Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Goat Anti-Rabbit IgG, IRDye® 800CW Conjugated antibody


The cJUN NH2-terminal kinase (JNK) signaling pathway promotes genome stability and prevents tumor initiation.

  • Girnius N
  • Elife
  • 2018 Jun 1

Literature context: -COR Biosciences Cat# 926-32211 RRID:AB_621843) were used to detect and quanti


Breast cancer is the most commonly diagnosed malignancy in women. Analysis of breast cancer genomic DNA indicates frequent loss-of-function mutations in components of the cJUN NH2-terminal kinase (JNK) signaling pathway. Since JNK signaling can promote cell proliferation by activating the AP1 transcription factor, this apparent association of reduced JNK signaling with tumor development was unexpected. We examined the effect of JNK deficiency in the murine breast epithelium. Loss of JNK signaling caused genomic instability and the development of breast cancer. Moreover, JNK deficiency caused widespread early neoplasia and rapid tumor formation in a murine model of breast cancer. This tumor suppressive function was not mediated by a role of JNK in the growth of established tumors, but by a requirement of JNK to prevent tumor initiation. Together, these data identify JNK pathway defects as 'driver' mutations that promote genome instability and tumor initiation.

Funding information:
  • Howard Hughes Medical Institute - Investigator()
  • National Institute of Diabetes and Digestive and Kidney Diseases - DK107220()
  • National Institute of Diabetes and Digestive and Kidney Diseases - DK112698()
  • NIDDK NIH HHS - R01 DK092062(United States)

Regulation of Epithelial Plasticity Determines Metastatic Organotropism in Pancreatic Cancer.

  • Reichert M
  • Dev. Cell
  • 2018 Jun 18

Literature context: oat anti-rabbit, 800CWLi-CorCat#926-32211Bacterial and Virus StrainsLV-Cr


The regulation of metastatic organotropism in pancreatic ductal a denocarcinoma (PDAC) remains poorly understood. We demonstrate, using multiple mouse models, that liver and lung metastatic organotropism is dependent upon p120catenin (p120ctn)-mediated epithelial identity. Mono-allelic p120ctn loss accelerates KrasG12D-driven pancreatic cancer formation and liver metastasis. Importantly, one p120ctn allele is sufficient for E-CADHERIN-mediated cell adhesion. By contrast, cells with bi-allelic p120ctn loss demonstrate marked lung organotropism; however, rescue with p120ctn isoform 1A restores liver metastasis. In a p120ctn-independent PDAC model, mosaic loss of E-CADHERIN expression reveals selective pressure for E-CADHERIN-positive liver metastasis and E-CADHERIN-negative lung metastasis. Furthermore, human PDAC and liver metastases support the premise that liver metastases exhibit predominantly epithelial characteristics. RNA-seq demonstrates differential induction of pathways associated with metastasis and epithelial-to-mesenchymal transition in p120ctn-deficient versus p120ctn-wild-type cells. Taken together, P120CTN and E-CADHERIN mediated epithelial plasticity is an addition to the conceptual framework underlying metastatic organotropism in pancreatic cancer.

Funding information:
  • NCI NIH HHS - F30 CA180601()
  • NCI NIH HHS - F32 CA221094()
  • NIDDK NIH HHS - P30 DK050306()
  • NIDDK NIH HHS - R01 DK060694()
  • NIDDK NIH HHS - R21DK090778(United States)

The Temporal Dynamics of Arc Expression Regulate Cognitive Flexibility.

  • Wall MJ
  • Neuron
  • 2018 Jun 27

Literature context: COR Biosciences Cat# 926-32211, RRID:AB_621843 IRDye 800CW Donkey anti-Mouse I


Neuronal activity regulates the transcription and translation of the immediate-early gene Arc/Arg3.1, a key mediator of synaptic plasticity. Proteasome-dependent degradation of Arc tightly limits its temporal expression, yet the significance of this regulation remains unknown. We disrupted the temporal control of Arc degradation by creating an Arc knockin mouse (ArcKR) where the predominant Arc ubiquitination sites were mutated. ArcKR mice had intact spatial learning but showed specific deficits in selecting an optimal strategy during reversal learning. This cognitive inflexibility was coupled to changes in Arc mRNA and protein expression resulting in a reduced threshold to induce mGluR-LTD and enhanced mGluR-LTD amplitude. These findings show that the abnormal persistence of Arc protein limits the dynamic range of Arc signaling pathways specifically during reversal learning. Our work illuminates how the precise temporal control of activity-dependent molecules, such as Arc, regulates synaptic plasticity and is crucial for cognition.

Funding information:
  • NICHD NIH HHS - R21 HD065269(United States)
  • NIGMS NIH HHS - R25 GM109442()
  • NINDS NIH HHS - R00 NS076364()
  • NINDS NIH HHS - R01 NS085093()

A Somatically Acquired Enhancer of the Androgen Receptor Is a Noncoding Driver in Advanced Prostate Cancer.

  • Takeda DY
  • Cell
  • 2018 Jun 9

Literature context: 0 CW LI-COR Cat#926-32211; RRID:AB_621843 Goat anti-Mouse IgG - IRDye 800


Increased androgen receptor (AR) activity drives therapeutic resistance in advanced prostate cancer. The most common resistance mechanism is amplification of this locus presumably targeting the AR gene. Here, we identify and characterize a somatically acquired AR enhancer located 650 kb centromeric to the AR. Systematic perturbation of this enhancer using genome editing decreased proliferation by suppressing AR levels. Insertion of an additional copy of this region sufficed to increase proliferation under low androgen conditions and to decrease sensitivity to enzalutamide. Epigenetic data generated in localized prostate tumors and benign specimens support the notion that this region is a developmental enhancer. Collectively, these observations underscore the importance of epigenomic profiling in primary specimens and the value of deploying genome editing to functionally characterize noncoding elements. More broadly, this work identifies a therapeutic vulnerability for targeting the AR and emphasizes the importance of regulatory elements as highly recurrent oncogenic drivers.

Funding information:
  • NCI NIH HHS - K08 CA218530()
  • NCI NIH HHS - P01CA45548(United States)
  • NHGRI NIH HHS - R01 HG005220()

Promoter of lncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element.

  • Cho SW
  • Cell
  • 2018 May 31

Literature context: I-COR BioScience Cat#926-32211; RRID:AB_621843 IRdye 680RD Goat anti-rabbit Ig


Noncoding mutations in cancer genomes are frequent but challenging to interpret. PVT1 encodes an oncogenic lncRNA, but recurrent translocations and deletions in human cancers suggest alternative mechanisms. Here, we show that the PVT1 promoter has a tumor-suppressor function that is independent of PVT1 lncRNA. CRISPR interference of PVT1 promoter enhances breast cancer cell competition and growth in vivo. The promoters of the PVT1 and the MYC oncogenes, located 55 kb apart on chromosome 8q24, compete for engagement with four intragenic enhancers in the PVT1 locus, thereby allowing the PVT1 promoter to regulate pause release of MYC transcription. PVT1 undergoes developmentally regulated monoallelic expression, and the PVT1 promoter inhibits MYC expression only from the same chromosome via promoter competition. Cancer genome sequencing identifies recurrent mutations encompassing the human PVT1 promoter, and genome editing verified that PVT1 promoter mutation promotes cancer cell growth. These results highlight regulatory sequences of lncRNA genes as potential disease-associated DNA elements.

Funding information:
  • Howard Hughes Medical Institute - 5K08HL87951(United States)
  • NCI NIH HHS - R35 CA209919()
  • NHGRI NIH HHS - P50 HG007735()

Multiple cAMP Phosphodiesterases Act Together to Prevent Premature Oocyte Meiosis and Ovulation.

  • Vigone G
  • Endocrinology
  • 2018 May 1

Literature context: 211 Goat, polyclonal 1:15000 RRID:AB_621843


Luteinizing hormone (LH) acts on the granulosa cells that surround the oocyte in mammalian preovulatory follicles to cause meiotic resumption and ovulation. Both of these responses are mediated primarily by an increase in cyclic adenosine monophosphate (cAMP) in the granulosa cells, and the activity of cAMP phosphodiesterases (PDEs), including PDE4, contributes to preventing premature responses. However, two other cAMP-specific PDEs, PDE7 and PDE8, are also expressed at high levels in the granulosa cells, raising the question of whether these PDEs also contribute to preventing uncontrolled activation of meiotic resumption and ovulation. With the use of selective inhibitors, we show that inhibition of PDE7 or PDE8 alone has no effect on the cAMP content of follicles, and inhibition of PDE4 alone has only a small and variable effect. In contrast, a mixture of the three inhibitors elevates cAMP to a level comparable with that seen with LH. Correspondingly, inhibition of PDE7 or PDE8 alone has no effect on meiotic resumption or ovulation, and inhibition of PDE4 alone has only a partial and slow effect. However, the fraction of oocytes resuming meiosis and undergoing ovulation is increased when PDE4, PDE7, and PDE8 are simultaneously inhibited. PDE4, PDE7, and PDE8 also function together to suppress the premature synthesis of progesterone and progesterone receptors, which are required for ovulation. Our results indicate that three cAMP PDEs act in concert to suppress premature responses in preovulatory follicles.

Funding information:
  • Cancer Research UK - P 23609(United Kingdom)

Validation of a yeast malate dehydrogenase 2 (Mdh2) antibody tested for use in western blots.

  • Gabay-Maskit S
  • F1000Res
  • 2018 Mar 24

Literature context: abbit IgG LI-COR, Inc 926-32211 RRID:AB_621843 IRDye 680RD Goat anti-mouse IgG


Malate dehydrogenases (Mdhs) reversibly convert malate to oxaloacetate and serve as important enzymes in several metabolic pathways. In the yeast Saccharomyces cerevisiae there are three Mdh isozymes, localized to different compartments in the cell. In order to identify specifically the Mdh2 isozyme, GenScript USA produced three different antibodies that we further tested by western blot. All three antibodies recognized the S. cerevisiae Mdh2 with different background and specificity properties. One of the antibodies had a relatively low background and high specificity and thus can be used for specific identification of Mdh2 in various experimental settings.

Funding information:
  • NIMH NIH HHS - T32 MH013043(United States)

The cJUN NH2-terminal kinase (JNK) pathway contributes to mouse mammary gland remodeling during involution.

  • Girnius N
  • Cell Death Differ.
  • 2018 Mar 6

Literature context: -COR Biosciences Cat# 926-32211 RRID:AB_621843) were used to detect immune com


Involution returns the lactating mammary gland to a quiescent state after weaning. The mechanism of involution involves collapse of the mammary epithelial cell compartment. To test whether the cJUN NH2-terminal kinase (JNK) signal transduction pathway contributes to involution, we established mice with JNK deficiency in the mammary epithelium. We found that JNK is required for efficient involution. JNK deficiency did not alter the STAT3/5 or SMAD2/3 signaling pathways that have been previously implicated in this process. Nevertheless, JNK promotes the expression of genes that drive involution, including matrix metalloproteases, cathepsins, and BH3-only proteins. These data demonstrate that JNK has a key role in mammary gland involution post lactation.

Funding information:
  • NIDDK NIH HHS - R01 DK107220()
  • NIDDK NIH HHS - R01 DK112698()
  • NIEHS NIH HHS - P30 ES000210(United States)

Effects of Chemical Chaperones on Thyroid Hormone Transport by MCT8 Mutants in Patient-Derived Fibroblasts.

  • Groeneweg S
  • Endocrinology
  • 2018 Mar 1

Literature context: ) Goat 1:20,000 (immunoblot) RRID:AB_621843


Mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) result in severe intellectual and motor disability. At present, no effective therapy is available to restore TH signaling in MCT8-dependent tissues. Recent in vitro studies in stable overexpression cell models suggested that the function of certain mutant MCT8 proteins, specifically those that affect protein stability and intracellular trafficking (e.g., p.F501del), could be partially recovered by chemical chaperones. However, the effects of chaperones have not been demonstrated in other commonly used models for MCT8 deficiency, including transient overexpression models and patient-derived fibroblasts. Here, we demonstrate that the chemical chaperone 4-phenylbutyric acid (PBA) similarly potentiates the T3 transport function of wild-type and p.F501del mutant MCT8 in transiently transfected COS-1 cells by increasing MCT8 messenger RNA, total protein, and cell surface expression levels. Although PBA also increased the cell surface expression levels of the p.R445L mutant, no functional improvement was observed, which is in line with the proposed important role of Arg445 in substrate translocation. In contrast, PBA showed only minimal effects in ex vivo studies using control or p.F501del patient-derived fibroblasts. Moreover, the MCT8-specific inhibitor silychristin did not change these minimal effects, suggesting that the underlying mechanism is unrelated to the rescue of functional MCT8. Together, these findings indicate that the potency of chaperones to rescue mutant MCT8 function strongly depends on the cellular model and stress the need for further preclinical studies before clinically available chaperones should be considered as a treatment option in patients with MCT8 deficiency.

Presenilin 1 mutation decreases both calcium and contractile responses in cerebral arteries.

  • Toussay X
  • Neurobiol. Aging
  • 2018 Feb 14

Literature context: it antibody (Antibody Registry: RRID:AB_621843) , anti-NeuN (Antibody Registry


Mutations or upregulation in presenilin 1 (PS1) gene are found in familial early-onset Alzheimer's disease or sporadic late-onset Alzheimer's disease, respectively. PS1 has been essentially studied in neurons and its mutation was shown to alter intracellular calcium (Ca2+) signals. Here, we showed that PS1 is expressed in smooth muscle cells (SMCs) of mouse cerebral arteries, and we assessed the effects of the deletion of exon 9 of PS1 (PS1dE9) on Ca2+ signals and contractile responses of vascular SMC. Agonist-induced contraction of cerebral vessels was significantly decreased in PS1dE9 both in vivo and ex vivo. Spontaneous activity of Ca2+ sparks through ryanodine-sensitive channels (RyR) was unchanged, whereas the RyR-mediated Ca2+-release activated by caffeine was shorter in PS1dE9 SMC when compared with control. Moreover, PS1dE9 mutation decreased the caffeine-activated capacitive Ca2+ entry, and inhibitors of SERCA pumps reversed the effects of PS1dE9 on Ca2+ signals. PS1dE9 mutation also leads to the increased expression of SERCA3, phospholamban, and RyR3. These results show that PS1 plays a crucial role in the cerebrovascular system and the vascular reactivity is decreased through altered Ca2+ signals in PS1dE9 mutant mice.

The Antiviral and Cancer Genomic DNA Deaminase APOBEC3H Is Regulated by an RNA-Mediated Dimerization Mechanism.

  • Shaban NM
  • Mol. Cell
  • 2018 Jan 4

Literature context: -COR Cat# 926-32211; RRID:AB_621843 Mouse anti-HIV-1 p24/CA mAb AID


Human APOBEC3H and homologous single-stranded DNA cytosine deaminases are unique to mammals. These DNA-editing enzymes function in innate immunity by restricting the replication of viruses and transposons. APOBEC3H also contributes to cancer mutagenesis. Here, we address the fundamental nature of RNA in regulating human APOBEC3H activities. APOBEC3H co-purifies with RNA as an inactive protein, and RNase A treatment enables strong DNA deaminase activity. RNA-binding-defective mutants demonstrate clear separation of function by becoming DNA hypermutators. Biochemical and crystallographic data demonstrate a mechanism in which double-stranded RNA mediates enzyme dimerization. Additionally, APOBEC3H separation-of-function mutants show that RNA binding is required for cytoplasmic localization, packaging into HIV-1 particles, and antiviral activity. Overall, these results support a model in which structured RNA negatively regulates the potentially harmful DNA deamination activity of APOBEC3H while, at the same time, positively regulating its antiviral activity.

Funding information:
  • NCI NIH HHS - CA068485(United States)
  • NHLBI NIH HHS - T32 HL007062()

Multi-omics Reveal Specific Targets of the RNA-Binding Protein Puf3p and Its Orchestration of Mitochondrial Biogenesis.

  • Lapointe CP
  • Cell Syst
  • 2018 Jan 24

Literature context: bbit lgG (H+L) Licor 926-32211; RRID:AB_621843 IRDye 680RD Goat anti-Mouse IgG


Coenzyme Q (CoQ) is a redox-active lipid required for mitochondrial oxidative phosphorylation (OxPhos). How CoQ biosynthesis is coordinated with the biogenesis of OxPhos protein complexes is unclear. Here, we show that the Saccharomyces cerevisiae RNA-binding protein (RBP) Puf3p regulates CoQ biosynthesis. To establish the mechanism for this regulation, we employed a multi-omic strategy to identify mRNAs that not only bind Puf3p but also are regulated by Puf3p in vivo. The CoQ biosynthesis enzyme Coq5p is a critical Puf3p target: Puf3p regulates the abundance of Coq5p and prevents its detrimental hyperaccumulation, thereby enabling efficient CoQ production. More broadly, Puf3p represses a specific set of proteins involved in mitochondrial protein import, translation, and OxPhos complex assembly (pathways essential to prime mitochondrial biogenesis). Our data reveal a mechanism for post-transcriptionally coordinating CoQ production with OxPhos biogenesis, and they demonstrate the power of multi-omics for defining genuine targets of RBPs.

Funding information:
  • NHLBI NIH HHS - R01 HL079392(United States)
  • NIA NIH HHS - F30 AG043282()
  • NIGMS NIH HHS - P41 GM108538()
  • NIGMS NIH HHS - R01 GM050942()
  • NIGMS NIH HHS - R01 GM112057()
  • NIGMS NIH HHS - R01 GM115591()
  • NIGMS NIH HHS - R35 GM118110()
  • NIGMS NIH HHS - T32 GM008349()
  • NIGMS NIH HHS - T32 GM008692()

A Precise Cdk Activity Threshold Determines Passage through the Restriction Point.

  • Schwarz C
  • Mol. Cell
  • 2018 Jan 18

Literature context: -COR Biosciences Cat#926-32211; RRID:AB_621843 Chemicals, Peptides, and Recomb


At the restriction point (R), mammalian cells irreversibly commit to divide. R has been viewed as a point in G1 that is passed when growth factor signaling initiates a positive feedback loop of Cdk activity. However, recent studies have cast doubt on this model by claiming R occurs prior to positive feedback activation in G1 or even before completion of the previous cell cycle. Here we reconcile these results and show that whereas many commonly used cell lines do not exhibit a G1 R, primary fibroblasts have a G1 R that is defined by a precise Cdk activity threshold and the activation of cell-cycle-dependent transcription. A simple threshold model, based solely on Cdk activity, predicted with more than 95% accuracy whether individual cells had passed R. That a single measurement accurately predicted cell fate shows that the state of complex regulatory networks can be assessed using a few critical protein activities.

Funding information:
  • NICHD NIH HHS - HD55391(United States)
  • NIGMS NIH HHS - R01 GM092925()
  • NIGMS NIH HHS - T32 GM007276()

Genomic Aberrations that Activate D-type Cyclins Are Associated with Enhanced Sensitivity to the CDK4 and CDK6 Inhibitor Abemaciclib.

  • Gong X
  • Cancer Cell
  • 2017 Dec 11

Literature context: W LiCor 926-32211; RRID:AB_621843 Rabbit anti-goat IgG Alexa Fluo


Most cancers preserve functional retinoblastoma (Rb) and may, therefore, respond to inhibition of D-cyclin-dependent Rb kinases, CDK4 and CDK6. To date, CDK4/6 inhibitors have shown promising clinical activity in breast cancer and lymphomas, but it is not clear which additional Rb-positive cancers might benefit from these agents. No systematic survey to compare relative sensitivities across tumor types and define molecular determinants of response has been described. We report a subset of cancers highly sensitive to CDK4/6 inhibition and characterized by various genomic aberrations known to elevate D-cyclin levels and describe a recurrent CCND1 3'UTR mutation associated with increased expression in endometrial cancer. The results suggest multiple additional classes of cancer that may benefit from CDK4/6-inhibiting drugs such as abemaciclib.

Funding information:
  • NIAID NIH HHS - K08 AI089242(United States)

Continuous tamoxifen delivery improves locomotor recovery 6h after spinal cord injury by neuronal and glial mechanisms in male rats.

  • Colón JM
  • Exp. Neurol.
  • 2017 Dec 20

Literature context: :25,000 LI-COR; cat# 926-32,211 RRID:AB_621843 Goat anti-mouse IgG, IRDye® 680


No treatment is available for patients with spinal cord injury (SCI). Patients often arrive to the hospital hours after SCI suggesting the need of a therapy that can be used on a clinically relevant window. Previous studies showed that Tamoxifen (TAM) treatment 24h after SCI benefits locomotor recovery in female rats. Tamoxifen exerts beneficial effects in male and female rodents but a gap of knowledge exists on: the therapeutic window of TAM, the spatio-temporal mechanisms activated and if this response is sexually dimorphic. We hypothesized that TAM will favor locomotor recovery when administered up-to 24h after SCI in male Sprague-Dawley rats. Rats received a thoracic (T10) contusion using the MACSIS impactor followed by placebo or TAM (15mg/21days) pellets in a therapeutic window of 0, 6, 12, or 24h. Animals were sacrificed at 2, 7, 14, 28 or 35days post injury (DPI) to study the molecular and cellular changes in the acute and chronic stages. Immediate or delayed therapy (t=6h) improved locomotor function, increased white matter spared tissue, and neuronal survival. TAM reduced reactive gliosis during chronic stages and increased the expression of Olig-2. A significant difference was observed in estrogen receptor alpha between male and female rodents from 2 to 28 DPI suggesting a sexually dimorphic characteristic that could be related to the behavioral differences observed in the therapeutic window of TAM. This study supports the use of TAM in the SCI setting due to its neuroprotective effects but with a significant sexually dimorphic therapeutic window.

Funding information:
  • NIGMS NIH HHS - P20 GM103642()
  • NIGMS NIH HHS - R25 GM061838()
  • NIGMS NIH HHS - T34 GM007821()
  • NIMHD NIH HHS - G12 MD007600()

JNK Promotes Epithelial Cell Anoikis by Transcriptional and Post-translational Regulation of BH3-Only Proteins.

  • Girnius N
  • Cell Rep
  • 2017 Nov 14

Literature context: -COR Biosciences Cat# 926-32211 RRID:AB_621843), and quantitated using the Ody


Developmental morphogenesis, tissue injury, and oncogenic transformation can cause the detachment of epithelial cells. These cells are eliminated by a specialized form of apoptosis (anoikis). While the processes that contribute to this form of cell death have been studied, the underlying mechanisms remain unclear. Here, we tested the role of the cJUN NH2-terminal kinase (JNK) signaling pathway using murine models with compound JNK deficiency in mammary and kidney epithelial cells. These studies demonstrated that JNK is required for efficient anoikis in vitro and in vivo. Moreover, JNK-promoted anoikis required pro-apoptotic members of the BCL2 family of proteins. We show that JNK acts through a BAK/BAX-dependent apoptotic pathway by increasing BIM expression and phosphorylating BMF, leading to death of detached epithelial cells.

Funding information:
  • NINDS NIH HHS - R01 NS069861(United States)

Overexpression of heat shock factor 1 maintains TAR DNA binding protein 43 solubility via induction of inducible heat shock protein 70 in cultured cells.

  • Lin PY
  • J. Neurosci. Res.
  • 2017 Nov 29

Literature context: 26-32211; RRID:AB_621843; LI-COR)-c


TAR DNA binding protein 43 (TDP-43) is a nuclear protein that has been shown to have altered homeostasis in the form of neuronal nuclear and cytoplasmic aggregates in some familial and almost all cases of sporadic amyotrophic lateral sclerosis as well as 51% of frontotemporal lobar degeneration and 57% of Alzheimer's disease cases. Heat shock proteins (HSPs), such as HSP70, recognize misfolded or aggregated proteins and refold, disaggregate, or turn them over and are upregulated by the master transcription factor heat shock factor 1 (HSF1). Here, we explore the effect of HSF1 overexpression on proteotoxic stress-related alterations in TDP-43 solubility, proteolytic processing, and cytotoxicity. HSF1 overexpression reduced TDP-43-positive puncta concomitantly with upregulating HSP70 and HSP90 protein levels. HSF1 overexpression or pharmacological activation sustained TDP-43 solubility and significantly reduced truncation of TDP-43 in response to inhibition of the proteasome with Z-Leu-Leu-Leu-al, and this was reversed by HSF1 inhibition. HSF1 activation conferred protection against toxicity associated with TDP-43 C-terminal fragments without globally increasing the activity of the ubiquitin proteasome system (UPS) while concomitantly reducing the induction of autophagy, suggesting that HSF1 protection is an early event. In support of this, inhibition of HSP70 ATPase activity further reduced TDP-43 solubility. HSF1 knockout significantly increased TDP-43 insolubility and accelerated TDP-43 fragmentation in response to proteotoxic stress. Overall, this study shows that HSF1 overexpression protects against TDP-43 pathology by upregulation of chaperones, especially HSP70, rather than enhancing autophagy or the UPS during times of proteotoxic stress. © 2016 Wiley Periodicals, Inc.

A General Strategy for Discovery of Inhibitors and Activators of RING and U-box E3 Ligases with Ubiquitin Variants.

  • Gabrielsen M
  • Mol. Cell
  • 2017 Oct 19

Literature context: -COR Biosciences Cat#926-32211; RRID:AB_621843 Goat anti-Rabbit IgG (H+L) Cros


RING and U-box E3 ubiquitin ligases regulate diverse eukaryotic processes and have been implicated in numerous diseases, but targeting these enzymes remains a major challenge. We report the development of three ubiquitin variants (UbVs), each binding selectively to the RING or U-box domain of a distinct E3 ligase: monomeric UBE4B, phosphorylated active CBL, or dimeric XIAP. Structural and biochemical analyses revealed that UbVs specifically inhibited the activity of UBE4B or phosphorylated CBL by blocking the E2∼Ub binding site. Surprisingly, the UbV selective for dimeric XIAP formed a dimer to stimulate E3 activity by stabilizing the closed E2∼Ub conformation. We further verified the inhibitory and stimulatory functions of UbVs in cells. Our work provides a general strategy to inhibit or activate RING/U-box E3 ligases and provides a resource for the research community to modulate these enzymes.

Altered Synaptic Membrane Retrieval after Strong Stimulation of Cerebellar Granule Neurons in Cyclic GMP-Dependent Protein Kinase II (cGKII) Knockout Mice.

  • Collado-Alsina A
  • Int J Mol Sci
  • 2017 Oct 30

Literature context: IRD 800 (RRID:AB_621843). The membranes were scanned in


The nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (cGK) signaling pathway regulates the clustering and the recruitment of proteins and vesicles to the synapse, thereby adjusting the exoendocytic cycle to the intensity of activity. Accordingly, this pathway can accelerate endocytosis following large-scale exocytosis, and pre-synaptic cGK type II (cGKII) plays a major role in this process, controlling the homeostatic balance of vesicle exocytosis and endocytosis. We have studied synaptic vesicle recycling in cerebellar granule cells from mice lacking cGKII under strong and sustained stimulation, combining imaging techniques and ultrastructural analyses. The ultrastructure of synapses in the adult mouse cerebellar cortex was also examined in these animals. The lack of cGKII provokes structural changes to synapses in cultured cells and in the cerebellar cortex. Moreover, endocytosis is slowed down in a subset of boutons in these cells when they are stimulated strongly. In addition, from the results obtained with the selective inhibitor of cGKs, KT5823, it can be concluded that cGKI also regulates some aspects of vesicle cycling. Overall, these results confirm the importance of the cGMP pathway in the regulation of vesicle cycling following strong stimulation of cerebellar granule cells.

Funding information:
  • NHLBI NIH HHS - HL28785(United States)

Regulation of Receptor Binding Specificity of FGF9 by an Autoinhibitory Homodimerization.

  • Liu Y
  • Structure
  • 2017 Sep 5

Literature context: -COR #926-32211; RRID:AB_621843 FGFR1c Polyclonal Antibody This


The epithelial fibroblast growth factor 9 (FGF9) subfamily specifically binds and activates the mesenchymal "c" splice isoform of FGF receptors 1-3 (FGFR1-3) to regulate organogenesis and tissue homeostasis. The unique N and C termini of FGF9 subfamily ligands mediate a reversible homodimerization that occludes major receptor binding sites within the ligand core region. Here we provide compelling X-ray crystallographic, biophysical, and biochemical data showing that homodimerization controls receptor binding specificity of the FGF9 subfamily by keeping the concentration of active FGF9 monomers at a level, which is sufficient for a normal FGFR "c" isoform binding/signaling, but is insufficient for an illegitimate FGFR "b" isoform binding/signaling. We show that deletion of the N terminus or alanine substitutions in the C terminus of FGF9 skews the delicate ligand equilibrium toward active FGF9 monomers causing off-target binding and activation of FGFR b isoforms. Our study is the first to implicate ligand homodimerization in the regulation of ligand-receptor specificity.

Funding information:
  • NIDCR NIH HHS - R01 DE013686()

Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye.

  • Kanow MA
  • Elife
  • 2017 Sep 13

Literature context: RID:AB_621842), and 926–32211, (RRID:AB_621843),1:5000 1 hr at room temperatur


Here we report multiple lines of evidence for a comprehensive model of energy metabolism in the vertebrate eye. Metabolic flux, locations of key enzymes, and our finding that glucose enters mouse and zebrafish retinas mostly through photoreceptors support a conceptually new model for retinal metabolism. In this model, glucose from the choroidal blood passes through the retinal pigment epithelium to the retina where photoreceptors convert it to lactate. Photoreceptors then export the lactate as fuel for the retinal pigment epithelium and for neighboring Müller glial cells. We used human retinal epithelial cells to show that lactate can suppress consumption of glucose by the retinal pigment epithelium. Suppression of glucose consumption in the retinal pigment epithelium can increase the amount of glucose that reaches the retina. This framework for understanding metabolic relationships in the vertebrate retina provides new insights into the underlying causes of retinal disease and age-related vision loss.

Funding information:
  • NEI NIH HHS - F32 EY006641()
  • NEI NIH HHS - P30 EY001730()
  • NEI NIH HHS - R01 EY006641()
  • NEI NIH HHS - R01 EY017863()
  • NEI NIH HHS - R01 EY026020()
  • NEI NIH HHS - R01 EY026030()
  • NEI NIH HHS - T32 EY007031()
  • NIDDK NIH HHS - P30 DK017047()
  • NIGMS NIH HHS - R01 GM072881(United States)

Corticosterone primes the neuroinflammatory response to Gulf War Illness-relevant organophosphates independently of acetylcholinesterase inhibition.

  • Locker AR
  • J. Neurochem.
  • 2017 Aug 13

Literature context: d secondary antibody (1 : 2500; RRID:AB_621843) for 1 h prior to scanning by L


Gulf War Illness (GWI) is a chronic multi-symptom disorder affecting veterans of the 1991 Gulf War. Among the symptoms of GWI are those associated with sickness behavior, observations suggestive of underlying neuroinflammation. We have shown that exposure of mice to the stress hormone, corticosterone (CORT), and to diisopropyl fluorophosphate (DFP), as a nerve agent mimic, results in marked neuroinflammation, findings consistent with a stress/neuroimmune basis of GWI. Here, we examined the contribution of irreversible and reversible acetylcholinesterase (AChE) inhibitors to neuroinflammation in our mouse model of GWI. Male C57BL/6J mice received 4 days of CORT (400 mg/L) in the drinking water followed by a single dose of chlorpyrifos oxon (CPO; 8 mg/kg, i.p.), DFP (4 mg/kg, i.p.), pyridostigmine bromide (PB; 3 mg/kg, i.p.), or physostigmine (PHY; 0.5 mg/kg, i.p.). CPO and DFP alone caused cortical and hippocampal neuroinflammation assessed by qPCR of tumor necrosis factor-alpha, IL-6, C-C chemokine ligand 2, IL-1β, leukemia inhibitory factor and oncostatin M; CORT pretreatment markedly augmented these effects. Additionally, CORT exposure prior to DFP or CPO enhanced activation of the neuroinflammation signal transducer, signal transducer and activator of transcription 3 (STAT3). In contrast, PHY or PB alone or with CORT pretreatment did not produce neuroinflammation or STAT3 activation. While all of the CNS-acting AChE inhibitors (DFP, CPO, and PHY) decreased brain AChE activity, CORT pretreatment abrogated these effects for the irreversible inhibitors. Taken together, these findings suggest that irreversible AChE inhibitor-induced neuroinflammation and particularly its exacerbation by CORT, result from non-cholinergic effects of these compounds, pointing potentially to organophosphorylation of other neuroimmune targets.

Genome Organization Drives Chromosome Fragility.

  • Canela A
  • Cell
  • 2017 Jul 27

Literature context: 26-32211; RRID:AB_621843 Anti-mouse


In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT.

Splicing Activation by Rbfox Requires Self-Aggregation through Its Tyrosine-Rich Domain.

  • Ying Y
  • Cell
  • 2017 Jul 13

Literature context: 26-32211; RRID:AB_621843 Bacterial


Proteins of the Rbfox family act with a complex of proteins called the Large Assembly of Splicing Regulators (LASR). We find that Rbfox interacts with LASR via its C-terminal domain (CTD), and this domain is essential for its splicing activity. In addition to LASR recruitment, a low-complexity (LC) sequence within the CTD contains repeated tyrosines that mediate higher-order assembly of Rbfox/LASR and are required for splicing activation by Rbfox. This sequence spontaneously aggregates in solution to form fibrous structures and hydrogels, suggesting an assembly similar to the insoluble cellular inclusions formed by FUS and other proteins in neurologic disease. Unlike the pathological aggregates, we find that assembly of the Rbfox CTD plays an essential role in its normal splicing function. Rather than simple recruitment of individual regulators to a target exon, alternative splicing choices also depend on the higher-order assembly of these regulators within the nucleus.

Funding information:
  • NIGMS NIH HHS - R01 GM114463()

Validation of commercial ERK antibodies against the ERK orthologue of the scleractinian coral Stylophora pistillata.

  • Courtial L
  • F1000Res
  • 2017 Jul 15

Literature context: Biosciences 926-32211 RRID:AB_621843 0.1µg/mL (1/10000)


The extracellular signal-regulated protein kinase (ERK) signalling pathway controls key cellular processes, such as cell cycle regulation, cell fate determination and the response to external stressors. Although ERK functions are well studied in a variety of living organisms ranging from yeast to mammals, its functions in corals are still poorly known. The present work aims to give practical tools to study the expression level of ERK protein and the activity of the ERK signalling pathway in corals. The antibody characterisation experiment was performed five times and identical results were obtained. The present study validated the immune-reactivity of commercially available antibodies directed against ERK and its phosphorylated/activated forms on protein extracts of the reef-building coral Stylophora pistillata.

Sensing Self and Foreign Circular RNAs by Intron Identity.

  • Chen YG
  • Mol. Cell
  • 2017 Jul 20

Literature context: 26-32211; RRID:AB_621843 IRDye 680C


Circular RNAs (circRNAs) are single-stranded RNAs that are joined head to tail with largely unknown functions. Here we show that transfection of purified in vitro generated circRNA into mammalian cells led to potent induction of innate immunity genes and confers protection against viral infection. The nucleic acid sensor RIG-I is necessary to sense foreign circRNA, and RIG-I and foreign circRNA co-aggregate in cytoplasmic foci. CircRNA activation of innate immunity is independent of a 5' triphosphate, double-stranded RNA structure, or the primary sequence of the foreign circRNA. Instead, self-nonself discrimination depends on the intron that programs the circRNA. Use of a human intron to express a foreign circRNA sequence abrogates immune activation, and mature human circRNA is associated with diverse RNA binding proteins reflecting its endogenous splicing and biogenesis. These results reveal innate immune sensing of circRNA and highlight introns-the predominant output of mammalian transcription-as arbiters of self-nonself identity.

Brefeldin A sensitive mechanisms contribute to endocytotic membrane retrieval and vesicle recycling in cerebellar granule cells.

  • Rampérez A
  • J. Neurochem.
  • 2017 Jun 15

Literature context: IRD 800 (RRID:AB_621843). The memb


The recycling of synaptic vesicle (SV) proteins and transmitter release occur at multiple sites along the axon. These processes are sensitive to inhibition of the small GTP binding protein ARF1, which regulates the adaptor protein 1 and 3 complex (AP-1/AP-3). As the axon matures, SV recycling becomes restricted to the presynaptic bouton, and its machinery undergoes a complex process of maturation. We used the styryl dye FM1-43 to highlight differences in the efficiency of membrane recycling at different sites in cerebellar granule cells cultured for 7 days in vitro. We used Brefeldin A (BFA) to inhibit AP-1/AP-3-mediated recycling and to test the contribution of this pathway to the heterogeneity of the responses when these cells are strongly stimulated. Combining imaging techniques and ultrastructural analyses, we found a significant decrease in the density of functional boutons and an increase in the presence of endosome-like structures within the boutons of cells incubated with BFA prior to FM1-43 loading. Such effects were not observed when BFA was added 5 min after the end of the loading step, when endocytosis was almost fully completed. In this situation, vesicles were found closer to the active zone (AZ) in boutons exposed to BFA. Together, these data suggest that the AP-1/AP-3 pathway contributes to SV recycling, affecting different steps in all boutons but not equally, and thus being partly responsible for the heterogeneity of the different recycling efficiencies. Cover Image for this issue: doi. 10.1111/jnc.13801.

EDEM Function in ERAD Protects against Chronic ER Proteinopathy and Age-Related Physiological Decline in Drosophila.

  • Sekiya M
  • Dev. Cell
  • 2017 Jun 19

Literature context: 26-32211; RRID:AB_621843 Sheep anti


The unfolded protein response (UPR), which protects cells against accumulation of misfolded proteins in the ER, is induced in several age-associated degenerative diseases. However, sustained UPR activation has negative effects on cellular functions and may worsen disease symptoms. It remains unknown whether and how UPR components can be utilized to counteract chronic ER proteinopathies. We found that promotion of ER-associated degradation (ERAD) through upregulation of ERAD-enhancing α-mannosidase-like proteins (EDEMs) protected against chronic ER proteinopathy without inducing toxicity in a Drosophila model. ERAD activity in the brain decreased with aging, and upregulation of EDEMs suppressed age-dependent behavioral decline and extended the lifespan without affecting the UPR gene expression network. Intriguingly, EDEM mannosidase activity was dispensable for these protective effects. Therefore, upregulation of EDEM function in the ERAD protects against ER proteinopathy in vivo and thus represents a potential therapeutic target for chronic diseases.

Funding information:
  • NIA NIH HHS - R01 AG032279()
  • NIA NIH HHS - U01 AG046170()

Development of Glutamatergic Proteins in Human Visual Cortex across the Lifespan.

  • Siu CR
  • J. Neurosci.
  • 2017 Jun 21

Literature context: 1:10,000, RRID:AB_621843; Li-Cor Bi


Traditionally, human primary visual cortex (V1) has been thought to mature within the first few years of life, based on anatomical studies of synapse formation, and establishment of intracortical and intercortical connections. Human vision, however, develops well beyond the first few years. Previously, we found prolonged development of some GABAergic proteins in human V1 (Pinto et al., 2010). Yet as >80% of synapses in V1 are excitatory, it remains unanswered whether the majority of synapses regulating experience-dependent plasticity and receptive field properties develop late, like their inhibitory counterparts. To address this question, we used Western blotting of postmortem tissue from human V1 (12 female, 18 male) covering a range of ages. Then we quantified a set of postsynaptic glutamatergic proteins (PSD-95, GluA2, GluN1, GluN2A, GluN2B), calculated indices for functional pairs that are developmentally regulated (GluA2:GluN1; GluN2A:GluN2B), and determined interindividual variability. We found early loss of GluN1, prolonged development of PSD-95 and GluA2 into late childhood, protracted development of GluN2A until ∼40 years, and dramatic loss of GluN2A in aging. The GluA2:GluN1 index switched at ∼1 year, but the GluN2A:GluN2B index continued to shift until ∼40 year before changing back to GluN2B in aging. We also identified young childhood as a stage of heightened interindividual variability. The changes show that human V1 develops gradually through a series of five orchestrated stages, making it likely that V1 participates in visual development and plasticity across the lifespan.SIGNIFICANCE STATEMENT Anatomical structure of human V1 appears to mature early, but vision changes across the lifespan. This discrepancy has fostered two hypotheses: either other aspects of V1 continue changing, or later changes in visual perception depend on extrastriate areas. Previously, we showed that some GABAergic synaptic proteins change across the lifespan, but most synapses in V1 are excitatory leaving unanswered how they change. So we studied expression of glutamatergic proteins in human V1 to determine their development. Here we report prolonged maturation of glutamatergic proteins, with five stages that map onto life-long changes in human visual perception. Thus, the apparent discrepancy between development of structure and function may be explained by life-long synaptic changes in human V1.

PKC-mediated phosphorylation of nuclear lamins at a single serine residue regulates interphase nuclear size in Xenopus and mammalian cells.

  • Edens LJ
  • Mol. Biol. Cell
  • 2017 May 15

Literature context: tific) and 1:20,000 dilution of IRDye 800CW anti-rabbit (926-32211; Li-Cor) or IRDye 680RD anti-mouse (925-


How nuclear size is regulated is a fundamental cell-biological question with relevance to cancers, which often exhibit enlarged nuclei. We previously reported that conventional protein kinase C (cPKC) contributes to nuclear size reductions that occur during early Xenopus development. Here we report that PKC-mediated phosphorylation of lamin B3 (LB3) contributes to this mechanism of nuclear size regulation. By mapping PKC phosphorylation sites on LB3 and testing the effects of phosphomutants in Xenopus laevis embryos, we identify the novel site S267 as being an important determinant of nuclear size. Furthermore, FRAP studies demonstrate that phosphorylation at this site increases lamina dynamics, providing a mechanistic explanation for how PKC activity influences nuclear size. We subsequently map this X. laevis LB3 phosphorylation site to a conserved site in mammalian lamin A (LA), S268. Manipulating PKC activity in cultured mammalian cells alters nuclear size, as does expression of LA-S268 phosphomutants. Taken together, these data demonstrate that PKC-mediated lamin phosphorylation is a conserved mechanism of nuclear size regulation.

Funding information:
  • NIGMS NIH HHS - R01 GM113028()

A Compendium of RNA-Binding Proteins that Regulate MicroRNA Biogenesis.

  • Treiber T
  • Mol. Cell
  • 2017 Apr 20

Literature context: 800CW Goat anti-Rabbit IgGLi-Cor926-32211 Lot C30829-02Alexa Fluor 488 ra


During microRNA (miRNA) biogenesis, two endonucleolytic reactions convert stem-loop-structured precursors into mature miRNAs. These processing steps can be posttranscriptionally regulated by RNA-binding proteins (RBPs). Here, we have used a proteomics-based pull-down approach to map and characterize the interactome of a multitude of pre-miRNAs. We identify ∼180 RBPs that interact specifically with distinct pre-miRNAs. For functional validation, we combined RNAi and CRISPR/Cas-mediated knockout experiments to analyze RBP-dependent changes in miRNA levels. Indeed, a large number of the investigated candidates, including splicing factors and other mRNA processing proteins, have effects on miRNA processing. As an example, we show that TRIM71/LIN41 is a potent regulator of miR-29a processing and its inactivation directly affects miR-29a targets. We provide an extended database of RBPs that interact with pre-miRNAs in extracts of different cell types, highlighting a widespread layer of co- and posttranscriptional regulation of miRNA biogenesis.

Intrastriatally Infused Exogenous CDNF Is Endocytosed and Retrogradely Transported to Substantia Nigra.

  • Mätlik K
  • eNeuro
  • 2017 Mar 9

Literature context: , LI-COR; RRID:AB_621843), and the


Cerebral dopamine neurotrophic factor (CDNF) protects the nigrostriatal dopaminergic (DA) neurons in rodent models of Parkinson's disease and restores DA circuitry when delivered after these neurons have begun to degenerate. These DA neurons have been suggested to transport striatal CDNF retrogradely to the substantia nigra (SN). However, in cultured cells the binding and internalization of extracellular CDNF has not been reported. The first aim of this study was to examine the cellular localization and pharmacokinetic properties of recombinant human CDNF (rhCDNF) protein after its infusion into rat brain parenchyma. Second, we aimed to study whether the transport of rhCDNF from the striatum to the SN results from its retrograde transport via DA neurons or from its anterograde transport via striatal GABAergic projection neurons. We show that after intrastriatal infusion, rhCDNF diffuses rapidly and broadly, and is cleared with a half-life of 5.5 h. Confocal microscopy analysis of brain sections at 2 and 6 h after infusion of rhCDNF revealed its widespread unspecific internalization by cortical and striatal neurons, exhibiting different patterns of subcellular rhCDNF distribution. Electron microscopy analysis showed that rhCDNF is present inside the endosomes and multivesicular bodies. In addition, we present data that after intrastriatal infusion the rhCDNF found in the SN is almost exclusively localized to the DA neurons, thus showing that it is retrogradely transported.

Diencephalic Size Is Restricted by a Novel Interplay Between GCN5 Acetyltransferase Activity and Retinoic Acid Signaling.

  • Wilde JJ
  • J. Neurosci.
  • 2017 Mar 8

Literature context: 926-32211 RRID:AB-621843). Western


Diencephalic defects underlie an array of neurological diseases. Previous studies have suggested that retinoic acid (RA) signaling is involved in diencephalic development at late stages of embryonic development, but its roles and mechanisms of action during early neural development are still unclear. Here we demonstrate that mice lacking enzymatic activity of the acetyltransferase GCN5 ((Gcn5hat/hat )), which were previously characterized with respect to their exencephalic phenotype, exhibit significant diencephalic expansion, decreased diencephalic RA signaling, and increased diencephalic WNT and SHH signaling. Using a variety of molecular biology techniques in both cultured neuroepithelial cells treated with a GCN5 inhibitor and forebrain tissue from (Gcn5hat/hat ) embryos, we demonstrate that GCN5, RARα/γ, and the poorly characterized protein TACC1 form a complex in the nucleus that binds specific retinoic acid response elements in the absence of RA. Furthermore, RA triggers GCN5-mediated acetylation of TACC1, which results in dissociation of TACC1 from retinoic acid response elements and leads to transcriptional activation of RA target genes. Intriguingly, RA signaling defects caused by in vitro inhibition of GCN5 can be rescued through RA-dependent mechanisms that require RARβ. Last, we demonstrate that the diencephalic expansion and transcriptional defects seen in (Gcn5hat/hat ) mutants can be rescued with gestational RA supplementation, supporting a direct link between GCN5, TACC1, and RA signaling in the developing diencephalon. Together, our studies identify a novel, nonhistone substrate for GCN5 whose modification regulates a previously undescribed, tissue-specific mechanism of RA signaling that is required to restrict diencephalic size during early forebrain development.SIGNIFICANCE STATEMENT Changes in diencephalic size and shape, as well as SNPs associated with retinoic acid (RA) signaling-associated genes, have been linked to neuropsychiatric disorders. However, the mechanisms that regulate diencephalic morphogenesis and the involvement of RA signaling in this process are poorly understood. Here we demonstrate a novel role of the acetyltransferase GCN5 in a previously undescribed mechanism of RA signaling in the developing forebrain that is required to maintain the appropriate size of the diencephalon. Together, our experiments identify a novel nonhistone substrate of GCN5, highlight an essential role for both GCN5 and RA signaling in early diencephalic development, and elucidate a novel molecular regulatory mechanism for RA signaling that is specific to the developing forebrain.

Pathogenic Huntington Alters BMP Signaling and Synaptic Growth through Local Disruptions of Endosomal Compartments.

  • Akbergenova Y
  • J. Neurosci.
  • 2017 Mar 22

Literature context: s (LI-Cor AB_621843; RRID:AB_1


Huntington's disease (HD) is a neurodegenerative disorder caused by expansion of a polyglutamine (polyQ) stretch within the Huntingtin (Htt) protein. Pathogenic Htt disrupts multiple neuronal processes, including gene expression, axonal trafficking, proteasome and mitochondrial activity, and intracellular vesicle trafficking. However, the primary pathogenic mechanism and subcellular site of action for mutant Htt are still unclear. Using a Drosophila HD model, we found that pathogenic Htt expression leads to a profound overgrowth of synaptic connections that correlates directly with the levels of Htt at nerve terminals. Branches of the same nerve containing different levels of Htt show distinct phenotypes, indicating that Htt acts locally to disrupt synaptic growth. The effects of pathogenic Htt on synaptic growth arise from defective synaptic endosomal trafficking, leading to expansion of a recycling endosomal signaling compartment containing Sorting Nexin 16 and a reduction in late endosomes containing Rab11. The disruption of endosomal compartments leads to elevated BMP signaling within nerve terminals, driving excessive synaptic growth. Blocking aberrant signaling from endosomes or reducing BMP activity ameliorates the severity of HD pathology and improves viability. Pathogenic Htt is present largely in a nonaggregated form at synapses, indicating that cytosolic forms of the protein are likely to be the toxic species that disrupt endosomal signaling. Our data indicate that pathogenic Htt acts locally at nerve terminals to alter trafficking between endosomal compartments, leading to defects in synaptic structure that correlate with pathogenesis and lethality in the Drosophila HD model.SIGNIFICANCE STATEMENT Huntington's disease (HD) is the most commonly inherited polyglutamine expansion disorder, but how mutant Huntingtin (Htt) disrupts neuronal function is unclear. In particular, it is unknown within what subcellular compartment pathogenic Htt acts and whether the pathogenesis is associated with aggregated or more soluble forms of the protein. Using a Drosophila HD model, we find that nonaggregated pathogenic Htt acts locally at synaptic terminals to disrupt endosomal compartments, leading to aberrant wiring defects. Genetic manipulations to increase endosomal trafficking of synaptic growth receptors from signaling endosomes or to reduce BMP signaling reduce pathology in this HD model. These data indicate that pathogenic Htt can act locally within nerve terminals to disrupt synaptic endosomal signaling and induce neuropathology.

Funding information:
  • NINDS NIH HHS - R01 NS040296()

Multivalent Small-Molecule Pan-RAS Inhibitors.

  • Welsch ME
  • Cell
  • 2017 Feb 23

Literature context: 26-32211; RRID:AB_621843 Donkey ant


Design of small molecules that disrupt protein-protein interactions, including the interaction of RAS proteins and their effectors, may provide chemical probes and therapeutic agents. We describe here the synthesis and testing of potential small-molecule pan-RAS ligands, which were designed to interact with adjacent sites on the surface of oncogenic KRAS. One compound, termed 3144, was found to bind to RAS proteins using microscale thermophoresis, nuclear magnetic resonance spectroscopy, and isothermal titration calorimetry and to exhibit lethality in cells partially dependent on expression of RAS proteins. This compound was metabolically stable in liver microsomes and displayed anti-tumor activity in xenograft mouse cancer models. These findings suggest that pan-RAS inhibition may be an effective therapeutic strategy for some cancers and that structure-based design of small molecules targeting multiple adjacent sites to create multivalent inhibitors may be effective for some proteins.

Funding information:
  • NCI NIH HHS - R01 CA097061()
  • NCI NIH HHS - R01 CA161061()
  • NCRR NIH HHS - S10 RR025431()
  • NIGMS NIH HHS - P41 GM111244()
  • NIGMS NIH HHS - R01 GM085081()
  • NIGMS NIH HHS - T32 GM008281()
  • NIH HHS - S10 OD012018()

Mutant KRAS Enhances Tumor Cell Fitness by Upregulating Stress Granules.

  • Grabocka E
  • Cell
  • 2016 Dec 15

Literature context: 26-32211; RRID:AB_621843 IRDye 800C


There is growing evidence that stress-coping mechanisms represent tumor cell vulnerabilities that may function as therapeutically beneficial targets. Recent work has delineated an integrated stress adaptation mechanism that is characterized by the formation of cytoplasmic mRNA and protein foci, termed stress granules (SGs). Here, we demonstrate that SGs are markedly elevated in mutant KRAS cells following exposure to stress-inducing stimuli. The upregulation of SGs by mutant KRAS is dependent on the production of the signaling lipid molecule 15-deoxy-delta 12,14 prostaglandin J2 (15-d-PGJ2) and confers cytoprotection against stress stimuli and chemotherapeutic agents. The secretion of 15-d-PGJ2 by mutant KRAS cells is sufficient to enhance SG formation and stress resistance in cancer cells that are wild-type for KRAS. Our findings identify a mutant KRAS-dependent cell non-autonomous mechanism that may afford the establishment of a stress-resistant niche that encompasses different tumor subclones. These results should inform the design of strategies to eradicate tumor cell communities.

Funding information:
  • NCI NIH HHS - F32 CA139922()
  • NCI NIH HHS - P30 CA016087()
  • NCI NIH HHS - R01 CA055360()

SF-1 expression in the hypothalamus is required for beneficial metabolic effects of exercise.

  • Fujikawa T
  • Elife
  • 2016 Nov 22

Literature context: bbit IgG; RRID:AB_621843, Li-Cor Bi


Exercise has numerous beneficial metabolic effects. The central nervous system (CNS) is critical for regulating energy balance and coordinating whole body metabolism. However, a role for the CNS in the regulation of metabolism in the context of the exercise remains less clear. Here, using genetically engineered mice we assessed the requirement of steroidogenic factor-1 (SF-1) expression in neurons of the ventromedial hypothalamic nucleus (VMH) in mediating the beneficial effects of exercise on metabolism. We found that VMH-specific deletion of SF-1 blunts (a) the reductions in fat mass, (b) improvements in glycemia, and (c) increases in energy expenditure that are associated with exercise training. Unexpectedly, we found that SF-1 deletion in the VMH attenuates metabolic responses of skeletal muscle to exercise, including induction of PGC-1α expression. Collectively, this evidence suggests that SF-1 expression in VMH neurons is required for the beneficial effects of exercise on metabolism.

Funding information:
  • NIA NIH HHS - P50 AG005146(United States)

Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013-2016 Epidemic.

  • Diehl WE
  • Cell
  • 2016 Nov 3

Literature context: at anti-mouse-680Li-Cor925-68070goat anti-rabbit-800Li-Cor925-32211Chemicals, Peptid


The magnitude of the 2013-2016 Ebola virus disease (EVD) epidemic enabled an unprecedented number of viral mutations to occur over successive human-to-human transmission events, increasing the probability that adaptation to the human host occurred during the outbreak. We investigated one nonsynonymous mutation, Ebola virus (EBOV) glycoprotein (GP) mutant A82V, for its effect on viral infectivity. This mutation, located at the NPC1-binding site on EBOV GP, occurred early in the 2013-2016 outbreak and rose to high frequency. We found that GP-A82V had heightened ability to infect primate cells, including human dendritic cells. The increased infectivity was restricted to cells that have primate-specific NPC1 sequences at the EBOV interface, suggesting that this mutation was indeed an adaptation to the human host. GP-A82V was associated with increased mortality, consistent with the hypothesis that the heightened intrinsic infectivity of GP-A82V contributed to disease severity during the EVD epidemic.

Connexin43 Forms Supramolecular Complexes through Non-Overlapping Binding Sites for Drebrin, Tubulin, and ZO-1.

  • Ambrosi C
  • PLoS ONE
  • 2016 Jun 10

Literature context: CW Goat anti-Rabbit IgG, Cat. # 926–32211 and IRDye 680RD Goat anti-Mouse


Gap junctions are membrane specialization domains identified in most tissue types where cells abut each other. The connexin channels found in these membrane domains are conduits for direct cell-to-cell transfer of ions and molecules. Connexin43 (Cx43) is the most ubiquitous connexin, with critical roles in heart, skin, and brain. Several studies described the interaction between Cx43 and the cytoskeleton involving the actin binding proteins Zonula occludens (ZO-1) and drebrin, as well as with tubulin. However, a direct interaction has not been identified between drebrin and Cx43. In this study, co-IP and NMR experiments were used to demonstrate that the Cx43-CT directly interacts with the highly conserved N-terminus region of drebrin. Three Cx43-CT areas were found to be involved in drebrin binding, with residues 264-275 being critical for the interaction. Mimicking Src phosphorylation within this region (Y265) significantly disrupted the interaction between the Cx43-CT and drebrin. Immunofluorescence showed colocalization of Cx43, drebrin, and F-actin in astrocytes and Vero cells membrane, indicating that Cx43 forms a submembrane protein complex with cytoskeletal and scaffolding proteins. The co-IP data suggest that Cx43 indirectly interacts with F-actin through drebrin. Along with the known interaction of the Cx43-CT with ZO-1 and tubulin, the data presented here for drebrin indicate non-overlapping and separated binding sites for all three proteins for which simultaneous binding could be important in regulating cytoskeleton rearrangements, especially for neuronal migration during brain development.

XBP1 Regulates the Biosynthetic Capacity of the Mammary Gland During Lactation by Controlling Epithelial Expansion and Endoplasmic Reticulum Formation.

  • Davis KR
  • Endocrinology
  • 2016 Jan 31

Literature context:


Cells composing the mammary secretory compartment have evolved a high capacity to secrete not only proteins but also triglycerides and carbohydrates. This feature is illustrated by the mouse, which can secrete nearly twice its own weight in milk proteins, triglycerides and lactose over a short 20-day lactation. The coordination of synthesis and export of products in other secretory cells is orchestrated in part by the transcription factor X-box binding protein 1 (XBP1). To assess the role of XBP1 in mammary epithelial cells (MEC), we studied floxed XBP1 female mice lacking (wild type; WT) or expressing the Cre recombinase under the control of the ovine β-lactoglobulin promoter (ΔXBP1(MEC)). Pregnant ΔXBP1(MEC) females had morphologically normal mammary development and gave birth to the same number of pups as WT mice. Their litters, however, suffered a weight gain deficit by lactation day 3 (L3)3 that grew to 80% by L14. ΔXBP1(MEC) dams had only modest changes in milk composition (-21% protein, +24% triglyceride) and in the expression of associated genes in isolated MEC. By L5, WT glands were fully occupied by dilated alveoli, whereas ΔXBP1(MEC) glands contained fewer, mostly unfilled alveoli and retained a prominent adipocyte population. The smaller epithelial compartment in ΔXBP1(MEC) glands was explained by lower MEC proliferation and increased apoptosis. Finally, endoplasmic reticulum ribbons were less abundant in ΔXBP1(MEC) at pregnancy day 18 and failed to increase in abundance by L5. Collectively, these results show that XBP1 is required for MEC population expansion during lactation and its ability to develop an elaborate endoplasmic reticulum compartment.

Funding information:
  • NIDDK NIH HHS - R01 DK100385(United States)
  • NINDS NIH HHS - R01 NS094781(United States)

Angiotensin II-induced protein kinase D activates the ATF/CREB family of transcription factors and promotes StAR mRNA expression.

  • Olala LO
  • Endocrinology
  • 2014 Jul 21

Literature context:


Aldosterone synthesis is initiated upon the transport of cholesterol from the outer to the inner mitochondrial membrane, where the cholesterol is hydrolyzed to pregnenolone. This process is the rate-limiting step in acute aldosterone production and is mediated by the steroidogenic acute regulatory (StAR) protein. We have previously shown that angiotensin II (AngII) activation of the serine/threonine protein kinase D (PKD) promotes acute aldosterone production in bovine adrenal glomerulosa cells, but the mechanism remains unclear. Thus, the purpose of this study was to determine the downstream signaling effectors of AngII-stimulated PKD activity. Our results demonstrate that overexpression of the constitutively active serine-to-glutamate PKD mutant enhances, whereas the dominant-negative serine-to-alanine PKD mutant inhibits, AngII-induced StAR mRNA expression relative to the vector control. PKD has been shown to phosphorylate members of the activating transcription factor (ATF)/cAMP response element binding protein (CREB) family of leucine zipper transcription factors, which have been shown previously to bind the StAR proximal promoter and induce StAR mRNA expression. In primary glomerulosa cells, AngII induces ATF-2 and CREB phosphorylation in a time-dependent manner. Furthermore, overexpression of the constitutively active PKD mutant enhances the AngII-elicited phosphorylation of ATF-2 and CREB, and the dominant-negative mutant inhibits this response. Furthermore, the constitutively active PKD mutant increases the binding of phosphorylated CREB to the StAR promoter. Thus, these data provide insight into the previously reported role of PKD in AngII-induced acute aldosterone production, providing a mechanism by which PKD may be mediating steroidogenesis in primary bovine adrenal glomerulosa cells.

Funding information:
  • Wellcome Trust - WT089698(United Kingdom)

Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis.

  • Feuer SK
  • Endocrinology
  • 2014 May 21

Literature context:


The Developmental Origins of Health and Disease hypothesis holds that alterations to homeostasis during critical periods of development can predispose individuals to adult-onset chronic diseases such as diabetes and metabolic syndrome. It remains controversial whether preimplantation embryo manipulation, clinically used to treat patients with infertility, disturbs homeostasis and affects long-term growth and metabolism. To address this controversy, we have assessed the effects of in vitro fertilization (IVF) on postnatal physiology in mice. We demonstrate that IVF and embryo culture, even under conditions considered optimal for mouse embryo culture, alter postnatal growth trajectory, fat accumulation, and glucose metabolism in adult mice. Unbiased metabolic profiling in serum and microarray analysis of pancreatic islets and insulin sensitive tissues (liver, skeletal muscle, and adipose tissue) revealed broad changes in metabolic homeostasis, characterized by systemic oxidative stress and mitochondrial dysfunction. Adopting a candidate approach, we identify thioredoxin-interacting protein (TXNIP), a key molecule involved in integrating cellular nutritional and oxidative states with metabolic response, as a marker for preimplantation stress and demonstrate tissue-specific epigenetic and transcriptional TXNIP misregulation in selected adult tissues. Importantly, dysregulation of TXNIP expression is associated with enrichment for H4 acetylation at the Txnip promoter that persists from the blastocyst stage through adulthood in adipose tissue. Our data support the vulnerability of preimplantation embryos to environmental disturbance and demonstrate that conception by IVF can reprogram metabolic homeostasis through metabolic, transcriptional, and epigenetic mechanisms with lasting effects for adult growth and fitness. This study has wide clinical relevance and underscores the importance of continued follow-up of IVF-conceived offspring.

Funding information:
  • NIDDK NIH HHS - R01 DK084171(United States)

A serum component mediates food restriction-induced growth attenuation.

  • Pando R
  • Endocrinology
  • 2014 Mar 25

Literature context:


Proper nutrition in terms of calories and essential food components is required to maximize longitudinal growth in children. Our previous study showed that prepubertal male rats subjected to 10 days of 40% food restriction (RES) exhibited a dramatic reduction in weight and epiphyseal growth plate height, as well as changes in gene expression and microRNAs (miRNAs) in the epiphyseal growth plate. These findings reversed rapidly after renewal of the regular food supply (catch-up [CU]). To further elucidate the mechanisms underlying the nutrition-growth association, serum collected from the RES and CU rats and control rats fed ad libitum (AL) was added to the culture medium of the chondrocyte cell line ATDC5 (instead of fetal calf serum). Serum from the RES group induced a reduction in cell viability (25%, P < .05) concomitant with an increase in cell differentiation compared with that for the AL group serum. The most interesting observation, in our opinion, was the significant reduction in the expression of specific miRNAs, including the chondro-specific miR-140. These effects were not observed for serum from refed (CU) rats. Serum levels of IGF-I, leptin, and fibroblast growth factor 21 were reduced by food restriction. The addition of IGF-I and leptin to the culture increased cell viability, whereas fibroblast growth factor 21 reduced it, suggesting the involvement of IGF-I, leptin, and possibly other still unidentified serum factors in chondrocyte cell growth. In conclusion, specific miRNAs respond to nutritional cues, and these effects are mediated by serum-borne factors. These results may promote the development of superior interventions for children with malnutrition and growth abnormalities.

Funding information:
  • NEI NIH HHS - R01 EY026024(United States)
  • NHLBI NIH HHS - HL112225(United States)