X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mmp1 C-terminus antibody - Rubin, G.M.; University of California-Berkeley

RRID:AB_579782

Antibody ID

AB_579782

Target Antigen

Mmp1 C-terminus drosophila

Proper Citation

(DSHB Cat# 14A3D2, RRID:AB_579782)

Clonality

monoclonal antibody

Comments

Application(s): Immunohistochemistry,Western Blot; Date Deposited: 08/02/2006

Host Organism

mouse

Vendor

DSHB Go To Vendor

Cat Num

14A3D2

Publications that use this research resource

Glial Draper Rescues Aβ Toxicity in a Drosophila Model of Alzheimer's Disease.

  • Ray A
  • J. Neurosci.
  • 2017 Dec 6

Literature context: Studies Hybridoma Bank, 14A3D2; RRID:AB_579782, 3A6B4; RRID:AB_579780, 3B8D12;


Abstract:

Pathological hallmarks of Alzheimer's disease (AD) include amyloid-β (Aβ) plaques, neurofibrillary tangles, and reactive gliosis. Glial cells offer protection against AD by engulfing extracellular Aβ peptides, but the repertoire of molecules required for glial recognition and destruction of Aβ are still unclear. Here, we show that the highly conserved glial engulfment receptor Draper/MEGF10 provides neuroprotection in an AD model of Drosophila (both sexes). Neuronal expression of human Aβ42arc in adult flies results in robust Aβ accumulation, neurodegeneration, locomotor dysfunction, and reduced lifespan. Notably, all of these phenotypes are more severe in draper mutant animals, whereas enhanced expression of glial Draper reverses Aβ accumulation, as well as behavioral phenotypes. We also show that the signal transducer and activator of transcription (Stat92E), c-Jun N-terminal kinase (JNK)/AP-1 signaling, and expression of matrix metalloproteinase-1 (Mmp1) are activated downstream of Draper in glia in response to Aβ42arc exposure. Furthermore, Aβ42-induced upregulation of the phagolysosomal markers Atg8 and p62 was notably reduced in draper mutant flies. Based on our findings, we propose that glia clear neurotoxic Aβ peptides in the AD model Drosophila brain through a Draper/STAT92E/JNK cascade that may be coupled to protein degradation pathways such as autophagy or more traditional phagolysosomal destruction methods.SIGNIFICANCE STATEMENT Alzheimer's disease (AD) and similar dementias are common incurable neurodegenerative disorders in the aging population. As the primary immune responders in the brain, glial cells are implicated as key players in the onset and progression of AD and related disorders. Here we show that the glial engulfment receptor Draper is protective in a Drosophila model of AD, reducing levels of amyloid β (Aβ) peptides, reversing locomotor defects, and extending lifespan. We further show that protein degradation pathways are induced downstream of Draper in AD model flies, supporting a model in which glia engulf and destroy Aβ peptides to reduce amyloid-associated toxicity.

A novel Drosophila injury model reveals severed axons are cleared through a Draper/MMP-1 signaling cascade.

  • Purice MD
  • Elife
  • 2017 Aug 21

Literature context: Studies Hybridoma Bank, 14A3D2 RRID:AB_579782, 3A6B4 RRID:AB_579780, 3B8D12 R


Abstract:

Neural injury triggers swift responses from glia, including glial migration and phagocytic clearance of damaged neurons. The transcriptional programs governing these complex innate glial immune responses are still unclear. Here, we describe a novel injury assay in adult Drosophila that elicits widespread glial responses in the ventral nerve cord (VNC). We profiled injury-induced changes in VNC gene expression by RNA sequencing (RNA-seq) and found that responsive genes fall into diverse signaling classes. One factor, matrix metalloproteinase-1 (MMP-1), is induced in Drosophila ensheathing glia responding to severed axons. Interestingly, glial induction of MMP-1 requires the highly conserved engulfment receptor Draper, as well as AP-1 and STAT92E. In MMP-1 depleted flies, glia do not properly infiltrate neuropil regions after axotomy and, as a consequence, fail to clear degenerating axonal debris. This work identifies Draper-dependent activation of MMP-1 as a novel cascade required for proper glial clearance of severed axons.

Distinct functions for the catalytic and hemopexin domains of a Drosophila matrix metalloproteinase.

  • Glasheen BM
  • Proc. Natl. Acad. Sci. U.S.A.
  • 2009 Feb 24

Literature context:


Abstract:

Human matrix metalloproteinases (MMPs) are believed to contribute to tumor progression. Therapies based on inhibiting the catalytic domain of MMPs have been unsuccessful, but these studies raise the question of whether other MMP domains might be appropriate targets. The genetic dissection of domain function has been stymied in mouse because there are 24 related and partially redundant MMP genes in the mouse genome. Here, we present a genetic dissection of the functions of the hemopexin and catalytic domains of a canonical MMP in Drosophila melanogaster, an organism with only 2 MMPs that function nonredundantly. We compare the phenotypes of Mmp1 null alleles with alleles that have specific hemopexin domain lesions, and we also examine phenotypes of dominant-negative mutants. We find that, although the catalytic domain appears to be required for all MMP functions including extracellular matrix remodeling of the tracheal system, the hemopexin domain is required specifically for tissue invasion events later in metamorphosis but not for tracheal remodeling. Thus, we find that this MMP hemopexin domain has an apparent specialization for tissue invasion events, a finding with potential implications for inhibitor therapies.