Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mouse Anti-Myelin CNPase Monoclonal Antibody, Unconjugated, Clone SMI-91


Antibody ID


Target Antigen

Myelin CNPase bovine, canine, human, mouse, porcine, rat, sheep, human, rat, mouse, sheep, dog, pig, bovine

Proper Citation

(Covance Research Products Inc Cat# SMI-91R-100, RRID:AB_510037)


monoclonal antibody


manufacturer recommendations:

Clone ID

Clone SMI-91

Host Organism



Covance Research Products Inc

Cat Num


Publications that use this research resource

R-Ras1 and R-Ras2 Are Essential for Oligodendrocyte Differentiation and Survival for Correct Myelination in the Central Nervous System.

  • Sanz-Rodriguez M
  • J. Neurosci.
  • 2018 May 30

Literature context:


Rapid and effective neural transmission of information requires correct axonal myelination. Modifications in myelination alter axonal capacity to transmit electric impulses and enable pathological conditions. In the CNS, oligodendrocytes (OLs) myelinate axons, a complex process involving various cellular interactions. However, we know little about the mechanisms that orchestrate correct myelination. Here, we demonstrate that OLs express R-Ras1 and R-Ras2. Using female and male mutant mice to delete these proteins, we found that activation of the PI3K/Akt and Erk1/2-MAPK pathways was weaker in mice lacking one or both of these GTPases, suggesting that both proteins coordinate the activity of these two pathways. Loss of R-Ras1 and/or R-Ras2 diminishes the number of OLs in major myelinated CNS tracts and increases the proportion of immature OLs. In R-Ras1-/- and R-Ras2-/--null mice, OLs show aberrant morphologies and fail to differentiate correctly into myelin-forming phenotypes. The smaller OL population and abnormal OL maturation induce severe hypomyelination, with shorter nodes of Ranvier in R-Ras1-/- and/or R-Ras2-/- mice. These defects explain the slower conduction velocity of myelinated axons that we observed in the absence of R-Ras1 and R-Ras2. Together, these results suggest that R-Ras1 and R-Ras2 are upstream elements that regulate the survival and differentiation of progenitors into OLs through the PI3K/Akt and Erk1/2-MAPK pathways for proper myelination.SIGNIFICANCE STATEMENT In this study, we show that R-Ras1 and R-Ras2 play essential roles in regulating myelination in vivo and control fundamental aspects of oligodendrocyte (OL) survival and differentiation through synergistic activation of PI3K/Akt and Erk1/2-MAPK signaling. Mice lacking R-Ras1 and/or R-Ras2 show a diminished OL population with a higher proportion of immature OLs, explaining the observed hypomyelination in main CNS tracts. In vivo electrophysiology recordings demonstrate a slower conduction velocity of nerve impulses in the absence of R-Ras1 and R-Ras2. Therefore, R-Ras1 and R-Ras2 are essential for proper axonal myelination and accurate neural transmission.

Funding information:
  • Intramural NIH HHS - ZIA BC011010-06(United States)

The integrated stress response in hypoxia-induced diffuse white matter injury.

  • Clayton BL
  • J. Neurosci.
  • 2017 Jul 18

Literature context:


Currently no treatments exist for preterm infants with diffuse white matter injury (DWMI) caused by hypoxia. Due to improved care of preterm neonates and increased recognition by advanced imaging techniques, the prevalence of DWMI is increasing. A better understanding of the pathophysiology of DWMI is therefore of critical importance. The integrated stress response (ISR), a conserved eukaryotic response to myriad stressors including hypoxia, may play a role in hypoxia-induced DWMI and may represent a novel target for much needed therapies. In this study we utilize in vitro and in vivo hypoxic models of DWMI to investigate whether the ISR is involved in DWMI. We demonstrate that hypoxia activates the ISR in primary mouse oligodendrocyte precursor cells (OPCs) in vitro and that genetically inhibiting the ISR in differentiating OPCs increases their susceptibility to in vitro hypoxia. We also show that a well-established in vivo mild chronic hypoxia (MCH) mouse model and a new severe acute hypoxia (SAH) mouse model of DWMI activates the initial step of the ISR. Nonetheless, genetic inhibition of the ISR has no detectable effect on either MCH or SAH-induced DWMI. In addition, we demonstrate that genetic enhancement of the ISR does not ameliorate MCH or SAH-induced DWMI. These studies suggest that while the ISR protects OPCs from hypoxia in vitro, it does not appear to play a major role in either MCH or SAH-induced DWMI and is therefore not a likely target for therapies aimed at improving neurological outcome in preterm neonates with hypoxia-induced DWMI.SIGNIFICANCE STATEMENTDiffuse white matter injury (DWMI) caused by hypoxia is a leading cause of neurological deficits following premature birth. An increased understanding of the pathogenesis of this disease is critical. The integrated stress response (ISR) is activated by hypoxia and protects oligodendrocyte lineage cells in other disease models. This has led to an interest in the potential role of the ISR in DWMI. Here we examine the ISR in hypoxia-induced DWMI and show that while the ISR protects oligodendrocyte lineage cells from hypoxia in vitro, genetic inhibition or enhancement of the ISR has no effect on hypoxia-induced DWMI in vivo suggesting that the ISR does not play a major role in, and is not a likely therapeutic target for, DWMI.

Funding information:
  • NINDS NIH HHS - R01 NS034939()

TACE/ADAM17 is essential for oligodendrocyte development and CNS myelination.

  • Palazuelos J
  • J. Neurosci.
  • 2014 Sep 3

Literature context:


Several studies have elucidated the significance of a disintegrin and metalloproteinase proteins (ADAMs) in PNS myelination, but there is no evidence if they also play a role in oligodendrogenesis and CNS myelination. Our study identifies ADAM17, also called tumor necrosis factor-α converting enzyme (TACE), as a novel key modulator of oligodendrocyte (OL) development and CNS myelination. Genetic deletion of TACE in oligodendrocyte progenitor cells (OPs) induces premature cell cycle exit and reduces OL cell survival during postnatal myelination of the subcortical white matter (SCWM). These cellular and molecular changes lead to deficits in SCWM myelination and motor behavior. Mechanistically, TACE regulates oligodendrogenesis by modulating the shedding of EGFR ligands TGFα and HB-EGF and, consequently, EGFR signaling activation in OL lineage cells. Constitutive TACE depletion in OPs in vivo leads to similar alterations in CNS myelination and motor behavior as to what is observed in the EGFR hypofunctional mouse line EgfrWa2. EGFR overexpression in TACE-deficient OPs restores OL survival and development. Our study reveals an essential function of TACE in oligodendrogenesis, and demonstrates how this molecule modulates EGFR signaling activation to regulate postnatal CNS myelination.

TGFβ signaling regulates the timing of CNS myelination by modulating oligodendrocyte progenitor cell cycle exit through SMAD3/4/FoxO1/Sp1.

  • Palazuelos J
  • J. Neurosci.
  • 2014 Jun 4

Literature context:


Research on myelination has focused on identifying molecules capable of inducing oligodendrocyte (OL) differentiation in an effort to develop strategies that promote functional myelin regeneration in demyelinating disorders. Here, we show that transforming growth factor β (TGFβ) signaling is crucial for allowing oligodendrocyte progenitor (OP) cell cycle withdrawal, and therefore, for oligodendrogenesis and postnatal CNS myelination. Enhanced oligodendrogenesis and subcortical white matter (SCWM) myelination was detected after TGFβ gain of function, while TGFβ receptor II (TGFβ-RII) deletion in OPs prevents their development into mature myelinating OLs, leading to SCWM hypomyelination in mice. TGFβ signaling modulates OP cell cycle withdrawal and differentiation through the transcriptional modulation of c-myc and p21 gene expression, mediated by the interaction of SMAD3/4 with Sp1 and FoxO1 transcription factors. Our study is the first to demonstrate an autonomous and crucial role of TGFβ signaling in OL development and CNS myelination, and may provide new avenues in the treatment of demyelinating diseases.