X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

MOUSE ANTI RAT CD68 antibody

RRID:AB_566872

Antibody ID

AB_566872

Target Antigen

Rat CD68 rat

Proper Citation

(Bio-Rad Cat# MCA341GA, RRID:AB_566872)

Clonality

monoclonal antibody

Comments

manufacturer recommendations: Flow Cytometry; Immunohistochemistry; Immunoprecipitation; Immunohistology - Frozen, Immunohistology - Paraffin, Immunoprecipitation, Flow Cytometry

Clone ID

Clone ED1

Host Organism

mouse

Vendor

Bio-Rad

Cat Num

MCA341GA

Expression and Cellular Localization of IFITM1 in Normal and Injured Rat Spinal Cords.

  • Wang Y
  • J. Histochem. Cytochem.
  • 2018 Jan 5

Literature context:


Abstract:

Interferon-induced transmembrane protein 1 (IFITM1) is a member of the IFITM family that is associated with some acute-phase cytokine-stimulated response. Recently, we demonstrated that IFITM1 was significantly upregulated in the injured spinal cords at the mRNA level. However, its expression and cellular localization at the protein level is still unclear. Here, a rat model of spinal cord injury (SCI) was performed to investigate the spatio-temporal expression of IFITM1 after SCI. IFITM1 mRNA and protein were assessed by quantitative reverse transcription-PCR and western blot, respectively. IHC was used to identify its cellular localization. We revealed that IFITM1 could be found in sham-opened spinal cords and gradually increased after SCI. It reached peak at 7 and 14 days postinjury (dpi) and still maintained at a relatively higher level at 28 dpi. IHC showed that IFITM1 expressed in GFAP+ and APC+ cells in sham-opened spinal cords. After SCI, in addition to the above-mentioned cells, it could also be found in CD45+ and CD68+ cells, and its expression in CD45+, CD68+, and GFAP+ cells was increased significantly. These results demonstrate that IFITM1 is mainly expressed in astrocytes and oligodendroglia in normal spinal cords, and could rapidly increase in infiltrated leukocytes, activated microglia, and astrocytes after SCI.

Increased ceruloplasmin expression caused by infiltrated leukocytes, activated microglia, and astrocytes in injured female rat spinal cords.

  • Wu Y
  • J. Neurosci. Res.
  • 2018 Jan 30

Literature context:


Abstract:

Ceruloplasmin (Cp), an enzyme containing six copper atoms, has important roles in iron homeostasis and antioxidant defense. After spinal cord injury (SCI), the cellular components in the local microenvironment are very complex and include functional changes of resident cells and the infiltration of leukocytes. It has been confirmed that Cp is elevated primarily in astrocytes and to a lesser extent in macrophages following SCI in mice. However, its expression in other cell types is still not very clear. In this manuscript, we provide a sensible extension of these findings by examining this system within a female Sprague-Dawley rat model and expanding the scope of inquiry to include additional cell types. Quantitative reverse transcription polymerase chain reaction and Western blot analysis revealed that the Cp mRNA and protein in SCI tissue homogenates were quite consistent with prior publications. However, we observed that Cp was expressed not only in GFAP+ astrocytes (consistent with prior reports) but also in CD11b+ microglia, CNPase+ oligodendrocytes, NeuN+ neurons, CD45+ leukocytes, and CD68+ activated microglia/macrophages. Quantitative analysis proved that infiltrated leukocytes, activated microglia/macrophages, and astrocytes should be the major sources of increased Cp.

Spatio-temporal expression of Hexokinase-3 in the injured female rat spinal cords.

  • Lin YH
  • Neurochem. Int.
  • 2017 Dec 3

Literature context:


Abstract:

Hexokinase-3 (HK3) is a member of hexokinase family, which can catalyze the first step of glucose metabolism. It can increase ATP levels, reduce the production of reactive oxygen species, increase mitochondrial biogenesis, protect mitochondrial membrane potential and play an antioxidant role. However, the change of its expression in spinal cord after injury is still unknown. In this study, we investigated the spatio-temporal expression of HK3 in the spinal cords by using a spinal cord injury (SCI) model in adult female Sprague-Dawley rats. Quantitative reverse transcription-PCR and western blot analysis revealed that HK3 could be detected in sham-opened spinal cords. After SCI, it gradually increased, reached a peak at 7 days post-injury (dpi), and then gradually decreased with the prolonging of injury time, but still maintained at a higher level for up to 28 dpi (the longest time evaluated in this study). Immunofluorescence staining showed that HK3 was found in GFAP+, β-tubulin III+ and IBA-1+ cells in sham-opened spinal cords. After SCI, in addition to the above-mentioned cells, it could also be found in CD45+ and CD68+ cells. These results demonstrate that HK3 is mainly expressed in astrocytes, neurons and microglia in normal spinal cords, and could rapidly increase in infiltrated leukocytes, activated microglia/macrophages and astrocytes after SCI. These data suggest that HK3 may be involved in the pathologic process of SCI by promoting glucose metabolism.

Funding information:
  • NEI NIH HHS - R01 EY022415(United States)

Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice.

  • Bucks SA
  • Elife
  • 2017 Mar 6

Literature context:


Abstract:

Vestibular hair cells in the inner ear encode head movements and mediate the sense of balance. These cells undergo cell death and replacement (turnover) throughout life in non-mammalian vertebrates. However, there is no definitive evidence that this process occurs in mammals. We used fate-mapping and other methods to demonstrate that utricular type II vestibular hair cells undergo turnover in adult mice under normal conditions. We found that supporting cells phagocytose both type I and II hair cells. Plp1-CreERT2-expressing supporting cells replace type II hair cells. Type I hair cells are not restored by Plp1-CreERT2-expressing supporting cells or by Atoh1-CreERTM-expressing type II hair cells. Destruction of hair cells causes supporting cells to generate 6 times as many type II hair cells compared to normal conditions. These findings expand our understanding of sensorineural plasticity in adult vestibular organs and further elucidate the roles that supporting cells serve during homeostasis and after injury.

Temporal kinetics of macrophage polarization in the injured rat spinal cord.

  • Chen YJ
  • J. Neurosci. Res.
  • 2015 Oct 20

Literature context:


Abstract:

Local activated macrophages derived from infiltrating monocytes play an important role in the damage and repair process of spinal cord injury (SCI). The present study investigates the dynamic change of classically activated proinflammatory (M1) and alternatively activated anti-inflammatory (M2) cells in a rat model with contusive SCI by flow cytometry (FCM) and immunohistochemistry. The macrophage subsets were immunophenotyped by using antibodies against cluster of differentiation (CD)-68, C-C chemokine receptor type 7 (CCR7), CD163, and arginase 1 (Arg1). The CD68(+) CD163(-) and CD68(+) CCR7(+) cells were determined to be M1 subsets, whereas the CD68(+) CD163(+) and CD68(+) Arg1(+) cell subpopulations represented M2 cells. The subsets of macrophages in the injured spinal cord at 1, 3, 5, 7, 14, and 28 days postinjury (dpi) were examined. In the sham-opened spinal cord, few M1 or M2 cells were found. After SCI, the phenotypes of both M1 and M2 cells were rapidly induced. However, M1 cells were detected and maintained at a high level for up to 28 dpi (the longest time evaluated in this study). In contrast, M2 cells were transiently detected at high levels before 7 dpi and returned to preinjury levels at 14 dpi. These results indicate that M1 cell response is rapidly induced and sustained, whereas M2 induction is transient after SCI in rat. Increasing the fraction of M2 cells and prolonging their residence time in the injured local microenvironment is a promising strategy for the repair of SCI.

Funding information:
  • NHLBI NIH HHS - HL74082(United States)