X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mouse Anti-Human AP-2 alpha Monoclonal Antibody, Unconjugated

RRID:AB_528084

Antibody ID

AB_528084

Target Antigen

human AP-2 alpha human, human, mouse, chicken

Proper Citation

(DSHB Cat# 3b5, RRID:AB_528084)

Clonality

monoclonal antibody

Comments

manufacturer recommendations: Western Blot; Immunoblotting

Host Organism

mouse

Vendor

DSHB

Cat Num

3b5

Publications that use this research resource

Neurogenin1 effectively reprograms cultured chick retinal pigment epithelial cells to differentiate toward photoreceptors.

  • Yan RT
  • J. Comp. Neurol.
  • 2010 Feb 15

Literature context:


Abstract:

Photoreceptors are highly specialized sensory neurons in the retina, and their degeneration results in blindness. Replacement with developing photoreceptor cells promises to be an effective therapy, but it requires a supply of new photoreceptors, because the neural retina in human eyes lacks regeneration capability. We report efficient generation of differentiating, photoreceptor-like neurons from chick retinal pigment epithelial (RPE) cells propagated in culture through reprogramming with neurogenin1 (ngn1). In reprogrammed culture, a large number of the cells (85.0% +/- 5.9%) began to differentiate toward photoreceptors. Reprogrammed cells expressed transcription factors that set in motion photoreceptor differentiation, including Crx, Nr2E3, NeuroD, and RXRgamma, and phototransduction pathway components, including transducin, cGMP-gated channel, and red opsin of cone photoreceptors (equivalent to rhodopsin of rod photoreceptors). They developed inner segments rich in mitochondria. Furthermore, they responded to light by decreasing their cellular free calcium (Ca(2+)) levels and responded to 9-cis-retinal by increasing their Ca(2+) levels after photobleaching, hallmarks of photoreceptor physiology. The high efficiency and the advanced photoreceptor differentiation indicate ngn1 as a gene of choice to reprogram RPE progeny cells to differentiate into photoreceptor neurons in future cell replacement studies.

Genoarchitectonic profile of developing nuclear groups in the chicken pretectum.

  • Ferran JL
  • J. Comp. Neurol.
  • 2009 Dec 1

Literature context:


Abstract:

Earlier results on molecularly coded progenitor domains in the chicken pretectum revealed an anteroposterior subdivision of the pretectum in precommissural (PcP), juxtacommissural (JcP), and commissural (CoP) histogenetic areas, each specified differentially (Ferran et al. [2007] J Comp Neurol 505:379-403). Here we examined the nuclei derived from these areas with regard to characteristic gene expression patterns and gradual histogenesis (eventually, migration patterns). We sought a genoarchitectonic schema of the avian pretectum within the prosomeric model of the vertebrate forebrain (Puelles and Rubenstein [2003] Trends Neurosci 26:469-476; Puelles et al. [2007] San Diego: Academic Press). Transcription-factor gene markers were used to selectively map derivatives of the three pretectal histogenetic domains: Pax7 and Pax6 (CoP); FoxP1 and Six3 (JcP); and FoxP2, Ebf1, and Bhlhb4 (PcP). The combination of this genoarchitectonic information with additional data on Lim1, Tal2, and Nbea mRNA expression and other chemoarchitectonic results allowed unambiguous characterization of some 30 pretectal nuclei. Apart from grouping them as derivatives of the three early anteroposterior domains, we also assigned them to postulated dorsoventral subdomains (Ferran et al. [2007]). Several previously unknown neuronal populations were detected, thus expanding the list of pretectal structures, and we corrected some apparently confused concepts in the earlier literature. The composite gene expression map represents a substantial advance in anatomical and embryological knowledge of the avian pretectum. Many nuclear primordia can be recognized long before the mature differentiated state of the pretectum is achieved. This study provides fundamental notions for ultimate scientific study of the specification and regionalization processes building up this brain area, both in birds and other vertebrates.

Heterogeneity of horizontal cells in the chicken retina.

  • Fischer AJ
  • J. Comp. Neurol.
  • 2007 Feb 20

Literature context:


Abstract:

Despite numerous reports that different markers are expressed by horizontal cells in the avian retina, it remains unknown whether different types of horizontal cells can be defined by differences in their immunocytochemical profiles. The purpose of this study was to rectify this deficiency. We identified horizontal cells by indirect immunofluorescence with antibodies to calretinin, trkA, GABA, Prox1, AP2alpha, Pax6, islet1, and Lim1 + 2. We found two major groups of horizontal cells, those that express trkA and those that express calretinin. The trkA-immunoreactive (-IR) horizontal cells had small, round somata and robust, bulbous dendritic endings, whereas calretinin-IR horizontal cells had large, polygonal cell bodies and fine, diffuse dendritic endings, both contacting the calbindin-IR pedicles of double cones. Weak gamma-aminobutyric acid (GABA) immunoreactivity was observed only in a few of the trkA-IR horizontal cells, whereas the overlap of calretinin and GABA immunoreactivities was 100%. The majority of trkA-IR horizontal cells expressed islet1, and the majority of calretinin-IR horizontal cells expressed Lim1 + 2, AP2alpha, and Pax6. Islet1 immunoreactivity was observed in a small fraction of calretinin-IR/non-trkA-IR cells. In agreement with previous reports, we detected Prox1 immunoreactivity in all types of horizontal cells. These immunolabeling profiles suggest that there are four immunochemically distinct subtypes of horizontal cells in the postnatal chick retina, which may match the four types that have been observed in Golgi-impregnated pigeon and turtle retinas.

Funding information:
  • NHGRI NIH HHS - U01 HG004271(United States)