-sensitive depolarizing current, which appeared to be, at least in part, the consequence of M1 receptor internalization. Although no changes were detected in total M1 protein or transcript, both the fraction of the M1 receptor in the synaptic plasma membrane and the biotinylated M1 protein associated with the total plasma membrane were decreased in L5 mPFC of SNI rats. The loss of excitatory cholinergic modulation may play a critical role in mPFC deactivation in neuropathic pain and underlie the mPFC-specific cognitive deficits that are comorbid with neuropathic pain.SIGNIFICANCE STATEMENT The medial prefrontal cortex (mPFC) undergoes major reorganization in chronic pain. Deactivation of mPFC output is causally correlated with both the cognitive and the sensory component of neuropathic pain. Here, we show that cholinergic excitation of commissural layer 5 mPFC pyramidal neurons is abolished in neuropathic pain rats due to a severe reduction of a muscarinic depolarizing current and M1 receptor internalization. Therefore, in neuropathic pain rats, the acetylcholine (ACh)-dependent increase in neuronal excitability is reduced dramatically and the ACh-induced persisting firing, which is critical for working memory, is abolished. We propose that the blunted cholinergic excitability contributes to the functional mPFC deactivation that is causal for the pain phenotype and represents a cellular mechanism for the attention and memory impairments comorbid with chronic pain.

Funding information:
  • NIA NIH HHS - R00 AG041225()
  • NINDS NIH HHS - R01 NS064091()

Diet Polyphenol Curcumin Stimulates Hepatic Fgf21 Production and Restores Its Sensitivity in High-Fat-Diet-Fed Male Mice.

  • Zeng K
  • Endocrinology
  • 2017 Feb 1

Literature context:


Abstract:

We found previously that short-term curcumin gavage stimulated mouse hepatic fibroblast growth factor 21 (Fgf21) expression. Here we conducted mechanistic exploration and investigated the potential pathophysiological relevance on this regulation. Fgf21 stimulation was observed at messenger RNA and protein levels in mice with daily curcumin gavage for 4 or 8 days and in primary hepatocytes with curcumin treatment. Using peroxisome proliferator-activated receptor α (PPARα) agonist and antagonist, along with luciferase reporter and chromatin immune-precipitation approaches, we determined that curcumin stimulates Fgf21 transcription in a mechanism involving PPARα activation. High-fat diet (HFD) feeding also increased mouse hepatic and serum Fgf21 levels, whereas dietary curcumin intervention attenuated these increases. We found that HFD feeding reduced hepatic expression levels of genes that encode FGFR1 and βKlotho, PGC1α, and the targets of the PPARα-PGC1α axis, whereas concomitant curcumin intervention restored or partially restored their expression levels. Importantly, hepatocytes from HFD-fed mice showed a loss of response to FGF21 treatment on Erk phosphorylation and the expression of Egr1 and cFos; this response was restored in hepatocytes from HFD-fed mice with curcumin intervention. This investigation expanded our mechanistic understanding of the metabolic beneficial effects of dietary curcumin intervention involving the regulation of Fgf21 production and the attenuation of HFD-induced Fgf21 resistance.

Active Interaction Mapping Reveals the Hierarchical Organization of Autophagy.

  • Kramer MH
  • Mol. Cell
  • 2017 Feb 16

Literature context:


Abstract:

We have developed a general progressive procedure, Active Interaction Mapping, to guide assembly of the hierarchy of functions encoding any biological system. Using this process, we assemble an ontology of functions comprising autophagy, a central recycling process implicated in numerous diseases. A first-generation model, built from existing gene networks in Saccharomyces, captures most known autophagy components in broad relation to vesicle transport, cell cycle, and stress response. Systematic analysis identifies synthetic-lethal interactions as most informative for further experiments; consequently, we saturate the model with 156,364 such measurements across autophagy-activating conditions. These targeted interactions provide more information about autophagy than all previous datasets, producing a second-generation ontology of 220 functions. Approximately half are previously unknown; we confirm roles for Gyp1 at the phagophore-assembly site, Atg24 in cargo engulfment, Atg26 in cytoplasm-to-vacuole targeting, and Ssd1, Did4, and others in selective and non-selective autophagy. The procedure and autophagy hierarchy are at http://atgo.ucsd.edu/.

Funding information:
  • NHGRI NIH HHS - F30 HG007618()
  • NHGRI NIH HHS - U41 HG001315()
  • NHGRI NIH HHS - U41 HG002273()
  • NIDDK NIH HHS - R01 DK041737()
  • NIEHS NIH HHS - R01 ES014811()
  • NIGMS NIH HHS - P50 GM085764()
  • NIGMS NIH HHS - R01 GM084279()
  • NIGMS NIH HHS - T32 GM007198()
  • NIGMS NIH HHS - T32 GM008806()

Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling.

  • Hill SM
  • Cell Syst
  • 2017 Jan 25

Literature context:


Abstract:

Signaling networks downstream of receptor tyrosine kinases are among the most extensively studied biological networks, but new approaches are needed to elucidate causal relationships between network components and understand how such relationships are influenced by biological context and disease. Here, we investigate the context specificity of signaling networks within a causal conceptual framework using reverse-phase protein array time-course assays and network analysis approaches. We focus on a well-defined set of signaling proteins profiled under inhibition with five kinase inhibitors in 32 contexts: four breast cancer cell lines (MCF7, UACC812, BT20, and BT549) under eight stimulus conditions. The data, spanning multiple pathways and comprising ∼70,000 phosphoprotein and ∼260,000 protein measurements, provide a wealth of testable, context-specific hypotheses, several of which we experimentally validate. Furthermore, the data provide a unique resource for computational methods development, permitting empirical assessment of causal network learning in a complex, mammalian setting.

Funding information:
  • Medical Research Council - MC_UP_0801/1()
  • Medical Research Council - MC_UP_1302/3()
  • NCI NIH HHS - P30 CA016672()
  • NCI NIH HHS - U54 CA112970()

Maternal Low Protein Isocaloric Diet Suppresses Pancreatic β-Cell Proliferation in Mouse Offspring via miR-15b.

  • Su Y
  • Endocrinology
  • 2016 Dec 18

Literature context:


Abstract:

The mechanism underlying the increased susceptibility of type 2 diabetes in offspring of maternal malnutrition is poorly determined. Here we tested the hypothesis that functional microRNAs (miRNAs) mediated the maternal low-protein (LP) isocaloric diet induced pancreatic β-cell impairment. We performed miRNA profiling in the islets from offspring of LP and control diet mothers to explore the potential functional miRNAs responsible for β-cell dysfunction. We found that LP offspring exhibited impaired glucose tolerance due to decreased β-cell mass and insulin secretion. Reduction in the β-cell proliferation rate and cell size contributed to the decreased β-cell mass. MiR-15b was up-regulated in the islets of LP offspring. The up-regulated miR-15b inhibited pancreatic β-cell proliferation via targeting cyclin D1 and cyclin D2. Inhibition of miR-15b in LP islet cells restored β-cell proliferation and insulin secretion. Our findings demonstrate that miR-15b is critical for the regulation of pancreatic β-cells in offspring of maternal protein restriction, which may provide a further insight for β-cell exhaustion originated from intrauterine growth restriction.

Funding information:
  • NIH HHS - U42 OD011140(United States)

Angiopoietin receptor Tie2 is required for vein specification and maintenance via regulating COUP-TFII.

  • Chu M
  • Elife
  • 2016 Dec 22

Literature context:


Abstract:

Mechanisms underlying the vein development remain largely unknown. Tie2 signaling mediates endothelial cell (EC) survival and vascular maturation and its activating mutations are linked to venous malformations. Here we show that vein formation are disrupted in mouse skin and mesentery when Tie2 signals are diminished by targeted deletion of Tek either ubiquitously or specifically in embryonic ECs. Postnatal Tie2 attenuation resulted in the degeneration of newly formed veins followed by the formation of haemangioma-like vascular tufts in retina and venous tortuosity. Mechanistically, Tie2 insufficiency compromised venous EC identity, as indicated by a significant decrease of COUP-TFII protein level, a key regulator in venogenesis. Consistently, angiopoietin-1 stimulation increased COUP-TFII in cultured ECs, while Tie2 knockdown or blockade of Tie2 downstream PI3K/Akt pathway reduced COUP-TFII which could be reverted by the proteasome inhibition. Together, our results imply that Tie2 is essential for venous specification and maintenance via Akt mediated stabilization of COUP-TFII.

Funding information:
  • NINDS NIH HHS - R01 NS062736(United States)
  • NINDS NIH HHS - R01 NS065020(United States)

Integrative Functional Genomics Implicates EPB41 Dysregulation in Hepatocellular Carcinoma Risk.

  • Yang X
  • Am. J. Hum. Genet.
  • 2016 Aug 4

Literature context:


Abstract:

Genome-wide association studies (GWASs) have provided many insights into cancer genetics. However, the molecular mechanisms of many susceptibility SNPs defined by GWASs in cancer heritability and in promoting cancer risk remain elusive. New research strategies, including functional evaluations, are warranted to systematically explore truly causal genetic variants. In this study, we developed an integrative functional genomics methodology to identify cancer susceptibility SNPs in transcription factor-binding sites across the whole genome. Employing integration of functional genomic data from c-Myc cistromics, 1000 Genomes, and the TRANSFAC matrix, we successfully annotated 12 SNPs present in the c-Myc cistrome with properties consistent with modulating c-Myc binding affinity in hepatocellular carcinoma (HCC). After genotyping these 12 SNPs in 1,806 HBV-related HCC case subjects and 1,708 control subjects, we identified a HCC susceptibility SNP, rs157224G>T, in Chinese populations (T allele: odds ratio = 1.64, 95% confidence interval = 1.32-2.02; p = 5.2 × 10(-6)). This polymorphism leads to HCC predisposition through modifying c-Myc-mediated transcriptional regulation of EPB41, with the risk rs157224T allele showing significantly decreased gene expression. Based on cell proliferation, wound healing, and transwell assays as well as the mouse xenograft model, we identify EPB41 as a HCC susceptibility gene in vitro and in vivo. Consistent with this notion, we note that EPB41 expression is significantly decreased in HCC tissue specimens, especially in portal vein metastasis or intrahepatic metastasis, compared to normal tissues. Our results highlight the involvement of regulatory genetic variants in HCC and provide pathogenic insights of this malignancy via a genome-wide approach.

Funding information:
  • NICHD NIH HHS - R01 HD073179(United States)

Synuclein expression in the lizard Anolis carolinensis.

  • Toni M
  • J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol.
  • 2016 Aug 22

Literature context:


Abstract:

The synuclein (syn) family comprises three proteins: α-, β- and γ-syns. In humans, they are involved in neurodegenerative diseases such as Parkinson's disease and in tumors. Members of the syn family were sequenced in representative species of all vertebrates and the comparative analysis of amino acid sequences suggests that syns are evolutionarily conserved, but information about their expression in vertebrate lineages is still scarce and completely lacking in reptiles. In this study, the expression of genes coding for α-, β- and γ-syns was analyzed in the green lizard Anolis carolinensis by semiquantitative RT-PCR and Western blot. Results demonstrate good expression levels of the three syns in the lizard nervous system, similarly to human syns. This, together with the high identity between lizard and human syns, suggests that these proteins fulfill evolutionarily conserved functions. However, differences between lizard and humans in the expression of syn variants (two different variants of γ-syn were detected in A. carolinensis) and differences in some amino acids in key positions for the regulation of protein conformation and affinity for lipid and metal ions also suggest that these proteins may have acquired different functional specializations in the two lineages.

Funding information:
  • NEI NIH HHS - R01 EY025933(United States)
  • NIMH NIH HHS - R21 MH098506(United States)

Effect of Leptin Replacement on PCSK9 in ob/ob Mice and Female Lipodystrophic Patients.

  • Levenson AE
  • Endocrinology
  • 2016 Apr 2

Literature context:


Abstract:

Leptin treatment has beneficial effects on plasma lipids in patients with lipodystrophy, but the underlying mechanism is unknown. Proprotein convertase subtilisin/kexin type 9 (PCSK9) decreases low-density lipoprotein (LDL) clearance, promotes hypercholesterolemia, and has recently emerged as a novel therapeutic target. To determine the effect of leptin on PCSK9, we treated male and female ob/ob mice with leptin for 4 days via sc osmotic pumps (∼24 μg/d). Leptin reduced body weight and food intake in all mice, but the effects of leptin on plasma PCSK9 and lipids differed markedly between the sexes. In male mice, leptin suppressed PCSK9 but had no effect on plasma triglycerides or cholesterol. In female mice, leptin suppressed plasma triglycerides and cholesterol but had no effect on plasma PCSK9. In parallel, we treated female lipodystrophic patients (8 females, ages 5-23 y) with sc metreleptin injections (∼4.4 mg/d) for 4-6 months. In this case, leptin reduced plasma PCSK9 by 26% (298 ± 109 vs 221 ± 102 ng/mL; n = 8; P = .008), and the change in PCSK9 was correlated with a decrease in LDL cholesterol (r(2) = 0.564, P = .03). In summary, in leptin-deficient ob/ob mice, the effects of leptin on PCSK9 and plasma lipids appeared to be independent of one another and strongly modified by sex. On the other hand, in lipodystrophic females, leptin treatment reduced plasma PCSK9 in parallel with LDL cholesterol.

Funding information:
  • NCATS NIH HHS - UL1 TR001082(United States)

Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle.

  • Lesmana R
  • Endocrinology
  • 2016 Jan 31

Literature context:


Abstract:

Thyroid hormone (TH) and autophagy share similar functions in regulating skeletal muscle growth, regeneration, and differentiation. Although TH recently has been shown to increase autophagy in liver, the regulation and role of autophagy by this hormone in skeletal muscle is not known. Here, using both in vitro and in vivo models, we demonstrated that TH induces autophagy in a dose- and time-dependent manner in skeletal muscle. TH induction of autophagy involved reactive oxygen species (ROS) stimulation of 5'adenosine monophosphate-activated protein kinase (AMPK)-Mammalian target of rapamycin (mTOR)-Unc-51-like kinase 1 (Ulk1) signaling. TH also increased mRNA and protein expression of key autophagy genes, microtubule-associated protein light chain 3 (LC3), Sequestosome 1 (p62), and Ulk1, as well as genes that modulated autophagy and Forkhead box O (FOXO) 1/3a. TH increased mitochondrial protein synthesis and number as well as basal mitochondrial O2 consumption, ATP turnover, and maximal respiratory capacity. Surprisingly, mitochondrial activity and biogenesis were blunted when autophagy was blocked in muscle cells by Autophagy-related gene (Atg)5 short hairpin RNA (shRNA). Induction of ROS and 5'adenosine monophosphate-activated protein kinase (AMPK) by TH played a significant role in the up-regulation of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A), the key regulator of mitochondrial synthesis. In summary, our findings showed that TH-mediated autophagy was essential for stimulation of mitochondrial biogenesis and activity in skeletal muscle. Moreover, autophagy and mitochondrial biogenesis were coupled in skeletal muscle via TH induction of mitochondrial activity and ROS generation.

Funding information:
  • NIGMS NIH HHS - R01 GM064709(United States)

Regulation of Sclerostin Production in Human Male Osteocytes by Androgens: Experimental and Clinical Evidence.

  • Di Nisio A
  • Endocrinology
  • 2015 Dec 21

Literature context:


Abstract:

In this study we aimed to elucidate a possible role of T in the regulation of sclerostin, a glycoprotein secreted by osteocytes known to regulate bone mass. To this end, we evaluated the effect of T stimulation on sclerostin production and gene expression in human cultured osteocytes. In addition, we evaluated serum sclerostin levels in a cohort of 20 hypogonadal male patients, compared with 20 age-matched eugonadal controls. Stimulation with DHT decreased sclerostin expression in cultured osteocytes in a time- and dose-dependent manner. Confirming a direct androgen receptor-mediated effect on sclerostin production, flutamide coincubation and silencing of androgen receptor gene in osteocytes abolished the DHT effects. In addition, hypogonadal patients showed higher serum sclerostin levels with respect to controls (145.87 ± 50.83 pg/mL vs 84.02 ± 32.15 pg/mL; P < .001) and in both probands and controls, serum T levels were negatively correlated with sclerostin (R = -0.664, P = 0.007, and R = -0.447, P = .045, respectively). Finally, multiple stepwise regression analysis showed that T represented the only independent predictor of sclerostin levels. In conclusion, by showing a direct correlation between T and sclerostin, both in vivo and in vitro, this study adds further support to the emerging clinical and experimental studies focusing on sclerostin as a therapeutic target for osteoporosis treatment.

Funding information:
  • NHLBI NIH HHS - R01 HL087103(United States)
  • NIH HHS - R21 OD010478(United States)

The Glucose Sensor ChREBP Links De Novo Lipogenesis to PPARγ Activity and Adipocyte Differentiation.

  • Witte N
  • Endocrinology
  • 2015 Nov 17

Literature context:


Abstract:

Reduced de novo lipogenesis in adipose tissue, often observed in obese individuals, is thought to contribute to insulin resistance. Besides trapping excess glucose and providing for triglycerides and energy storage, endogenously synthesized lipids can function as potent signaling molecules. Indeed, several specific lipids and their molecular targets that mediate insulin sensitivity have been recently identified. Here, we report that carbohydrate-response element-binding protein (ChREBP), a transcriptional inducer of glucose use and de novo lipogenesis, controls the activity of the adipogenic master regulator peroxisome proliferator-activated receptor (PPAR)γ. Expression of constitutive-active ChREBP in precursor cells activated endogenous PPARγ and promoted adipocyte differentiation. Intriguingly, ChREBP-constitutive-active ChREBP expression induced PPARγ activity in a fatty acid synthase-dependent manner and by trans-activating the PPARγ ligand-binding domain. Reducing endogenous ChREBP activity by either small interfering RNA-mediated depletion, exposure to low-glucose concentrations, or expressing a dominant-negative ChREBP impaired differentiation. In adipocytes, ChREBP regulated the expression of PPARγ target genes, in particular those involved in thermogenesis, similar to synthetic PPARγ ligands. In summary, our data suggest that ChREBP controls the generation of endogenous fatty acid species that activate PPARγ. Thus, increasing ChREBP activity in adipose tissue by therapeutic interventions may promote insulin sensitivity through PPARγ.

Funding information:
  • NIAMS NIH HHS - R56 AR048139(United States)
  • NINDS NIH HHS - R01 NS078072(United States)

Localization of α-synuclein in teleost central nervous system: immunohistochemical and Western blot evidence by 3D5 monoclonal antibody in the common carp, Cyprinus carpio.

  • Vaccaro R
  • J. Comp. Neurol.
  • 2015 May 1

Literature context:


Abstract:

Alpha synuclein (α-syn) is a 140 amino acid vertebrate-specific protein, highly expressed in the human nervous system and abnormally accumulated in Parkinson's disease and other neurodegenerative disorders, known as synucleinopathies. The common occurrence of α-syn aggregates suggested a role for α-syn in these disorders, although its biological activity remains poorly understood. Given the high degree of sequence similarity between vertebrate α-syns, we investigated this proteins in the central nervous system (CNS) of the common carp, Cyprinus carpio, with the aim of comparing its anatomical and cellular distribution with that of mammalian α-syn. The distribution of α-syn was analyzed by semiquantitative western blot, immunohistochemistry, and immunofluorescence by a novel monoclonal antibody (3D5) against a fully conserved epitope between carp and human α-syn. The distribution of 3D5 immunoreactivity was also compared with that of choline acetyltransferase (ChAT), tyrosine hydroxylase (TH), and serotonin (5HT) by double immunolabelings. The results showed that a α-syn-like protein of about 17 kDa is expressed to different levels in several brain regions and in the spinal cord. Immunoreactive materials were localized in neuronal perikarya and varicose fibers but not in the nucleus. The present findings indicate that α-syn-like proteins may be expressed in a few subpopulations of catecholaminergic and serotoninergic neurons in the carp brain. However, evidence of cellular colocalization 3D5/TH or 3D5/5HT was rare. Differently, the same proteins appear to be coexpressed with ChAT by cholinergic neurons in several motor and reticular nuclei. These results sustain the functional conservation of the α-syn expression in cholinergic systems and suggest that α-syn modulates similar molecular pathways in phylogenetically distant vertebrates.

Oxytocin treatment prevents the cardiomyopathy observed in obese diabetic male db/db mice.

  • Plante E
  • Endocrinology
  • 2015 Apr 21

Literature context:


Abstract:

Oxytocin (OT) is involved in the regulation of energy metabolism and in the activation of cardioprotective mechanisms. We evaluated whether chronic treatment with OT could prevent the metabolic and cardiac abnormalities associated with diabetes and obesity using the db/db mice model. Four-week-old male db/db mice and their lean nondiabetic littermates (db/+) serving as controls were treated with OT (125 ng/kg · h) or saline vehicle for a period of 12 weeks. Compared with db/+ mice, the saline-treated db/db mice developed obesity, hyperglycemia, and hyperinsulinemia. These mice also exhibited a deficient cardiac OT/natriuretic system and developed systolic and diastolic dysfunction resulting from cardiomyocyte hypertrophy, fibrosis, and apoptosis. These abnormalities were associated with increased reactive oxygen species (ROS) production, inflammation, and suppressed 5'-adenosine monophosphate kinase signaling pathway. The db/db mice displayed reduced serum levels of adiponectin and adipsin and elevated resistin. OT treatment increased circulating OT levels, significantly reduced serum resistin, body fat accumulation (19%; P<.001), fasting blood glucose levels by (23%; P<.001), and improved glucose tolerance and insulin sensitivity. OT also normalized cardiac OT receptors, atrial natriuretic peptide, and brain natriuretic peptide, expressions and prevented systolic and diastolic dysfunction as well as cardiomyocyte hypertrophy, fibrosis, and apoptosis. Furthermore, OT reduced cardiac oxidative stress and inflammation and normalized the 5'-adenosine monophosphate-activated protein kinase signaling pathway. The complete normalization of cardiac structure and function by OT treatment in db/db mice contrasted with only partial improvement of hyperglycemia and hyperinsulinemia. These results indicate that chronic treatment with OT partially improves glucose and fat metabolism and reverses abnormal cardiac structural remodeling, preventing cardiac dysfunction in db/db mice.

Funding information:
  • Doris Duke Charitable Foundation - T32 AI007387(United States)

Early intervention with intranasal NPY prevents single prolonged stress-triggered impairments in hypothalamus and ventral hippocampus in male rats.

  • Laukova M
  • Endocrinology
  • 2014 Oct 20

Literature context:


Abstract:

Intranasal administration of neuropeptide Y (NPY) is a promising treatment strategy to reduce traumatic stress-induced neuropsychiatric symptoms of posttraumatic stress disorder (PTSD). We evaluated the potential of intranasal NPY to prevent dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, a core neuroendocrine feature of PTSD. Rats were exposed to single prolonged stress (SPS), a PTSD animal model, and infused intranasally with vehicle or NPY immediately after SPS stressors. After 7 days undisturbed, hypothalamus and hippocampus, 2 structures regulating the HPA axis activity, were examined for changes in glucocorticoid receptor (GR) and CRH expression. Plasma ACTH and corticosterone, and hypothalamic CRH mRNA, were significantly higher in the vehicle but not NPY-treated group, compared with unstressed controls. Although total GR levels were not altered in hypothalamus, a significant decrease of GR phosphorylated on Ser232 and increased FK506-binding protein 5 mRNA were observed with the vehicle but not in animals infused with intranasal NPY. In contrast, in the ventral hippocampus, only vehicle-treated animals demonstrated elevated GR protein expression and increased GR phosphorylation on Ser232, specifically in the nuclear fraction. Additionally, SPS-induced increase of CRH mRNA in the ventral hippocampus was accompanied by apparent decrease of CRH peptide particularly in the CA3 subfield, both prevented by NPY. The results show that early intervention with intranasal NPY can prevent traumatic stress-triggered dysregulation of the HPA axis likely by restoring HPA axis proper negative feedback inhibition via GR. Thus, intranasal NPY has a potential as a noninvasive therapy to prevent negative effects of traumatic stress.

Funding information:
  • NICHD NIH HHS - U54 HD087101(United States)

SIRT3 positively regulates the expression of folliculogenesis- and luteinization-related genes and progesterone secretion by manipulating oxidative stress in human luteinized granulosa cells.

  • Fu H
  • Endocrinology
  • 2014 Aug 19

Literature context:


Abstract:

SIRT3 is a member of the sirtuin family and has recently emerged as a vital molecule in controlling the generation of reactive oxygen species (ROS) in oocytes. Appropriate levels of ROS play pivotal roles in human reproductive medicine. The aim of the present study was to investigate SIRT3 expression and analyze the SIRT3-mediated oxidative response in human luteinized granulosa cells (GCs). Human ovarian tissues were subjected to immunohistochemical analysis to localize SIRT3 expression. Hydrogen peroxide and human chorionic gonadotropin were used to analyze the relationship between ROS and SIRT3 by quantitative RT-PCR and Western blotting. Intracellular levels of ROS were investigated by fluorescence after small interfering RNA-mediated knockdown of SIRT3 in human GCs. To uncover the role of SIRT3 in folliculogenesis and luteinization, mRNA levels of related genes and the progesterone concentration were analyzed by quantitative RT-PCR and immunoassays, respectively. We detected the expression of SIRT3 in the GCs of the human ovary. The mRNA levels of SIRT3, catalase, and superoxide dismutase 1 were up-regulated by hydrogen peroxide in both COV434 cells and human GCs and down-regulated by human chorionic gonadotropin. Knockdown of SIRT3 markedly elevated ROS generation in human GCs. In addition, SIRT3 depletion resulted in decreased mRNA expression of aromatase, 17β-hydroxysteroid dehydrogenase 1, steroidogenic acute regulatory protein, cholesterol side-chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase in GCs and thus resulted in decreased progesterone secretion. These results have the important clinical implication that SIRT3 might play a positive role in the folliculogenesis and luteinization processes in GCs, possibly by sensing and regulating the generation of ROS. Activation of SIRT3 function might help to sustain human reproduction by maintaining GCs as well as oocytes.

Funding information:
  • NIH HHS - P40 OD010440(United States)
  • NINDS NIH HHS - R01-NS059043(United States)

Anoctamin 1 calcium-activated chloride channel downregulates estrogen production in mouse ovarian granulosa cells.

  • Sun M
  • Endocrinology
  • 2014 Aug 19

Literature context:


Abstract:

Calcium-dependent chloride conductances have been described in chicken and human granulosa cells (GCs) and may be involved in steroidogenesis. However, the molecular identities of corresponding chloride channels remain unknown. The purpose of this study was to explore the expression and function of the Anoctamin 1 (ANO1) calcium-activated chloride channel (CaCC) in mouse ovary. ANO1 mRNA and protein expression was identified in mouse ovary GCs by RT-PCR, immunoblot, and immunostaining. Patch-clamp analysis on freshly isolated GCs identified an outwardly rectifying Ca(2+)-activated Cl(-) current that was completely blocked by a selective ANO1 inhibitor T16Ainh-A01. Knockdown of ANO1 mRNA or incubation with a selective inhibitor T16Ainh-A01 enhanced estradiol production, whereas a selective ANO1 activator Eact significantly inhibited estradiol production in primary cultured GCs. The ANO1 expression or activation increases the phosphorylation of ERK1/2 and decreases aromatase expression. The ANO1 expression level is remarkably higher at the proestrous and estrous stages in the estrous cycle. In vivo study indicated a profound induction of ANO1 expression in ovarian GCs by pregnant mare serum gonadotropin (PMSG) that can be further augmented by hCG treatment, suggesting that both FSH and LH may upregulate ANO1 expression at the proestrous and estrous stages. ANO1 expression was remarkably reduced in DHEA-induced PCOS ovary. These data identified for the first time the expression of ANO1 Ca(2+) activated Cl(-) channel in mouse ovarian GCs and determined its negative regulation on estrogen production possibly through MEK-ERK signaling cascade. The present study provided new insights into the molecular mechanisms for the regulation of folliculogenesis and ovulation.

Funding information:
  • Intramural NIH HHS - Z01 ES102285(United States)
  • NHGRI NIH HHS - U41 HG002273(United States)

Rosiglitazone inhibits expression and secretion of PEDF in adipose tissue and liver of male SD rats via a PPAR-γ independent mechanism.

  • Yang S
  • Endocrinology
  • 2014 Mar 25

Literature context:


Abstract:

Pigment epithelium-derived factor (PEDF) plays an important role in insulin resistance (IR). The study aims to investigate the effect of rosiglitazone, an insulin sensitizer, on PEDF production and release both in vivo and in vitro. Male SD rats were divided into normal control group, high-fat group, and rosiglitazone group. Hyperinsulinemic euglycemic clamp was performed to evaluate insulin sensitivity. IR models of 3T3-L1 adipocytes and HepG2 cells were established by the hyperinsulinemic method. Glucose uptake was examined to validate IR of adipocytes, and phosphorylation of protein kinase B and glycogen synthesis kinase 3β were examined to validate IR of HepG2 cells. Rosiglitazone, 2-chloro-5-nitro-N-phenylbenzamide (GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ), and compound C (inhibitor of AMP-activated protein kinase [AMPK]) were used for the in vitro intervention. In vivo, the high-fat group showed increased serum PEDF levels, which negatively correlated with insulin sensitivity, whereas the rosiglitazone treatment decreased the serum PEDF and down-regulated PEDF expression in fat and liver of the obese rats, concomitant with significantly enhanced insulin sensitivity. In vitro, the IR cells showed increased PEDF secretion and expression, whereas rosiglitazone lowered PEDF secretion and expression, accompanied with increased insulin sensitivity. Interestingly, combination with 2-chloro-5-nitro-N-phenylbenzamide did not influence the effect of rosiglitazone on PEDF. However, rosiglitazone stimulated AMPK phosphorylation in fat and liver of the obese rats, whereas in vitro, when combined with compound C, the effect of rosiglitazone on PEDF was abrogated. In summary, rosiglitazone inhibits the expression and secretion of PEDF in fat and liver via promoting AMPK phosphorylation rather than peroxisome proliferator-activated receptor-γ, and changes of PEDF induced by rosiglitazone are closely associated with IR improvement.

Funding information:
  • NINDS NIH HHS - R01 NS048425(United States)

Leptin promotes the osteoblastic differentiation of vascular smooth muscle cells from female mice by increasing RANKL expression.

  • Liu GY
  • Endocrinology
  • 2014 Feb 22

Literature context:


Abstract:

Arterial calcification is a complex and active regulated process, which results from a process of osteoblastic differentiation of vascular smooth muscle cells (VSMCs). Leptin, the product of the ob gene, mainly regulates food intake and energy expenditure and recently has been considered to be correlated with the arterial calcification. However, the mechanisms of the effects of leptin on osteoblastic differentiation of VSMCs are unknown. We used calcifying vascular smooth muscle cells (CVSMCs) as a model to investigate the relationship between leptin and the osteoblastic differentiation of CVSMCs and the signaling pathways involved. Our experiments demonstrated that leptin could increase expression of receptor activator of nuclear factor-κB ligand (RANKL) and bone morphogenetic protein 4 (BMP4), as well as alkaline phosphatase (ALP) activity, runt-related transcription factor 2 expression, calcium deposition, and the formation of mineralized nodules in CVSMCs. Suppression of RANKL with small interfering RNA abolished the leptin-induced ALP activity and BMP4 expression in CVSMCs. Leptin could activate the ERK1/2 and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Furthermore, pretreatment with the ERK inhibitor PD98059 and the PI3K inhibitor LY294002 abolished leptin-induced RANKL expression and blocked the promotion of ALP activity of CVSMCs. Silencing of the leptin receptor OB-Rb with small interfering RNA abolished leptin-induced activation of ERK and Akt and the expression of RANKL and reversed the effects of leptin on ALP activity. Meanwhile, addition of Noggin (the BMP4 inhibitor) blunted the effect of leptin on ALP activity. These results show that leptin can promote osteoblastic differentiation of CVSMCs by the OB-Rb/ERK1/2/RANKL-BMP4 and OB-Rb/PI3K/Akt/RANKL-BMP4 pathways.

Funding information:
  • NEI NIH HHS - R01 EY025555(United States)

Testosterone protects against glucotoxicity-induced apoptosis of pancreatic β-cells (INS-1) and male mouse pancreatic islets.

  • Hanchang W
  • Endocrinology
  • 2013 Nov 21

Literature context:


Abstract:

Male hypogonadism associates with type 2 diabetes, and T can protect pancreatic β-cells from glucotoxicity. However, the protective mechanism is still unclear. This study thus aims to examine the antiapoptotic mechanism of T in pancreatic β cells cultured in high-glucose medium. T (0.0005-2 μg/mL) was added to INS-1 cells cultured in basal glucose or high-glucose media. Then cellular apoptosis, oxidative stress, and cell viability were measured. Endoplasmic reticulum (ER) stress markers and sensors and the antiapoptotic protein (B-cell lymphoma 2) were investigated by real-time PCR and Western blot analysis. ER stress markers were also measured in male mouse pancreatic islet cultured in similar conditions. T (0.05 and 0.5 μg/mL) did not have any effect on apoptosis and viability of INS-1 cells cultured in basal glucose medium, but it could reduce apoptosis and increase viability of INS-1 cells cultured in high-glucose medium. The protective effect of T is diminished by androgen receptor inhibitor. T (0.05 μg/mL) could significantly reduce nitrotyrosine levels, mRNA, and protein levels of the ER stress markers and sensor those that were induced when INS-1 cells were cultured in high-glucose medium. It could also significantly increase the survival proteins, sarco/endoplasmic reticulum Ca(2+) ATPase-2, and B-cell lymphoma 2 in INS-1 cells cultured in the same conditions. Similarly, it could reduce ER stress markers and increase sarco/endoplasmic reticulum Ca(2+) ATPase protein levels in male mouse pancreatic islets cultured in high-glucose medium. T can protect against male pancreatic β-cell apoptosis from glucotoxicity via the reduction of both oxidative stress and ER stress.

Funding information:
  • Canadian Institutes of Health Research - MOP-93583(Canada)
  • NIGMS NIH HHS - SC3 GM109817(United States)

MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells.

  • Liao XB
  • Endocrinology
  • 2013 Sep 26

Literature context:


Abstract:

Arterial calcification is a key pathologic component of vascular diseases such as atherosclerosis, coronary artery disease, and peripheral vascular disease. A hallmark of this pathological process is the phenotypic transition of vascular smooth muscle cells (VSMCs) to osteoblast-like cells. Several studies have demonstrated that microRNAs (miRNAs) regulate osteoblast differentiation, but it is unclear whether miRNAs also regulate VSMC-mediated arterial calcification. In the present study, we sought to characterize the role of miR-133a in regulating VSMC-mediated arterial calcification. Northern blotting analysis of VSMCs treated with β-glycerophosphate demonstrated that miR-133a was significantly decreased during osteogenic differentiation. Overexpression of miR-133a inhibited VSMC transdifferentiation into osteoblast-like cells as evidenced by a decrease in alkaline phosphatase activity, osteocalcin secretion, Runx2 expression, and mineralized nodule formation. Conversely, the knockdown of miR-133a using an miR-133a inhibitor promoted osteogenic differentiation of VSMCs by increasing alkaline phosphatase activity, osteocalcin secretion, and Runx2 expression. Runx2 was identified as a direct target of miR-133a by a cotransfection experiment in VSMCs with luciferase reporter plasmids containing wild-type or mutant 3'-untranslated region sequences of Runx2. Furthermore, the pro-osteogenic effects of miR-133a inhibitor were abrogated in Runx2-knockdown cells, and the inhibition of osteogenic differentiation by pre-miR-133a was reversed by overexpression of Runx2, providing functional evidence that the effects of miR-133a in osteogenic differentiation were mediated by targeting Runx2. These results demonstrate that miR-133a is a key negative regulator of the osteogenic differentiation of VSMCs.

Funding information:
  • Canadian Institutes of Health Research - (Canada)
  • NEI NIH HHS - EY020826(United States)

Oral N-acetyl-cysteine attenuates loss of dopaminergic terminals in alpha-synuclein overexpressing mice.

  • Clark J
  • PLoS ONE
  • 2010 Aug 23

Literature context:


Abstract:

Levels of glutathione are lower in the substantia nigra (SN) early in Parkinson's disease (PD) and this may contribute to mitochondrial dysfunction and oxidative stress. Oxidative stress may increase the accumulation of toxic forms of alpha-synuclein (SNCA). We hypothesized that supplementation with n-acetylcysteine (NAC), a source of cysteine--the limiting amino acid in glutathione synthesis, would protect against alpha-synuclein toxicity. Transgenic mice overexpressing wild-type human alpha-synuclein drank water supplemented with NAC or control water supplemented with alanine from ages 6 weeks to 1 year. NAC increased SN levels of glutathione within 5-7 weeks of treatment; however, this increase was not sustained at 1 year. Despite the transient nature of the impact of NAC on brain glutathione, the loss of dopaminergic terminals at 1 year associated with SNCA overexpression was significantly attenuated by NAC supplementation, as measured by immunoreactivity for tyrosine hydroxylase in the striatum (p = 0.007; unpaired, two-tailed t-test), with a similar but nonsignificant trend for dopamine transporter (DAT) immunoreactivity. NAC significantly decreased the levels of human SNCA in the brains of PDGFb-SNCA transgenic mice compared to alanine treated transgenics. This was associated with a decrease in nuclear NFkappaB localization and an increase in cytoplasmic localization of NFkappaB in the NAC-treated transgenics. Overall, these results indicate that oral NAC supplementation decreases SNCA levels in brain and partially protects against loss of dopaminergic terminals associated with overexpression of alpha-synuclein in this model.

Funding information:
  • NHGRI NIH HHS - U54HG003037(United States)

[Criminality and violence of mental patients treated in the community: is prevention possible?].

  • Morissette L
  • Union Med Can
  • 1986 Oct 28

Literature context:


Abstract:

Funding information:
  • Howard Hughes Medical Institute - none(United States)
  • NIGMS NIH HHS - P50 GM052585(United States)