X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mouse Anti-Chicken (avian) Myosin, heavy chain, slow, chain 1, 2 and 3 Monoclonal Antibody, Unconjugated

RRID:AB_528376

Antibody ID

AB_528376

Target Antigen

Mouse Chicken (avian) Myosin heavy chain slow chain 1 2 and 3 chicken/bird, mouse, rat, chicken, quail, mouse, rat

Proper Citation

(DSHB Cat# s46, RRID:AB_528376)

Clonality

monoclonal antibody

Comments

manufacturer recommendations: IgG1, kappa light chain Western Blot; Immunoblotting

Host Organism

mouse

Vendor

DSHB Go To Vendor

Cat Num

s46

An αII Spectrin-Based Cytoskeleton Protects Large-Diameter Myelinated Axons from Degeneration.

  • Huang CY
  • J. Neurosci.
  • 2017 Nov 22

Literature context: pmental Studies Hybridoma Bank; RRID:AB_528376). ankG (N106/36; RRID:AB_106730


Abstract:

Axons must withstand mechanical forces, including tension, torsion, and compression. Spectrins and actin form a periodic cytoskeleton proposed to protect axons against these forces. However, because spectrins also participate in assembly of axon initial segments (AISs) and nodes of Ranvier, it is difficult to uncouple their roles in maintaining axon integrity from their functions at AIS and nodes. To overcome this problem and to determine the importance of spectrin cytoskeletons for axon integrity, we generated mice with αII spectrin-deficient peripheral sensory neurons. The axons of these neurons are very long and exposed to the mechanical forces associated with limb movement; most lack an AIS, and some are unmyelinated and have no nodes. We analyzed αII spectrin-deficient mice of both sexes and found that, in myelinated axons, αII spectrin forms a periodic cytoskeleton with βIV and βII spectrin at nodes of Ranvier and paranodes, respectively, but that loss of αII spectrin disrupts this organization. Avil-cre;Sptan1f/f mice have reduced numbers of nodes, disrupted paranodal junctions, and mislocalized Kv1 K+ channels. We show that the density of nodal βIV spectrin is constant among axons, but the density of nodal αII spectrin increases with axon diameter. Remarkably, Avil-cre;Sptan1f/f mice have intact nociception and small-diameter axons, but severe ataxia due to preferential degeneration of large-diameter myelinated axons. Our results suggest that nodal αII spectrin helps resist the mechanical forces experienced by large-diameter axons, and that αII spectrin-dependent cytoskeletons are also required for assembly of nodes of Ranvier.SIGNIFICANCE STATEMENT A periodic axonal cytoskeleton consisting of actin and spectrin has been proposed to help axons resist the mechanical forces to which they are exposed (e.g., compression, torsion, and stretch). However, until now, no vertebrate animal model has tested the requirement of the spectrin cytoskeleton in maintenance of axon integrity. We demonstrate the role of the periodic spectrin-dependent cytoskeleton in axons and show that loss of αII spectrin from PNS axons causes preferential degeneration of large-diameter myelinated axons. We show that nodal αII spectrin is found at greater densities in large-diameter myelinated axons, suggesting that nodes are particularly vulnerable domains requiring a specialized cytoskeleton to protect against axon degeneration.

Expression of kin of irregular chiasm-like 3/mKirre in proprioceptive neurons of the dorsal root ganglia and its interaction with nephrin in muscle spindles.

  • Komori T
  • J. Comp. Neurol.
  • 2008 Nov 1

Literature context:


Abstract:

Kin of irregular chiasm-like 3 (Kirrel3), a mammalian homolog of the kirre gene of Drosophila melanogaster, belongs to the immunoglobulin superfamily. Previously, we have reported that Kirrel3 is expressed in the developing and adult central nervous system. In the present study we investigated the expression of Kirrel3 in the mouse dorsal root ganglia (DRG) and their projection targets. In the adult DRGs, Kirrel3 mRNA was detected in 21.5 +/- 2.3% of total DRG neurons and the expression was mainly prevalent in the medium- and large-sized neurons. In addition, Kirrel3 mRNA predominantly colocalized with tyrosine kinase receptor (Trk) C-immunoreactivity. In the developing DRGs, Kirrel3 mRNA was first detected in a few cells at embryonic day (E) 11.5, gradually increased, and reached the adult level at E17.5. During the development, Kirrel3 was expressed in most TrkC-positive DRG neurons. The expression of Kirrel3 was observed in TrkC-positive nerve fibers around neurotrophin 3 (NT3)-positive intrafusal muscle fibers of muscle spindles at E17.5. However, Kirrel3 was not expressed in TrkC-positive nerve fibers projecting to the spinal cord throughout development. Furthermore, nephrin was expressed in the NT3-positive intrafusal muscle fibers and was in close apposition with Kirrel3-immunoreactivity. Coimmunoprecipitation assay revealed that nephrin interacted with Kirrel3 in the developing muscles. These results suggest that Kirrel3 might play a role in the axonal pathfinding, cell recognition, and synapse formation of DRG neurons on appropriate target cells, including the targeting of proprioceptive neurons on muscle spindles through the interaction with nephrin.

Limited expression of slow tonic myosin heavy chain in human cranial muscles.

  • Sokoloff AJ
  • Muscle Nerve
  • 2007 Aug 30

Literature context:


Abstract:

Recent reports of slow tonic myosin heavy chain (MHCst) in human masticatory and laryngeal muscles suggest that MHCst may have a wider distribution in humans than previously thought. Because of the novelty of this finding, we sought to confirm the presence of MHCst in human masticatory and laryngeal muscles by reacting tissue from these muscles and controls from extraocular, intrafusal, cardiac, appendicular, and developmental muscle with antibodies (Abs) ALD-58 and S46, considered highly specific for MHCst. At Ab dilutions producing minimal reaction to muscle fibers positive for MHCI, only extraocular, intrafusal, and fetal tongue tissue reacted with Ab S46 had strong immunoreaction in an appreciable number of muscle fibers. In immunoblots, Ab S46, but not Ab ALD-58, labeled adult extraocular muscles; no other muscles were labeled with either Ab. We conclude that, in humans, Ab S46 has greater specificity for MHCst than does Ab ALD-58. We suggest that reports of MHCst in human masticatory and laryngeal muscles reflect false-positive identification of MHCst due to cross-reactivity of Ab ALD-58 with another MHC isoform.

Funding information:
  • NINDS NIH HHS - F31 NS080614(United States)

The myosin co-chaperone UNC-45 is required for skeletal and cardiac muscle function in zebrafish.

  • Wohlgemuth SL
  • Dev. Biol.
  • 2007 Mar 15

Literature context:


Abstract:

The assembly of myosin into higher order structures is dependent upon accessory factors that are often tissue-specific. UNC-45 acts as such a molecular chaperone for myosin in the nematode Caenorhabditis elegans, in both muscle and non-muscle contexts. Although vertebrates contain homologues of UNC-45, their requirement for muscle function has not been assayed. We identified a zebrafish gene, unc45b, similar to a mammalian unc-45 homologue, expressed exclusively in striated muscle tissue, including the somites, heart and craniofacial muscle. Morpholino-oligonucleotide-mediated knockdown of unc45b results in paralysis and cardiac dysfunction. This paralysis is correlated with a loss of myosin filaments in the sarcomeres of the trunk muscle. Morphants lack circulation, heart looping and display severe cardiac and yolk-sac edema and also demonstrate ventral displacement of several jaw cartilages. Overall, this confirms a role for unc45b in zebrafish motility consistent with a function in myosin thick filament assembly and stability and uncovers novel roles for this gene in the function and morphogenesis of the developing heart and jaw. These results suggest that Unc45b acts as a chaperone that aids in the folding of myosin isoforms required for skeletal, cranial and cardiac muscle contraction.

Funding information:
  • Cancer Research UK - 1-U01-HG004270-01(United Kingdom)
  • NIGMS NIH HHS - 1R01GM070676(United States)

Mutation of weak atrium/atrial myosin heavy chain disrupts atrial function and influences ventricular morphogenesis in zebrafish.

  • Berdougo E
  • Development
  • 2003 Dec 4

Literature context:


Abstract:

The embryonic vertebrate heart is composed of two major chambers, a ventricle and an atrium, each of which has a characteristic size, shape and functional capacity that contributes to efficient circulation. Chamber-specific gene expression programs are likely to regulate key aspects of chamber formation. Here, we demonstrate that epigenetic factors also have a significant influence on chamber morphogenesis. Specifically, we show that an atrium-specific contractility defect has a profound impact on ventricular development. We find that the zebrafish locus weak atrium encodes an atrium-specific myosin heavy chain that is required for atrial myofibrillar organization and contraction. Despite their atrial defects, weak atrium mutants can maintain circulation through ventricular contraction. However, the weak atrium mutant ventricle becomes unusually compact, exhibiting a thickened myocardial wall, a narrow lumen and changes in myocardial gene expression. As weak atrium/atrial myosin heavy chain is expressed only in the atrium, the ventricular phenotypes in weak atrium mutants represent a secondary response to atrial dysfunction. Thus, not only is cardiac form essential for cardiac function, but there also exists a reciprocal relationship in which function can influence form. These findings are relevant to our understanding of congenital defects in cardiac chamber morphogenesis.

Funding information:
  • NINDS NIH HHS - R56 NS046367(United States)

Patterning the zebrafish heart tube: acquisition of anteroposterior polarity.

  • Stainier DY
  • Dev. Biol.
  • 1992 Sep 7

Literature context:


Abstract:

The patterning of an internal organ, like the heart, is little understood. Central to this patterning is the formation, or the acquisition, of an anteroposterior (A-P) axis. We have approached the question of how the heart tube acquires polarity in the zebrafish, Brachydanio rerio, which offers numerous advantages for studying cardiac morphogenesis. During the early stages of organogenesis in the fish, the heart tube lies in an A-P orientation with the venous end lying anteriorly and the arterial end lying posteriorly. High doses (10(-6)-10(-5)M) of retinoic acid (RA) cause truncation of the body axis, as they do in Xenopus. Low doses of retinoic acid (10(-8)-10(-7) M), which do not appear to affect the rest of the embryo, have pronounced effects upon heart tube morphogenesis, causing it to shrink progressively along the A-P axis. To investigate this further, we identified monoclonal antibodies that distinguish between the zebrafish cardiac chambers and used them to show that the RA-induced cardiac truncation always begins at the arterial end of the heart tube. There is a continuous gradient of sensitivity from the arterial to the venous end, such that increasing RA exposure causes the progressive and sequential deletion first of the bulbus arteriosus and then, in order, of the ventricle, the atrium, and the sinus venosus. As exposure increases, parts of chambers are deleted before entire chambers; thus, the sensitivity to RA appears to be independent of chamber boundaries. The analysis of the heart tube's sensitivity to RA and its timing suggest that polarity is established during or shortly after initial commitment to the cardiac lineage.

Funding information:
  • Austrian Science Fund FWF - F 4307(Austria)

Slow and fast myosin heavy chain content defines three types of myotubes in early muscle cell cultures.

  • Miller JB
  • J. Cell Biol.
  • 1985 Nov 13

Literature context:


Abstract:

We prepared monoclonal antibodies specific for fast or slow classes of myosin heavy chain isoforms in the chicken and used them to probe myosin expression in cultures of myotubes derived from embryonic chicken myoblasts. Myosin heavy chain expression was assayed by gel electrophoresis and immunoblotting of extracted myosin and by immunostaining of cultures of myotubes. Myotubes that formed from embryonic day 5-6 pectoral myoblasts synthesized both a fast and a slow class of myosin heavy chain, which were electrophoretically and immunologically distinct, but only the fast class of myosin heavy chain was synthesized by myotubes that formed in cultures of embryonic day 8 or older myoblasts. Furthermore, three types of myotubes formed in cultures of embryonic day 5-6 myoblasts: one that contained only a fast myosin heavy chain, a second that contained only a slow myosin heavy chain, and a third that contained both a fast and a slow heavy chain. Myotubes that formed in cultures of embryonic day 8 or older myoblasts, however, were of a single type that synthesized only a fast class of myosin heavy chain. Regardless of whether myoblasts from embryonic day 6 pectoral muscle were cultured alone or mixed with an equal number of myoblasts from embryonic day 12 muscle, the number of myotubes that formed and contained a slow class of myosin was the same. These results demonstrate that the slow class of myosin heavy chain can be synthesized by myotubes formed in cell culture, and that three types of myotubes form in culture from pectoral muscle myoblasts that are isolated early in development, but only one type of myotube forms from older myoblasts; and they suggest that muscle fiber formation probably depends upon different populations of myoblasts that co-exist and remain distinct during myogenesis.

Funding information:
  • NLM NIH HHS - LM05773(United States)