X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Monoclonal Anti-Tubulin, Acetylated antibody produced in mouse

RRID:AB_477585

Antibody ID

AB_477585

Target Antigen

Tubulin Acetylated plant, pig, human, monkey, hamster, invertebrates, chicken, bovine, rat, frog, protista, mouse

Proper Citation

(Sigma-Aldrich Cat# T6793, RRID:AB_477585)

Clonality

monoclonal antibody

Comments

Applications: dot blot, electron microscopy, immunocytochemistry, indirect ELISA, radioimmunoassay, western blotConsolidation on 8/2019: AB_477585, AB_10061791, AB_10116167.

Clone ID

Clone 6-11B-1

Host Organism

mouse

Chronic Liver Injury Induces Conversion of Biliary Epithelial Cells into Hepatocytes.

  • Deng X
  • Cell Stem Cell
  • 2018 Jul 5

Literature context:


Abstract:

Chronic liver injury can cause cirrhosis and impaired liver regeneration, impairing organ function. Adult livers can regenerate in response to parenchymal insults, and multiple cellular sources have been reported to contribute to this response. In this study, we modeled human chronic liver injuries, in which such responses are blunted, without genetic manipulations, and assessed potential contributions of non-parenchymal cells (NPCs) to hepatocyte regeneration. We show that NPC-derived hepatocytes replenish a large fraction of the liver parenchyma following severe injuries induced by long-term thioacetamide (TAA) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) treatment. Through lineage tracing of biliary epithelial cells (BECs), we show that BECs are a source of new hepatocytes and gain an Hnf4α+CK19+ bi-phenotypic state in periportal regions and fibrotic septa. Bi-phenotypic cells were also detected in cirrhotic human livers. Together, these data provide further support for hepatocyte regeneration from BECs without genetic interventions and show their cellular plasticity during severe liver injury.

Funding information:
  • NCI NIH HHS - U01 CA172027(United States)

Inhibition of glycogen synthase kinase-3 reduces extension of the axonal leading process by destabilizing microtubules in cerebellar granule neurons.

  • Inami Y
  • Brain Res.
  • 2018 Jul 1

Literature context:


Abstract:

Recent studies have uncovered various molecules that play key roles in neuronal morphogenesis. Nevertheless, the mechanisms underlying the neuron-type-dependent regulation of morphogenesis remain unknown. We have previously reported that inhibition of glycogen synthase kinase-3 (GSK3) markedly reduced axonal length of cerebellar granule neurons (CGNs) in a neuron-type-dependent manner. In the present study, we investigated the mechanisms by which the growth of CGN axons was severely suppressed upon GSK3 inhibition. Using time-lapse imaging of cultured CGNs at early morphogenesis, we found that extension of the leading process was severely inhibited by the pharmacological inhibition of GSK3. The rate of somal migration was also reduced with a GSK3 inhibitor in dissociated culture as well as in microexplant culture. In addition, CGNs ectopically expressed with a catalytically inactive mutant of GSK3 exhibited a migration defect in vivo. In axonal leading processes of CGNs, detyrosination and acetylation of α-tubulin, which are known to correlate with microtubule stability, were decreased by GSK3 inhibition. A photoconversion analysis found that inhibition of GSK3 increases the turnover of microtubules. Furthermore, in the presence of paclitaxel, a microtubule-stabilizing reagent, inhibition of GSK3 recovered the axonal leading process extension that was reduced by paclitaxel. Our results suggest that GSK3 supports the extension of axonal processes by stabilizing microtubules, contrary to its function in other neuron-types, lending mechanical insight into neuron-type-dependent morphological regulation.

Funding information:
  • NCI NIH HHS - CA124495(United States)

3D Culture Method for Alzheimer's Disease Modeling Reveals Interleukin-4 Rescues Aβ42-Induced Loss of Human Neural Stem Cell Plasticity.

  • Papadimitriou C
  • Dev. Cell
  • 2018 Jul 2

Literature context:


Abstract:

Neural stem cells (NSCs) constitute an endogenous reservoir for neurons that could potentially be harnessed for regenerative therapies in disease contexts such as neurodegeneration. However, in Alzheimer's disease (AD), NSCs lose plasticity and thus possible regenerative capacity. We investigate how NSCs lose their plasticity in AD by using starPEG-heparin-based hydrogels to establish a reductionist 3D cell-instructive neuro-microenvironment that promotes the proliferative and neurogenic ability of primary and induced human NSCs. We find that administration of AD-associated Amyloid-β42 causes classical neuropathology and hampers NSC plasticity by inducing kynurenic acid (KYNA) production. Interleukin-4 restores NSC proliferative and neurogenic ability by suppressing the KYNA-producing enzyme Kynurenine aminotransferase (KAT2), which is upregulated in APP/PS1dE9 mouse model of AD and in postmortem human AD brains. Thus, our culture system enables a reductionist investigation of regulation of human NSC plasticity for the identification of potential therapeutic targets for intervention in AD.

Funding information:
  • Howard Hughes Medical Institute - (United States)

Rotenone inhibits axonogenesis via an Lfc/RhoA/ROCK pathway in cultured hippocampal neurons.

  • Bisbal M
  • J. Neurochem.
  • 2018 Jul 4

Literature context:


Abstract:

Rotenone, a broad-spectrum insecticide, piscicide and pesticide, produces a complete and selective suppression of axonogenesis in cultured hippocampal neurons. This effect is associated with an inhibition of actin dynamics through activation of Ras homology member A (RhoA) activity. However, the upstream signaling mechanisms involved in rotenone-induced RhoA activation were unknown. We hypothesized that rotenone might inhibit axon growth by the activation of RhoA/ROCK pathway due to changes in microtubule (MT) dynamics and the concomitant release of Lfc, a MT-associated Guanine Nucleotide Exchange Factor (GEF) for RhoA. In the present study we demonstrate that rotenone decreases MT stability in morphologically unpolarized neurons. Taxol (3 nM), a drug that stabilizes MT, attenuates the inhibitory effect of rotenone (0.1 μM) on axon formation. Radiometric Forster Resonance Energy Transfer (FRET), revealed that this effect is associated with inhibition of rotenone-induced RhoA and ROCK activation. Interestingly, silencing of Lfc, but not of the RhoA GEF ArhGEF1, prevents the inhibitory effect of rotenone on axon formation. Our results suggest that rotenone-induced MT de-stabilization releases Lfc from MT thereby promoting RhoA and ROCK activities and the consequent inhibition of axon growth. This article is protected by copyright. All rights reserved.

Funding information:
  • NIAID NIH HHS - R01 AI073785(United States)

nox2/cybb Deficiency Affects Zebrafish Retinotectal Connectivity.

  • Weaver CJ
  • J. Neurosci.
  • 2018 Jun 27

Literature context:


Abstract:

NADPH oxidase (Nox)-derived reactive oxygen species (ROS) have been linked to neuronal polarity, axonal outgrowth, cerebellar development, regeneration of sensory axons, and neuroplasticity. However, the specific roles that individual Nox isoforms play during nervous system development in vivo remain unclear. To address this problem, we investigated the role of Nox activity in the development of retinotectal connections in zebrafish embryos. Zebrafish broadly express four nox genes (nox1, nox2/cybb, nox5, and duox) throughout the CNS during early development. Application of a pan-Nox inhibitor, celastrol, during the time of optic nerve (ON) outgrowth resulted in significant expansion of the ganglion cell layer (GCL), thinning of the ON, and a decrease in retinal axons reaching the optic tectum (OT). With the exception of GCL expansion, these effects were partially ameliorated by the addition of H2O2, a key ROS involved in Nox signaling. To address isoform-specific Nox functions, we used CRISPR/Cas9 to generate mutations in each zebrafish nox gene. We found that nox2/cybb chimeric mutants displayed ON thinning and decreased OT innervation. Furthermore, nox2/cybb homozygous mutants (nox2/cybb-/-) showed significant GCL expansion and mistargeted retinal axons in the OT. Neurite outgrowth from cultured zebrafish retinal ganglion cells was reduced by Nox inhibitors, suggesting a cell-autonomous role for Nox in these neurons. Collectively, our results show that Nox2/Cybb is important for retinotectal development in zebrafish.SIGNIFICANCE STATEMENT Most isoforms of NADPH oxidase (Nox) only produce reactive oxygen species (ROS) when activated by an upstream signal, making them ideal candidates for ROS signaling. Nox enzymes are present in neurons and their activity has been shown to be important for neuronal development and function largely by in vitro studies. However, whether Nox is involved in the development of axons and formation of neuronal connections in vivo has remained unclear. Using mutant zebrafish embryos, this study shows that a specific Nox isoform, Nox2/Cybb, is important for the establishment of axonal connections between retinal ganglion cells and the optic tectum.

Funding information:
  • NIDCR NIH HHS - R01 DE018281(United States)
  • NIGMS NIH HHS - R35 GM119787(United States)

ZMYND10 functions in a chaperone relay during axonemal dynein assembly.

  • Mali GR
  • Elife
  • 2018 Jun 19

Literature context:


Abstract:

Molecular chaperones promote the folding and macromolecular assembly of a diverse set of 'client' proteins. How ubiquitous chaperone machineries direct their activities towards specific sets of substrates is unclear. Through the use of mouse genetics, imaging and quantitative proteomics we uncover that ZMYND10 is a novel co-chaperone that confers specificity for the FKBP8-HSP90 chaperone complex towards axonemal dynein clients required for cilia motility. Loss of ZMYND10 perturbs the chaperoning of axonemal dynein heavy chains, triggering broader degradation of dynein motor subunits. We show that pharmacological inhibition of FKBP8 phenocopies dynein motor instability associated with the loss of ZMYND10 in airway cells and that human disease-causing variants of ZMYND10 disrupt its ability to act as an FKBP8-HSP90 co-chaperone. Our study indicates that Primary Ciliary Dyskinesia (PCD), caused by mutations in dynein assembly factors disrupting cytoplasmic pre-assembly of axonemal dynein motors, should be considered a cell-type specific protein-misfolding disease.

Funding information:
  • Medical Research Council - MRC_UU_12018/26()
  • NCI NIH HHS - R44 CA165312(United States)

Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin.

  • Lee JJ
  • J. Cell Biol.
  • 2018 May 7

Literature context:


Abstract:

The Parkinson's disease factors PINK1 and parkin are strongly implicated in stress-induced mitophagy in vitro, but little is known about their impact on basal mitophagy in vivo. We generated transgenic Drosophila melanogaster expressing fluorescent mitophagy reporters to evaluate the impact of Pink1/parkin mutations on basal mitophagy under physiological conditions. We find that mitophagy is readily detectable and abundant in many tissues, including Parkinson's disease-relevant dopaminergic neurons. However, we did not detect mitolysosomes in flight muscle. Surprisingly, in Pink1 or parkin null flies, we did not observe any substantial impact on basal mitophagy. Because these flies exhibit locomotor defects and dopaminergic neuron loss, our findings raise questions about current assumptions of the pathogenic mechanism associated with the PINK1/parkin pathway. Our findings provide evidence that Pink1 and parkin are not essential for bulk basal mitophagy in Drosophila They also emphasize that mechanisms underpinning basal mitophagy remain largely obscure.

Funding information:
  • Medical Research Council - MC_UP_1501/1()
  • NCI NIH HHS - CA111294(United States)

Mechanical Strain Determines Cilia Length, Motility, and Planar Position in the Left-Right Organizer.

  • Chien YH
  • Dev. Cell
  • 2018 May 7

Literature context:


Abstract:

The Xenopus left-right organizer (LRO) breaks symmetry along the left-right axis of the early embryo by producing and sensing directed ciliary flow as a patterning cue. To carry out this process, the LRO contains different ciliated cell types that vary in cilia length, whether they are motile or sensory, and how they position their cilia along the anterior-posterior (A-P) planar axis. Here, we show that these different cilia features are specified in the prospective LRO during gastrulation, based on anisotropic mechanical strain that is oriented along the A-P axis, and graded in levels along the medial-lateral axis. Strain instructs ciliated cell differentiation by acting on a mesodermal prepattern present at blastula stages, involving foxj1. We propose that differential strain is a graded, developmental cue, linking the establishment of an A-P planar axis to cilia length, motility, and planar location during formation of the Xenopus LRO.

Funding information:
  • Intramural NIH HHS - Z01-DK071044(United States)
  • NICHD NIH HHS - R01 HD092215()

The HCMV Assembly Compartment Is a Dynamic Golgi-Derived MTOC that Controls Nuclear Rotation and Virus Spread.

  • Procter DJ
  • Dev. Cell
  • 2018 Apr 9

Literature context:


Abstract:

Human cytomegalovirus (HCMV), a leading cause of congenital birth defects, forms an unusual cytoplasmic virion maturation site termed the "assembly compartment" (AC). Here, we show that the AC also acts as a microtubule-organizing center (MTOC) wherein centrosome activity is suppressed and Golgi-based microtubule (MT) nucleation is enhanced. This involved viral manipulation of discrete functions of MT plus-end-binding (EB) proteins. In particular, EB3, but not EB1 or EB2, was recruited to the AC and was required to nucleate MTs that were rapidly acetylated. EB3-regulated acetylated MTs were necessary for nuclear rotation prior to cell migration, maintenance of AC structure, and optimal virus replication. Independently, a myristoylated peptide that blocked EB3-mediated enrichment of MT regulatory proteins at Golgi regions of the AC also suppressed acetylated MT formation, nuclear rotation, and infection. Thus, HCMV offers new insights into the regulation and functions of Golgi-derived MTs and the therapeutic potential of targeting EB3.

Funding information:
  • NCI NIH HHS - R01 CA188427()
  • NHLBI NIH HHS - R01 HL103922()
  • NHLBI NIH HHS - T32 HL094290(United States)
  • NIAID NIH HHS - P30 AI117943()
  • NIAID NIH HHS - R01 AI101080()
  • NIGMS NIH HHS - P01 GM105536()

Neuronal expression of brain derived neurotrophic factor in the injured telencephalon of adult zebrafish.

  • Cacialli P
  • J. Comp. Neurol.
  • 2018 Mar 1

Literature context:


Abstract:

The reparative ability of the central nervous system varies widely in the animal kingdom. In the mammalian brain, the regenerative mechanisms are very limited and newly formed neurons do not survive longer, probably due to a non-suitable local environment. On the opposite, fish can repair the brain after injury, with fast and complete recovery of damaged area. The brain of zebrafish, a teleost fish widely used as vertebrate model, also possesses high regenerative properties after injury. Taking advantage of this relevant model, the aim of the present study was to investigate the role of brain-derived neurotrophic factor (BDNF) in the regenerative ability of adult brain, after stab wound telencephalic injury. BDNF is involved in many brain functions and plays key roles in the repair process after traumatic brain lesions. It has been reported that BDNF strengthens the proliferative activity of neuronal precursor cells, facilitates the neuronal migration toward injured areas, and shows survival properties due to its anti-apoptotic effects. BDNF mRNA levels, assessed by quantitative PCR and in situ hybridization at 1, 4, 7, and 15 days after the lesion, were increased in the damaged telencephalon, mostly suddenly after the lesion. Double staining using in situ hybridization and immunocytochemistry revealed that BDNF mRNA was restricted to cells identified as mature neurons. BDNF mRNA expressing neurons mostly increased in the area around the lesion, showing a peak 1 day after the lesion. Taken together, these results highlight the role of BDNF in brain repair processes and reinforce the value of zebrafish for the study of regenerative neurogenesis.

The HDAC6 Inhibitor Tubacin Induces Release of CD133+ Extracellular Vesicles From Cancer Cells.

  • Chao OS
  • J. Cell. Biochem.
  • 2018 Jan 2

Literature context:


Abstract:

Tumor-derived extracellular vesicles (EVs) are emerging as an important mode of intercellular communication, capable of transferring biologically active molecules that facilitate the malignant growth and metastatic process. CD133 (Prominin-1), a stem cell marker implicated in tumor initiation, differentiation and resistance to anti-cancer therapy, is reportedly associated with EVs in various types of cancer. However, little is known about the factors that regulate the release of these CD133+ EVs. Here, we report that the HDAC6 inhibitor tubacin promoted the extracellular release of CD133+ EVs from human FEMX-I metastatic melanoma and Caco-2 colorectal carcinoma cells, with a concomitant downregulation of intracellular CD133. This effect was specific for tubacin, as inhibition of HDAC6 deacetylase activity by another selective HDAC6 inhibitor, ACY-1215 or the pan-HDAC inhibitor trichostatin A (TSA), and knockdown of HDAC6 did not enhance the release of CD133+ EVs. The tubacin-induced EV release was associated with changes in cellular lipid composition, loss of clonogenic capacity and decrease in the ability to form multicellular aggregates. These findings indicate a novel potential anti-tumor mechanism for tubacin in CD133-expressing malignancies. J. Cell. Biochem. 118: 4414-4424, 2017. © 2017 Wiley Periodicals, Inc.

High diversity in neuropeptide immunoreactivity patterns among three closely related species of Dinophilidae (Annelida).

  • Kerbl A
  • J. Comp. Neurol.
  • 2017 Dec 1

Literature context:


Abstract:

Neuropeptides are conserved metazoan signaling molecules, and represent useful markers for comparative investigations on the morphology and function of the nervous system. However, little is known about the variation of neuropeptide expression patterns across closely related species in invertebrate groups other than insects. In this study, we compare the immunoreactivity patterns of 14 neuropeptides in three closely related microscopic dinophilid annelids (Dinophilus gyrociliatus, D. taeniatus and Trilobodrilus axi). The brains of all three species were found to consist of around 700 somata, surrounding a central neuropil with 3-5 ventral and 2-5 dorsal commissures. Neuropeptide immunoreactivity was detected in the brain, the ventral cords, stomatogastric nervous system, and additional nerves. Different neuropeptides are expressed in specific, non-overlapping cells in the brain in all three species. FMRFamide, MLD/pedal peptide, allatotropin, RNamide, excitatory peptide, and FVRIamide showed a broad localization within the brain, while calcitonin, SIFamide, vasotocin, RGWamide, DLamide, FLamide, FVamide, MIP, and serotonin were present in fewer cells in demarcated regions. The different markers did not reveal ganglionic subdivisions or physical compartmentalization in any of these microscopic brains. The non-overlapping expression of different neuropeptides may indicate that the regionalization in these uniform, small brains is realized by individual cells, rather than cell clusters, representing an alternative to the lobular organization observed in several macroscopic annelids. Furthermore, despite the similar gross brain morphology, we found an unexpectedly high variation in the expression patterns of neuropeptides across species. This suggests that neuropeptide expression evolves faster than morphology, representing a possible mechanism for the evolutionary divergence of behaviors.

mTORC1-Mediated Inhibition of 4EBP1 Is Essential for Hedgehog Signaling-Driven Translation and Medulloblastoma.

  • Wu CC
  • Dev. Cell
  • 2017 Dec 18

Literature context:


Abstract:

Mechanistic target of rapamycin (MTOR) cooperates with Hedgehog (HH) signaling, but the underlying mechanisms are incompletely understood. Here we provide genetic, biochemical, and pharmacologic evidence that MTOR complex 1 (mTORC1)-dependent translation is a prerequisite for HH signaling. The genetic loss of mTORC1 function inhibited HH signaling-driven growth of the cerebellum and medulloblastoma. Inhibiting translation or mTORC1 blocked HH signaling. Depleting 4EBP1, an mTORC1 target that inhibits translation, alleviated the dependence of HH signaling on mTORC1. Consistent with this, phosphorylated 4EBP1 levels were elevated in HH signaling-driven medulloblastomas in mice and humans. In mice, an mTORC1 inhibitor suppressed medulloblastoma driven by a mutant SMO that is inherently resistant to existing SMO inhibitors, prolonging the survival of the mice. Our study reveals that mTORC1-mediated translation is a key component of HH signaling and an important target for treating medulloblastoma and other cancers driven by HH signaling.

Funding information:
  • NCI NIH HHS - P30 CA021765()

Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways.

  • Sigg MA
  • Dev. Cell
  • 2017 Dec 18

Literature context:


Abstract:

Cilia are organelles specialized for movement and signaling. To infer when during evolution signaling pathways became associated with cilia, we characterized the proteomes of cilia from sea urchins, sea anemones, and choanoflagellates. We identified 437 high-confidence ciliary candidate proteins conserved in mammals and discovered that Hedgehog and G-protein-coupled receptor pathways were linked to cilia before the origin of bilateria and transient receptor potential (TRP) channels before the origin of animals. We demonstrated that candidates not previously implicated in ciliary biology localized to cilia and further investigated ENKUR, a TRP channel-interacting protein identified in the cilia of all three organisms. ENKUR localizes to motile cilia and is required for patterning the left-right axis in vertebrates. Moreover, mutation of ENKUR causes situs inversus in humans. Thus, proteomic profiling of cilia from diverse eukaryotes defines a conserved ciliary proteome, reveals ancient connections to signaling, and uncovers a ciliary protein that underlies development and human disease.

Funding information:
  • NIA NIH HHS - R01 AG027849(United States)
  • NIAMS NIH HHS - R01 AR054396()
  • NIGMS NIH HHS - R01 GM095941()

Zebrafish Regulatory T Cells Mediate Organ-Specific Regenerative Programs.

  • Hui SP
  • Dev. Cell
  • 2017 Dec 18

Literature context:


Abstract:

The attenuation of ancestral pro-regenerative pathways may explain why humans do not efficiently regenerate damaged organs. Vertebrate lineages that exhibit robust regeneration, including the teleost zebrafish, provide insights into the maintenance of adult regenerative capacity. Using established models of spinal cord, heart, and retina regeneration, we discovered that zebrafish Treg-like (zTreg) cells rapidly homed to damaged organs. Conditional ablation of zTreg cells blocked organ regeneration by impairing precursor cell proliferation. In addition to modulating inflammation, infiltrating zTreg cells stimulated regeneration through interleukin-10-independent secretion of organ-specific regenerative factors (Ntf3: spinal cord; Nrg1: heart; Igf1: retina). Recombinant regeneration factors rescued the regeneration defects associated with zTreg cell depletion, whereas Foxp3a-deficient zTreg cells infiltrated damaged organs but failed to express regenerative factors. Our data delineate organ-specific roles for Treg cells in maintaining pro-regenerative capacity that could potentially be harnessed for diverse regenerative therapies.

Funding information:
  • NIEHS NIH HHS - ES016005(United States)

HtrA1 Mediated Intracellular Effects on Tubulin Using a Polarized RPE Disease Model.

  • Melo E
  • EBioMedicine
  • 2017 Dec 23

Literature context:


Abstract:

Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss. The protein HtrA1 is enriched in retinal pigment epithelial (RPE) cells isolated from AMD patients and in drusen deposits. However, it is poorly understood how increased levels of HtrA1 affect the physiological function of the RPE at the intracellular level. Here, we developed hfRPE (human fetal retinal pigment epithelial) cell culture model where cells fully differentiated into a polarized functional monolayer. In this model, we fine-tuned the cellular levels of HtrA1 by targeted overexpression. Our data show that HtrA1 enzymatic activity leads to intracellular degradation of tubulin with a corresponding reduction in the number of microtubules, and consequently to an altered mechanical cell phenotype. HtrA1 overexpression further leads to impaired apical processes and decreased phagocytosis, an essential function for photoreceptor survival. These cellular alterations correlate with the AMD phenotype and thus highlight HtrA1 as an intracellular target for therapeutic interventions towards AMD treatment.

Funding information:
  • NCI NIH HHS - 2 R25CA090301-06(United States)

Notch Signaling Controls Transdifferentiation of Pulmonary Neuroendocrine Cells in Response to Lung Injury.

  • Yao E
  • Stem Cells
  • 2017 Nov 18

Literature context:


Abstract:

Production of an appropriate number of distinct cell types in precise locations during embryonic development is critical for proper tissue function. Homeostatic renewal or repair of damaged tissues in adults also requires cell expansion and transdifferentiation to replenish lost cells. However, the responses of diverse cell types to tissue injury are not fully elucidated. Moreover, the molecular mechanisms underlying transdifferentiation remain poorly understood. This knowledge is essential for harnessing the regenerative potential of individual cell types. This study investigated the fate of pulmonary neuroendocrine cells (PNECs) following lung damage to understand their plasticity and potential. PNECs are proposed to carry out diverse physiological functions in the lung and can also be the cells of origin of human small cell lung cancer. We found that Notch signaling is activated in proliferating PNECs in response to epithelial injury. Forced induction of high levels of Notch signaling in PNECs in conjunction with lung injury results in extensive proliferation and transdifferentiation of PNECs toward the fate of club cells, ciliated cells and goblet cells. Conversely, inactivating Notch signaling in PNECs abolishes their ability to switch cell fate following lung insult. We also established a connection between PNEC transdifferentiation and epigenetic modification mediated by the polycomb repressive complex 2 and inflammatory responses that involve the IL6-STAT3 pathway. These studies not only reveal a major pathway that controls PNEC fate change following lung injury but also provide tools to uncover the molecular basis of cell proliferation and fate determination in response to lung injury. Stem Cells 2018;36:377-391.

Funding information:
  • NIAID NIH HHS - R01 AI083450-04(United States)

Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons.

  • Scholz N
  • Elife
  • 2017 Aug 8

Literature context:


Abstract:

Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response.

Protein Interaction Analysis Provides a Map of the Spatial and Temporal Organization of the Ciliary Gating Zone.

  • Takao D
  • Curr. Biol.
  • 2017 Aug 7

Literature context:


Abstract:

The motility and signaling functions of the primary cilium require a unique protein and lipid composition that is determined by gating mechanisms localized at the base of the cilium. Several protein complexes localize to the gating zone and may regulate ciliary protein composition; however, the mechanisms of ciliary gating and the dynamics of the gating components are largely unknown. Here, we used the BiFC (bimolecular fluorescence complementation) assay and report for the first time on the protein-protein interactions that occur between ciliary gating components and transiting cargoes during ciliary entry. We find that the nucleoporin Nup62 and the C termini of the nephronophthisis (NPHP) proteins NPHP4 and NPHP5 interact with the axoneme-associated kinesin-2 motor KIF17 and thus spatially map to the inner region of the ciliary gating zone. Nup62 and NPHP4 exhibit rapid turnover at the transition zone and thus define dynamic components of the gate. We find that B9D1, AHI1, and the N termini of NPHP4 and NPHP5 interact with the transmembrane protein SSTR3 and thus spatially map to the outer region of the ciliary gating zone. B9D1, AHI1, and NPHP5 exhibit little to no turnover at the transition zone and thus define components of a stable gating structure. These data provide the first comprehensive map of the molecular orientations of gating zone components along the inner-to-outer axis of the ciliary gating zone. These results advance our understanding of the functional roles of gating zone components in regulating ciliary protein composition.

Funding information:
  • NIGMS NIH HHS - R01 GM116204()

Ciliary Hedgehog Signaling Restricts Injury-Induced Adipogenesis.

  • Kopinke D
  • Cell
  • 2017 Jul 13

Literature context:


Abstract:

Injured skeletal muscle regenerates, but with age or in muscular dystrophies, muscle is replaced by fat. Upon injury, muscle-resident fibro/adipogenic progenitors (FAPs) proliferated and gave rise to adipocytes. These FAPs dynamically produced primary cilia, structures that transduce intercellular cues such as Hedgehog (Hh) signals. Genetically removing cilia from FAPs inhibited intramuscular adipogenesis, both after injury and in a mouse model of Duchenne muscular dystrophy. Blocking FAP ciliation also enhanced myofiber regeneration after injury and reduced myofiber size decline in the muscular dystrophy model. Hh signaling through FAP cilia regulated the expression of TIMP3, a secreted metalloproteinase inhibitor, that inhibited MMP14 to block adipogenesis. A pharmacological mimetic of TIMP3 blocked the conversion of FAPs into adipocytes, pointing to a strategy to combat fatty degeneration of skeletal muscle. We conclude that ciliary Hh signaling by FAPs orchestrates the regenerative response to skeletal muscle injury.

Funding information:
  • NIAMS NIH HHS - R01 AR054396()
  • NIGMS NIH HHS - R01 GM095941()

Mutations in ARMC9, which Encodes a Basal Body Protein, Cause Joubert Syndrome in Humans and Ciliopathy Phenotypes in Zebrafish.

  • Van De Weghe JC
  • Am. J. Hum. Genet.
  • 2017 Jul 6

Literature context:


Abstract:

Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterized by hypotonia, ataxia, abnormal eye movements, and variable cognitive impairment. It is defined by a distinctive brain malformation known as the "molar tooth sign" on axial MRI. Subsets of affected individuals have malformations such as coloboma, polydactyly, and encephalocele, as well as progressive retinal dystrophy, fibrocystic kidney disease, and liver fibrosis. More than 35 genes have been associated with JS, but in a subset of families the genetic cause remains unknown. All of the gene products localize in and around the primary cilium, making JS a canonical ciliopathy. Ciliopathies are unified by their overlapping clinical features and underlying mechanisms involving ciliary dysfunction. In this work, we identify biallelic rare, predicted-deleterious ARMC9 variants (stop-gain, missense, splice-site, and single-exon deletion) in 11 individuals with JS from 8 families, accounting for approximately 1% of the disorder. The associated phenotypes range from isolated neurological involvement to JS with retinal dystrophy, additional brain abnormalities (e.g., heterotopia, Dandy-Walker malformation), pituitary insufficiency, and/or synpolydactyly. We show that ARMC9 localizes to the basal body of the cilium and is upregulated during ciliogenesis. Typical ciliopathy phenotypes (curved body shape, retinal dystrophy, coloboma, and decreased cilia) in a CRISPR/Cas9-engineered zebrafish mutant model provide additional support for ARMC9 as a ciliopathy-associated gene. Identifying ARMC9 mutations as a cause of JS takes us one step closer to a full genetic understanding of this important disorder and enables future functional work to define the central biological mechanisms underlying JS and other ciliopathies.

Funding information:
  • NHGRI NIH HHS - U54 HG006493()
  • NICHD NIH HHS - U54 HD083091()
  • NINDS NIH HHS - R01 NS050375()
  • NINDS NIH HHS - R01 NS064077()

Ciliomotor circuitry underlying whole-body coordination of ciliary activity in the Platynereis larva.

  • Verasztó C
  • Elife
  • 2017 May 16

Literature context:


Abstract:

Ciliated surfaces harbouring synchronously beating cilia can generate fluid flow or drive locomotion. In ciliary swimmers, ciliary beating, arrests, and changes in beat frequency are often coordinated across extended or discontinuous surfaces. To understand how such coordination is achieved, we studied the ciliated larvae of Platynereis dumerilii, a marine annelid. Platynereis larvae have segmental multiciliated cells that regularly display spontaneous coordinated ciliary arrests. We used whole-body connectomics, activity imaging, transgenesis, and neuron ablation to characterize the ciliomotor circuitry. We identified cholinergic, serotonergic, and catecholaminergic ciliomotor neurons. The synchronous rhythmic activation of cholinergic cells drives the coordinated arrests of all cilia. The serotonergic cells are active when cilia are beating. Serotonin inhibits the cholinergic rhythm, and increases ciliary beat frequency. Based on their connectivity and alternating activity, the catecholaminergic cells may generate the rhythm. The ciliomotor circuitry thus constitutes a stop-and-go pacemaker system for the whole-body coordination of ciliary locomotion.

Cholesterol Modification of Smoothened Is Required for Hedgehog Signaling.

  • Xiao X
  • Mol. Cell
  • 2017 Apr 6

Literature context:


Abstract:

Hedgehog (Hh) has been known as the only cholesterol-modified morphogen playing pivotal roles in development and tumorigenesis. A major unsolved question is how Hh signaling regulates the activity of Smoothened (SMO). Here, we performed an unbiased biochemical screen and identified that SMO was covalently modified by cholesterol on the Asp95 (D95) residue through an ester bond. This modification was inhibited by Patched-1 (Ptch1) but enhanced by Hh. The SMO(D95N) mutation, which could not be cholesterol modified, was refractory to Hh-stimulated ciliary localization and failed to activate downstream signaling. Furthermore, homozygous SmoD99N/D99N (the equivalent residue in mouse) knockin mice were embryonic lethal with severe cardiac defects, phenocopying the Smo-/- mice. Together, the results of our study suggest that Hh signaling transduces to SMO through modulating its cholesterylation and provides a therapeutic opportunity to treat Hh-pathway-related cancers by targeting SMO cholesterylation.

Non-nuclear Pool of Splicing Factor SFPQ Regulates Axonal Transcripts Required for Normal Motor Development.

  • Thomas-Jinu S
  • Neuron
  • 2017 Apr 19

Literature context:


Abstract:

Recent progress revealed the complexity of RNA processing and its association to human disorders. Here, we unveil a new facet of this complexity. Complete loss of function of the ubiquitous splicing factor SFPQ affects zebrafish motoneuron differentiation cell autonomously. In addition to its nuclear localization, the protein unexpectedly localizes to motor axons. The cytosolic version of SFPQ abolishes motor axonal defects, rescuing key transcripts, and restores motility in the paralyzed sfpq null mutants, indicating a non-nuclear processing role in motor axons. Novel variants affecting the conserved coiled-coil domain, so far exclusively found in fALS exomes, specifically affect the ability of SFPQ to localize in axons. They broadly rescue morphology and motility in the zebrafish mutant, but alter motor axon morphology, demonstrating functional requirement for axonal SFPQ. Altogether, we uncover the axonal function of the splicing factor SFPQ in motor development and highlight the importance of the coiled-coil domain in this process. VIDEO ABSTRACT.

YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis.

  • Lin C
  • Elife
  • 2017 Mar 21

Literature context:


Abstract:

Branching morphogenesis is a fundamental program for tissue patterning. We show that active YAP, a key mediator of Hippo signaling, is distributed throughout the murine lung epithelium and loss of epithelial YAP severely disrupts branching. Failure to branch is restricted to regions where YAP activity is removed. This suggests that YAP controls local epithelial cell properties. In support of this model, mechanical force production is compromised and cell proliferation is reduced in Yap mutant lungs. We propose that defective force generation and insufficient epithelial cell number underlie the branching defects. Through genomic analysis, we also uncovered a feedback control of pMLC levels, which is critical for mechanical force production, likely through the direct induction of multiple regulators by YAP. Our work provides a molecular pathway that could control epithelial cell properties required for proper morphogenetic movement and pattern formation.

Funding information:
  • NINDS NIH HHS - K99 NS097627()

5-hydroxymethylcytosine marks postmitotic neural cells in the adult and developing vertebrate central nervous system.

  • Diotel N
  • J. Comp. Neurol.
  • 2017 Feb 15

Literature context:


Abstract:

The epigenetic mark 5-hydroxymethylcytosine (5hmC) is a cytosine modification that is abundant in the central nervous system of mammals and which results from 5-methylcytosine oxidation by TET enzymes. Such a mark is suggested to play key roles in the regulation of chromatin structure and gene expression. However, its precise functions still remain poorly understood and information about its distribution in non-mammalian species is still lacking. Here, the distribution of 5hmC was investigated in the brain of adult zebrafish, African claw frog, and mouse in a comparative manner. We show that zebrafish neurons are endowed with high levels of 5hmC, whereas quiescent or proliferative neural progenitors show low to undetectable levels of the modified cytosine. In the brain of larval and juvenile Xenopus, 5hmC is also detected in neurons, while ventricular proliferative cells do not display this epigenetic mark. Similarly, 5hmC is enriched in neurons compared to neural progenitors of the ventricular zone in the mouse developing cortex. Interestingly, 5hmC colocalized with the methylated DNA binding protein MeCP2 and with the active chromatin histone modification H3K4me2 in mouse neurons. Taken together, our results show an evolutionarily conserved cerebral distribution of 5hmC between fish and tetrapods and reinforce the idea that 5hmC fulfills major functions in the control of chromatin activity in vertebrate neurons. J. Comp. Neurol. 525:478-497, 2017. © 2016 Wiley Periodicals, Inc.

MAP7 Regulates Axon Collateral Branch Development in Dorsal Root Ganglion Neurons.

  • Tymanskyj SR
  • J. Neurosci.
  • 2017 Feb 8

Literature context:


Abstract:

Collateral branches from axons are key components of functional neural circuits that allow neurons to connect with multiple synaptic targets. Like axon growth and guidance, formation of collateral branches depends on the regulation of microtubules, but how such regulation is coordinated to ensure proper circuit development is not known. Based on microarray analysis, we have identified a role for microtubule-associated protein 7 (MAP7) during collateral branch development of dorsal root ganglion (DRG) sensory neurons. We show that MAP7 is expressed at the onset of collateral branch formation. Perturbation of its expression by overexpression or shRNA knockdown alters axon branching in cultured DRG neurons. Localization and time-lapse imaging analysis reveals that MAP7 is enriched at branch points and colocalizes with stable microtubules, but enters the new branch with a delay, suggesting a role in branch maturation. We have also investigated a spontaneous mutant mouse that expresses a truncated MAP7 and found a gain-of-function phenotype both in vitro and in vivo Further domain analysis suggests that the amino half of MAP7 is responsible for branch formation, suggesting a mechanism that is independent of its known interaction with kinesin. Moreover, this mouse exhibits increased pain sensitivity, a phenotype that is consistent with increased collateral branch formation. Therefore, our study not only uncovers the first neuronal function of MAP7, but also demonstrates the importance of proper microtubule regulation in neural circuit development. Furthermore, our data provide new insights into microtubule regulation during axonal morphogenesis and may shed light on MAP7 function in neurological disorders.SIGNIFICANCE STATEMENT Neurons communicate with multiple targets by forming axonal branches. In search of intrinsic factors that control collateral branch development, we identified a role for microtubule-associated protein 7 (MAP7) in dorsal root ganglion sensory neurons. We show that MAP7 expression is developmentally regulated and perturbation of this expression alters branch formation. Cell biological analysis indicates that MAP7 promotes branch maturation. Analysis of a spontaneous mouse mutant suggests a molecular mechanism for branch regulation and the potential influence of collateral branches on pain sensitivity. Our studies thus establish the first neuronal function of MAP7 and demonstrate its role in branch morphogenesis and neural circuit function. These findings may help in our understanding of the contribution of MAP7 to neurological disorders and nerve regeneration.

Funding information:
  • NINDS NIH HHS - R01 NS062047()

The evolutionary origin of bilaterian smooth and striated myocytes.

  • Brunet T
  • Elife
  • 2016 Dec 1

Literature context:


Abstract:

The dichotomy between smooth and striated myocytes is fundamental for bilaterian musculature, but its evolutionary origin is unsolved. In particular, interrelationships of visceral smooth muscles remain unclear. Absent in fly and nematode, they have not yet been characterized molecularly outside vertebrates. Here, we characterize expression profile, ultrastructure, contractility and innervation of the musculature in the marine annelid Platynereis dumerilii and identify smooth muscles around the midgut, hindgut and heart that resemble their vertebrate counterparts in molecular fingerprint, contraction speed and nervous control. Our data suggest that both visceral smooth and somatic striated myocytes were present in the protostome-deuterostome ancestor and that smooth myocytes later co-opted the striated contractile module repeatedly - for example, in vertebrate heart evolution. During these smooth-to-striated myocyte conversions, the core regulatory complex of transcription factors conveying myocyte identity remained unchanged, reflecting a general principle in cell type evolution.

Characterization of multiciliated ependymal cells that emerge in the neurogenic niche of the aged zebrafish brain.

  • Ogino T
  • J. Comp. Neurol.
  • 2016 Oct 15

Literature context:


Abstract:

In mammals, ventricular walls of the developing brain maintain a neurogenic niche, in which radial glial cells act as neural stem cells (NSCs) and generate new neurons in the embryo. In the adult brain, the neurogenic niche is maintained in the ventricular-subventricular zone (V-SVZ) of the lateral wall of lateral ventricles and the hippocampal dentate gyrus. In the neonatal V-SVZ, radial glial cells transform into astrocytic postnatal NSCs and multiciliated ependymal cells. On the other hand, in zebrafish, radial glial cells continue to cover the surface of the adult telencephalic ventricle and maintain a higher neurogenic potential in the adult brain. However, the cell composition of the neurogenic niche of the aged zebrafish brain has not been investigated. Here we show that multiciliated ependymal cells emerge in the neurogenic niche of the aged zebrafish telencephalon. These multiciliated cells appear predominantly in the dorsal part of the ventral telencephalic ventricular zone, which also contains clusters of migrating new neurons. Scanning electron microscopy and live imaging analyses indicated that these multiple cilia beat coordinately and generate constant fluid flow within the ventral telencephalic ventricle. Analysis of the cell composition by transmission electron microscopy revealed that the neurogenic niche in the aged zebrafish contains different types of cells, with ultrastructures similar to those of ependymal cells, transit-amplifying cells, and migrating new neurons in postnatal mice. These data suggest that the transformation capacity of radial glial cells is conserved but that its timing is different between fish and mice. J. Comp. Neurol. 524:2982-2992, 2016. © 2016 Wiley Periodicals, Inc.

Independent modes of ganglion cell translocation ensure correct lamination of the zebrafish retina.

  • Icha J
  • J. Cell Biol.
  • 2016 Oct 24

Literature context:


Abstract:

The arrangement of neurons into distinct layers is critical for neuronal connectivity and function. During development, most neurons move from their birthplace to the appropriate layer, where they polarize. However, kinetics and modes of many neuronal translocation events still await exploration. In this study, we investigate retinal ganglion cell (RGC) translocation across the embryonic zebrafish retina. After completing their translocation, RGCs establish the most basal retinal layer where they form the optic nerve. Using in toto light sheet microscopy, we show that somal translocation of RGCs is a fast and directed event. It depends on basal process attachment and stabilized microtubules. Interestingly, interference with somal translocation induces a switch to multipolar migration. This multipolar mode is less efficient but still leads to successful RGC layer formation. When both modes are inhibited though, RGCs fail to translocate and induce lamination defects. This indicates that correct RGC translocation is crucial for subsequent retinal lamination.

Funding information:
  • NEI NIH HHS - R01 EY020535(United States)

Ciliary transcription factors and miRNAs precisely regulate Cp110 levels required for ciliary adhesions and ciliogenesis.

  • Walentek P
  • Elife
  • 2016 Sep 13

Literature context:


Abstract:

Upon cell cycle exit, centriole-to-basal body transition facilitates cilia formation. The centriolar protein Cp110 is a regulator of this process and cilia inhibitor, but its positive roles in ciliogenesis remain poorly understood. Using Xenopus we show that Cp110 inhibits cilia formation at high levels, while optimal levels promote ciliogenesis. Cp110 localizes to cilia-forming basal bodies and rootlets, and is required for ciliary adhesion complexes that facilitate Actin interactions. The opposing roles of Cp110 in ciliation are generated in part by coiled-coil domains that mediate preferential binding to centrioles over rootlets. Because of its dual role in ciliogenesis, Cp110 levels must be precisely controlled. In multiciliated cells, this is achieved by both transcriptional and post-transcriptional regulation through ciliary transcription factors and microRNAs, which activate and repress cp110 to produce optimal Cp110 levels during ciliogenesis. Our data provide novel insights into how Cp110 and its regulation contribute to development and cell function.

Funding information:
  • European Research Council - 293681(International)

Erratum to: Rectocutaneous fistula with transmigration of the suture: a rare delayed complication of vault fixation with the sacrospinous ligament.

  • Kadam PD
  • Int Urogynecol J
  • 2016 Mar 25

Literature context:


Abstract:

There was an oversight in the Authorship of a recent Images in Urogynecology article titled: Rectocutaneous fistula with transmigration of the suture: a rare delayed complication of vault fixation with the sacrospinous ligament (DOI 10.1007/ s00192-015-2823-5). We would like to include Adj A/P Han How Chuan’s name in the list of authors. Adj A/P Han is a Senior Consultant and Department Head of Urogynaecology at the KK Hospital for Women and Children, Singapore.

Funding information:
  • NHGRI NIH HHS - R01HG005855(United States)

Morphology, innervation, and peripheral sensory cells of the siphon of aplysia californica.

  • Carrigan ID
  • J. Comp. Neurol.
  • 2015 Nov 1

Literature context:


Abstract:

The siphon of Aplysia californica has several functions, including involvement in respiration, excretion, and defensive inking. It also provides sensory input for defensive withdrawals that have been studied extensively to examine mechanisms that underlie learning. To better understand the neuronal bases of these functions, we used immunohistochemistry to catalogue peripheral cell types and innervation of the siphon in stage 12 juveniles (chosen to allow observation of tissues in whole-mounts). We found that the siphon nerve splits into three major branches, leading ultimately to a two-part FMRFamide-immunoreactive plexus and an apparently separate tyrosine hydroxylase-immunoreactive plexus. Putative sensory neurons included four distinct types of tubulin-immunoreactive bipolar cells (one likely also tyrosine hydroxylase immunoreactive) that bore ciliated dendrites penetrating the epithelium. A fifth bipolar neuron type (tubulin- and FMRFamide-immunoreactive) occurred deeper in the tissue, associated with part of the FMRFamide-immunoreactive plexus. Our observations emphasize the structural complexity of the peripheral nervous system of the siphon, and the importance of direct tests of the various components to better understand the functioning of the entire organ, including its role in defensive withdrawal responses.

Funding information:
  • NEI NIH HHS - T32 EY024234(United States)

Neuronal Organization of the Brain in the Adult Amphioxus (Branchiostoma lanceolatum): A Study With Acetylated Tubulin Immunohistochemistry.

  • Castro A
  • J. Comp. Neurol.
  • 2015 Oct 15

Literature context:


Abstract:

Amphioxus (Cephalochordata) belongs to the most basal extant chordates, and knowledge of their brain organization appears to be key to deciphering the early stages of evolution of vertebrate brains. Most comprehensive studies of the organization of the central nervous system of adult amphioxus have investigated the spinal cord. Some brain populations have been characterized via neurochemistry and electron microscopy, and the overall cytoarchitecture of the brain was studied by Ekhart et al. (2003; J. Comp. Neurol. 466:319-330) with general staining methods and retrograde transport from the spinal cord. Here, the cytoarchitecture of the brain of adult amphioxus Branchiostoma lanceolatum was reinvestigated by using acetylated tubulin immunohistochemistry, which specifically stains neurons and fibers, in combination with some ancillary methods. This method allowed reproducible staining and mapping of types of neuron, mostly in brain regions caudal to the entrance level of nerve 2, and its comparison with spinal cord populations. The brain populations studied and discussed in detail were the Retzius bipolar cells, lamellate cells, Joseph cells, various types of translumenal cells, somatic motoneurons, Rohde nucleus cells, small ventral multipolar neurons, and Edinger cells. These observations expand our knowledge of the distribution of cell types and provide additional data on the number of cells and the axonal tracts and commissural regions of the adult amphioxus brain. The results of this comprehensive study provide a framework for comparison of complex adult populations with the early brain neuronal populations revealed in developmental studies of the amphioxus.

Funding information:
  • Canadian Institutes of Health Research - MOP-38854(Canada)
  • NEI NIH HHS - R01 EY022157-01(United States)

Evolution of pigment-dispersing factor neuropeptides in Panarthropoda: Insights from Onychophora (velvet worms) and Tardigrada (water bears).

  • Mayer G
  • J. Comp. Neurol.
  • 2015 Sep 1

Literature context:


Abstract:

Pigment-dispersing factor (PDF) denotes a conserved family of homologous neuropeptides present in several invertebrate groups, including mollusks, nematodes, insects, and crustaceans (referred to here as pigment-dispersing hormone [PDH]). With regard to their encoding genes (pdf, pdh), insects possess only one, nematodes two, and decapod crustaceans up to three, but their phylogenetic relationship is unknown. To shed light on the origin and diversification of pdf/pdh homologs in Panarthropoda (Onychophora + Tardigrada + Arthropoda) and other molting animals (Ecdysozoa), we analyzed the transcriptomes of five distantly related onychophorans and a representative tardigrade and searched for putative pdf homologs in publically available genomes of other protostomes. This revealed only one pdf homolog in several mollusk and annelid species; two in Onychophora, Priapulida, and Nematoda; and three in Tardigrada. Phylogenetic analyses suggest that the last common ancestor of Panarthropoda possessed two pdf homologs, one of which was lost in the arthropod or arthropod/tardigrade lineage, followed by subsequent duplications of the remaining homolog in some taxa. Immunolocalization of PDF-like peptides in six onychophoran species, by using a broadly reactive antibody that recognizes PDF/PDH peptides in numerous species, revealed an elaborate system of neurons and fibers in their central and peripheral nervous systems. Large varicose projections in the heart suggest that the PDF neuropeptides functioned as both circulating hormones and locally released transmitters in the last common ancestor of Onychophora and Arthropoda. The lack of PDF-like-immunoreactive somata associated with the onychophoran optic ganglion conforms to the hypothesis that onychophoran eyes are homologous to the arthropod median ocelli.

Intrinsic and extrinsic innervation of the heart in zebrafish (Danio rerio).

  • Stoyek MR
  • J. Comp. Neurol.
  • 2015 Aug 1

Literature context:


Abstract:

In the vertebrate heart the intracardiac nervous system is the final common pathway for autonomic control of cardiac output, but the neuroanatomy of this system is not well understood. In this study we investigated the innervation of the heart in a model vertebrate, the zebrafish. We used antibodies against acetylated tubulin, human neuronal protein C/D, choline acetyltransferase, tyrosine hydroxylase, neuronal nitric oxide synthase, and vasoactive intestinal polypeptide to visualize neural elements and their neurotransmitter content. Most neurons were located at the venous pole in a plexus around the sinoatrial valve; mean total number of cells was 197 ± 23, and 92% were choline acetyltransferase positive, implying a cholinergic role. The plexus contained cholinergic, adrenergic, and nitrergic axons and vasoactive intestinal polypeptide-positive terminals, some innervating somata. Putative pacemaker cells near the plexus showed immunoreactivity for hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) and the transcription factor Islet-1 (Isl1). The neurotracer neurobiotin showed that extrinsic axons from the left and right vagosympathetic trunks innervated the sinoatrial plexus proximal to their entry into the heart; some extrinsic axons from each trunk also projected into the medial dorsal plexus region. Extrinsic axons also innervated the atrial and ventricular walls. An extracardiac nerve trunk innervated the bulbus arteriosus and entered the arterial pole of the heart to innervate the proximal ventricle. We have shown that the intracardiac nervous system in the zebrafish is anatomically and neurochemically complex, providing a substrate for autonomic control of cardiac effectors in all chambers.

The gyri of the octopus vertical lobe have distinct neurochemical identities.

  • Shigeno S
  • J. Comp. Neurol.
  • 2015 Jun 15

Literature context:


Abstract:

The cephalopod vertical lobe is the largest learning and memory structure known in invertebrate nervous systems. It is part of the visual learning circuit of the central brain, which also includes the superior frontal and subvertical lobes. Despite the well-established functional importance of this system, little is known about neuropil organization of these structures and there is to date no evidence that the five longitudinal gyri of the vertical lobe, perhaps the most distinctive morphological feature of the octopus brain, differ in their connections or molecular identities. We studied the histochemical organization of these structures in hatchling and adult Octopus bimaculoides brains with immunostaining for serotonin, octopus gonadotropin-releasing hormone (oGNRH), and octopressin-neurophysin (OP-NP). Our major finding is that the five lobules forming the vertical lobe gyri have distinct neurochemical signatures. This is most prominent in the hatchling brain, where the median and mediolateral lobules are enriched in OP-NP fibers, the lateral lobule is marked by oGNRH innervation, and serotonin immunostaining heavily labels the median and lateral lobules. A major source of input to the vertical lobe is the superior frontal lobe, which is dominated by a neuropil of interweaving fiber bundles. We have found that this neuropil also has an intrinsic neurochemical organization: it is partitioned into territories alternately enriched or impoverished in oGNRH-containing fascicles. Our findings establish that the constituent lobes of the octopus superior frontal-vertical system have an intricate internal anatomy, one likely to reflect the presence of functional subsystems within cephalopod learning circuitry.

Funding information:
  • Intramural NIH HHS - (United States)
  • NINDS NIH HHS - T32 NS007484(United States)

A comparative examination of neural circuit and brain patterning between the lamprey and amphioxus reveals the evolutionary origin of the vertebrate visual center.

  • Suzuki DG
  • J. Comp. Neurol.
  • 2015 Feb 1

Literature context:


Abstract:

Vertebrates are equipped with so-called camera eyes, which provide them with image-forming vision. Vertebrate image-forming vision evolved independently from that of other animals and is regarded as a key innovation for enhancing predatory ability and ecological success. Evolutionary changes in the neural circuits, particularly the visual center, were central for the acquisition of image-forming vision. However, the evolutionary steps, from protochordates to jaw-less primitive vertebrates and then to jawed vertebrates, remain largely unknown. To bridge this gap, we present the detailed development of retinofugal projections in the lamprey, the neuroarchitecture in amphioxus, and the brain patterning in both animals. Both the lateral eye in larval lamprey and the frontal eye in amphioxus project to a light-detecting visual center in the caudal prosencephalic region marked by Pax6, which possibly represents the ancestral state of the chordate visual system. Our results indicate that the visual system of the larval lamprey represents an evolutionarily primitive state, forming a link from protochordates to vertebrates and providing a new perspective of brain evolution based on developmental mechanisms and neural functions.

Funding information:
  • NIAMS NIH HHS - R01 AR057759(United States)

Retrograde intraciliary trafficking of opsin during the maintenance of cone-shaped photoreceptor outer segments of Xenopus laevis.

  • Tian G
  • J. Comp. Neurol.
  • 2014 Nov 1

Literature context:


Abstract:

Photoreceptor outer segments (OSs) are essential for our visual perception, and take either rod or cone forms. The cell biological basis for the formation of rods is well established; however, the mechanism of cone formation is ill characterized. While Xenopus rods are called rods, they exhibit cone-shaped OSs during the early process of development. To visualize the dynamic reorganization of disk membranes, opsin and peripherin/rds were fused to a fluorescent protein, Dendra2, and expressed in early developing rod photoreceptors, in which OSs are still cone-shaped. Dendra2 is a fluorescent protein which can be converted from green to red irreversibly, and thus allows spatiotemporal labeling of proteins. Using a photoconversion technique, we found that disk membranes are assembled at the base of cone-shaped OSs. After incorporation into disks, however, Opsin-Dendra2 was also trafficked from old to new disk membranes, consistent with the hypothesis that retrograde trafficking of membrane components contributes to the larger disk membrane observed toward the base of the cone-shaped OS. Such retrograde trafficking is cargo-specific and was not observed for peripherin/rds-Dendra2. The trafficking is unlikely mediated by diffusion, since the disk membranes have a closed configuration, as evidenced by CNGA1 labeling of the plasma membrane. Consistent with retrograde trafficking, the axoneme, which potentially mediates retrograde intraflagellar trafficking, runs through the entire axis of OSs. This study provides an insight into the role of membrane reorganization in developing photoreceptor OSs, and proves that retrograde trafficking of membrane cargoes can occur there.

Funding information:
  • NINDS NIH HHS - R01 NS3900(United States)

Clarin-1 acts as a modulator of mechanotransduction activity and presynaptic ribbon assembly.

  • Ogun O
  • J. Cell Biol.
  • 2014 Nov 10

Literature context:


Abstract:

Clarin-1 is a four-transmembrane protein expressed by hair cells and photoreceptors. Mutations in its corresponding gene are associated with Usher syndrome type 3, characterized by late-onset and progressive hearing and vision loss in humans. Mice carrying mutations in the clarin-1 gene have hair bundle dysmorphology and a delay in synapse maturation. In this paper, we examined the expression and function of clarin-1 in zebrafish hair cells. We observed protein expression as early as 1 d postfertilization. Knockdown of clarin-1 resulted in inhibition of FM1-43 incorporation, shortening of the kinocilia, and mislocalization of ribeye b clusters. These phenotypes were fully prevented by co-injection with clarin-1 transcript, requiring its C-terminal tail. We also observed an in vivo interaction between clarin-1 and Pcdh15a. Altogether, our results suggest that clarin-1 is functionally important for mechanotransduction channel activity and for proper localization of synaptic components, establishing a critical role for clarin-1 at the apical and basal poles of hair cells.

Expression of G proteins in the olfactory receptor neurons of the newt Cynops pyrrhogaster: their unique projection into the olfactory bulbs.

  • Nakada T
  • J. Comp. Neurol.
  • 2014 Oct 15

Literature context:


Abstract:

We analyzed the expression of G protein α subunits and the axonal projection into the brain in the olfactory system of the semiaquatic newt Cynops pyrrhogaster by immunostaining with antibodies against Gαolf and Gαo , by in situ hybridization using probes for Gαolf , Gαo , and Gαi2 , and by neuronal tracing with DiI and DiA. The main olfactory epithelium (OE) consists of two parts, the ventral OE and dorsal OE. In the ventral OE, the Gαolf - and Gαo -expressing neurons are located in the apical and basal zone of the OE, respectively. This zonal expression was similar to that of the OE in the middle cavity of the fully aquatic toad Xenopus laevis. However, the Gαolf - and Gαo -expressing neurons in the newt ventral OE project their axons toward the main olfactory bulb (MOB) and the accessory olfactory bulb (AOB), respectively, whereas in Xenopus, the axons of both neurons project solely toward the MOB. In the dorsal OE of the newt, as in the principal cavity of Xenopus, the majority of the neurons express Gαolf and extend their axons into the MOB. In the vomeronasal organ (VNO), the neurons mostly express Gαo . These neurons and quite a few Gαolf -expressing neurons project their axons toward the AOB. This feature is similar to that in the terrestrial toad Bufo japonicus and is different from that in Xenopus, in which VNO neurons express solely Gαo , although their axons invariably project toward the AOB. We discuss the findings in the light of diversification and evolution of the vertebrate olfactory system.

Submembrane assembly and renewal of rod photoreceptor cGMP-gated channel: insight into the actin-dependent process of outer segment morphogenesis.

  • Nemet I
  • J. Neurosci.
  • 2014 Jun 11

Literature context:


Abstract:

The photoreceptor outer segment (OS) is comprised of two compartments: plasma membrane (PM) and disk membranes. It is unknown how the PM renewal is coordinated with that of the disk membranes. Here we visualized the localization and trafficking process of rod cyclic nucleotide-gated channel α-subunit (CNGA1), a PM component essential for phototransduction. The localization was visualized by fusing CNGA1 to a fluorescent protein Dendra2 and expressing in Xenopus laevis rod photoreceptors. Dendra2 allowed us to label CNGA1 in a spatiotemporal manner and therefore discriminate between old and newly trafficked CNGA1-Dendra2 in the OS PM. Newly synthesized CNGA1 was preferentially trafficked to the basal region of the lateral OS PM where newly formed and matured disks are also added. Unique trafficking pattern and diffusion barrier excluded CNGA1 from the PM domains, which are the proposed site of disk membrane maturation. Such distinct compartmentalization allows the confinement of cyclic nucleotide-gated channel in the PM, while preventing the disk membrane incorporation. Cytochalasin D and latrunculin A treatments, which are known to disrupt F-actin-dependent disk membrane morphogenesis, prevented the entrance of newly synthesized CNGA1 to the OS PM, but did not prevent the entrance of rhodopsin and peripherin/rds to the membrane evaginations believed to be disk membrane precursors. Uptake of rhodopsin and peripherin/rds coincided with the overgrowth of the evaginations at the base of the OS. Thus F-actin is essential for the trafficking of CNGA1 to the ciliary PM, and coordinates the formations of disk membrane rim region and OS PM.

Regional innervation of the heart in the goldfish, Carassius auratus: a confocal microscopy study.

  • Newton CM
  • J. Comp. Neurol.
  • 2014 Feb 1

Literature context:


Abstract:

The intracardiac nervous system represents the final common pathway for autonomic control of the vertebrate heart in maintaining cardiovascular homeostasis. In teleost fishes, details of the organization of this system are not well understood. Here we investigated innervation patterns in the heart of the goldfish, a species representative of a large group of cyprinids. We used antibodies against the neuronal markers zn-12, acetylated tubulin, and human neuronal protein C/D, as well as choline acetyltransferase, tyrosine hydroxylase, nitric oxide synthetase, and vasoactive intestinal polypeptide (VIP) to detect neural elements and their transmitter contents in wholemounts and sections of cardiac tissue. All chambers of the heart were innervated by choline acetyltransferase-positive axons, implying cholinergic regulation; and by tyrosine hydroxylase-containing axons, implying adrenergic regulation. The mean total number of intracardiac neurons was 713 ± 78 (SE), nearly half of which were cholinergic. Neuronal somata were mainly located in a ganglionated plexus around the sinoatrial valves. Somata were contacted by cholinergic, adrenergic, nitrergic, and VIP-positive terminals. Putative pacemaker cells, identified by immunoreactivity for hyperpolarization activated, cyclic nucleotide-gated channel 4, were located in the base of the sinoatrial valves, and this region was densely innervated by cholinergic and adrenergic terminals. We have shown that the goldfish heart possesses the necessary neuroanatomical substrate for fine, region-by-region autonomic control of the myocardial effectors that are involved in determining cardiac output.

Evolutionary divergence of trigeminal nerve somatotopy in amniotes.

  • Rhinn M
  • J. Comp. Neurol.
  • 2013 Apr 15

Literature context:


Abstract:

The trigeminal circuit relays somatosensory input from the face into the central nervous system. In central nuclei, the spatial arrangement of neurons reproduces the physical distribution of peripheral receptors, thus generating a somatotopic facial map during development. In mice, the ophthalmic, maxillary, and mandibular trigeminal nerve branches maintain a somatotopic segregation and generate spatially organized patterns of connectivity within hindbrain target nuclei. To investigate conservation of somatotopic organization, we compared trigeminal nerve organization in turtle, chick, and mouse embryos. We found that, in the turtle, mandibular and maxillary ganglion neuron rostrocaudal segregation and trigeminal tract somatotopy are similar to mouse. In contrast, chick mandibular ganglion neurons are located rostrally to maxillary neurons, with some intermingling, supporting previous observations (Noden [1980], J Comp Neurol 190:429-444). This organization results in an inversion of the relative positions and less precise axonal sorting of the maxillary and mandibular branches within the trigeminal tract, as compared to mouse and turtle. Moreover, using the turtle and chick orthologs of Drg11 in combination with Hoxa2 expression and axonal tracings from the periphery, we mapped the chick PrV nucleus position to rhombomere 1, confirming previous studies (Marin and Puelles [1995], Eur J Neurosci 7:1714-1738) and in contrast to mouse PrV, which mainly maps to rhombomere 2-3 (Oury et al. [2006], Science 313:1408-1413). Thus, somatotopy of trigeminal ganglion and nerve organization is only partially conserved through amniote evolution, possibly in relation to the modification of facial somatosensory structures and morphologies.

Funding information:
  • NEI NIH HHS - P30 EY010608(United States)
  • NIEHS NIH HHS - R01ES020260(United States)

Synaptic alterations in the rTg4510 mouse model of tauopathy.

  • Kopeikina KJ
  • J. Comp. Neurol.
  • 2013 Apr 15

Literature context:


Abstract:

Synapse loss, rather than the hallmark amyloid-β (Aβ) plaques or tau-filled neurofibrillary tangles (NFT), is considered the most predictive pathological feature associated with cognitive status in the Alzheimer's disease (AD) brain. The role of Aβ in synapse loss is well established, but despite data linking tau to synaptic function, the role of tau in synapse loss remains largely undetermined. Here we test the hypothesis that human mutant P301L tau overexpression in a mouse model (rTg4510) will lead to age-dependent synaptic loss and dysfunction. Using array tomography and two methods of quantification (automated, threshold-based counting and a manual stereology-based technique) we demonstrate that overall synapse density is maintained in the neuropil, implicating synapse loss commensurate with the cortical atrophy known to occur in this model. Multiphoton in vivo imaging reveals close to 30% loss of apical dendritic spines of individual pyramidal neurons, suggesting these cells may be particularly vulnerable to tau-induced degeneration. Postmortem, we confirm the presence of tau in dendritic spines of rTg4510-YFP mouse brain by array tomography. These data implicate tau-induced loss of a subset of synapses that may be accompanied by compensatory increases in other synaptic subtypes, thereby preserving overall synapse density. Biochemical fractionation of synaptosomes from rTg4510 brain demonstrates a significant decrease in expression of several synaptic proteins, suggesting a functional deficit of remaining synapses in the rTg4510 brain. Together, these data show morphological and biochemical synaptic consequences in response to tau overexpression in the rTg4510 mouse model.

Funding information:
  • Wellcome Trust - (United Kingdom)

Neurosensory and neuromuscular organization in tube feet of the sea urchin Strongylocentrotus purpuratus.

  • Agca C
  • J. Comp. Neurol.
  • 2011 Dec 1

Literature context:


Abstract:

Several behavioral and electrophysiological studies indicate that all classes of echinoderms, including Echinoidia, the class to which sea urchins belong, are photosensitive and exhibit complex behavioral responses to light or changes in light intensity. However, no discrete photosensitive structure has been identified in sea urchins. The purpose of this study was to provide new insights into eye evolution by determining whether distinct photosensory structures are present in adult sea urchins. Recently, we showed that the Strongylocentrotus purpuratus genome contains orthologs of many mammalian retinal genes and that these genes are expressed in tube feet, suggesting the presence of photoreceptor neurons. To determine whether this is so, we identified several features of tube feet that relate to a possible invertebrate phototransduction system. We show that rhabdomeric opsin is expressed severalfold higher within the disk region of the tube feet and is the most abundant opsin. Immunostaining identified βIII-tubulin-expressing cells at the periphery of disk in the vicinity of the synaptotagmin-expressing nerve fibers. We also showed that Pax6 expression in the disk was restricted to the periphery, where small clusters of putative sensory neurons reside. Our results reveal neuromuscular organization of the tube foot neuromuscular system. They further support earlier studies suggesting the presence of a photosensory system in tube feet.

Funding information:
  • NHLBI NIH HHS - T32 HL007627(United States)

Complex neural architecture in the diploblastic larva of Clava multicornis (Hydrozoa, Cnidaria).

  • Piraino S
  • J. Comp. Neurol.
  • 2011 Jul 1

Literature context:


Abstract:

The organization of the cnidarian nervous system has been widely documented in polyps and medusae, but little is known about the nervous system of planula larvae, which give rise to adult forms after settling and metamorphosis. We describe histological and cytological features of the nervous system in planulae of the hydrozoan Clava multicornis. These planulae do not swim freely in the water column but rather crawl on the substrate by means of directional, coordinated ciliary movement coupled to lateral muscular bending movements associated with positive phototaxis. Histological analysis shows pronounced anteroposterior regionalization of the planula's nervous system, with different neural cell types highly concentrated at the anterior pole. Transmission electron microscopy of planulae shows the nervous system to be unusually complex, with a large, orderly array of sensory cells at the anterior pole. In the anterior half of the planula, the basiectodermal plexus of neurites forms an extensive orthogonal network, whereas more posteriorly neurites extend longitudinally along the body axis. Additional levels of nervous system complexity are uncovered by neuropeptide-specific immunocytochemistry, which reveals distinct neural subsets having specific molecular phenotypes. Together these observations imply that the nervous system of the planula of Clava multicornis manifests a remarkable level of histological, cytological, and functional organization, the features of which may be reminiscent of those present in early bilaterian animals.

Funding information:
  • NEI NIH HHS - EY08411(United States)
  • NIDDK NIH HHS - U01 DK066480(United States)

Neurochemical coding of enteric neurons in adult and embryonic zebrafish (Danio rerio).

  • Uyttebroek L
  • J. Comp. Neurol.
  • 2010 Nov 1

Literature context:


Abstract:

Although the morphology and development of the zebrafish enteric nervous system have been extensively studied, the precise neurochemical coding of enteric neurons and their proportional enteric distribution are currently not known. By using immunohistochemistry, we determined the proportional expression and coexpression of neurochemical markers in the embryonic and adult zebrafish intestine. Tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating peptide (PACAP) were observed only in nerve fibers, whereas other markers were also detected in neuronal cell bodies. Calretinin and calbindin had similar distributions. In embryos, all markers, except for choline acetyltransferase (ChAT) and TH, were present from 72 hours postfertilization. Nitrergic neurons, evenly distributed and remaining constant in time, constituted the major neuronal subpopulation. The neuronal proportions of the other markers increased during development and were characterized by regional differences. In the adult, all markers examined were expressed in the enteric nervous system. A large percentage of enteric neurons displayed calbindin and calretinin, and serotonin was the only marker showing significant distribution differences in the three intestinal regions. Colocalization studies showed that serotonin was not coexpressed with any of the other markers. At least five neuronal subpopulations were determined: a serotonergic, a nitrergic noncholinergic, two cholinergic nonnitrergic subpopulations along with one subpopulation expressing both ChAT and neuronal nitric oxide synthase. Analysis of nerve fibers revealed that nitrergic neurons coexpress VIP and PACAP, and that nitrergic neurons innervate the tunica muscularis, whereas serotonergic and cholinergic nonnitrergic neurons innervate the lamina propria and the tunica muscularis.

Funding information:
  • NIBIB NIH HHS - P41-EB001978(United States)

Oncomodulin identifies different hair cell types in the mammalian inner ear.

  • Simmons DD
  • J. Comp. Neurol.
  • 2010 Sep 15

Literature context:


Abstract:

The tight regulation of Ca(2+) is essential for inner ear function, and yet the role of Ca(2+) binding proteins (CaBPs) remains elusive. By using immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR), we investigated the expression of oncomodulin (Ocm), a member of the parvalbumin family, relative to other EF-hand CaBPs in cochlear and vestibular organs in the mouse. In the mouse cochlea, Ocm is found only in outer hair cells and is localized preferentially to the basolateral outer hair cell membrane and to the base of the hair bundle. Developmentally, Ocm immunoreactivity begins as early as postnatal day (P) 2 and shows preferential localization to the basolateral membrane and hair bundle after P8. Unlike the cochlea, Ocm expression is substantially reduced in vestibular tissues at older adult ages. In vestibular organs, Ocm is found in type I striolar or central hair cells, and has a more diffuse subcellular localization throughout the hair cell body. Additionally, Ocm immunoreactivity in vestibular hair cells is present as early as E18 and is not obviously affected by mutations that cause a disruption of hair bundle polarity. We also find Ocm expression in striolar hair cells across mammalian species. These data suggest that Ocm may have distinct functional roles in cochlear and vestibular hair cells.

Funding information:
  • Telethon - GGP06158(Italy)

Localized expression of urocortin genes in the developing zebrafish brain.

  • Bräutigam L
  • J. Comp. Neurol.
  • 2010 Aug 1

Literature context:


Abstract:

The corticotropin-releasing hormone (CRH) family consists of four paralogous genes, CRH and urocortins (UCNs) 1, 2, and 3. In a previous study, we analyzed CRH in the teleost model organism zebrafish and its transcript distribution in the embryonic brain. Here, we describe full-length cDNAs encoding urotensin 1 (UTS1), the teleost UCN1 ortholog, and UCN3 of zebrafish. Major expression sites of uts1 in adult zebrafish are the caudal neurosecretory system and brain. By using RT-PCR analysis, we show that uts1 mRNA is also present in ovary, maternally contributed to the embryo, and expressed throughout embryonic development. Expression of ucn3 mRNA was detected in a range of adult tissues and during developmental stages from 24 hours post fertilization onward. Analysis of spatial transcript distributions by whole-mount in situ hybridization revealed limited forebrain expression of uts1 and ucn3 during early development. Small numbers of uts1-synthesizing neurons were found in subpallium, hypothalamus, and posterior diencephalon, whereas ucn3-positive cells were restricted to telencephalon and retina. The brainstem was the main site of uts1 and ucn3 synthesis in the embryonic brain. uts1 Expression was confined to the midbrain tegmentum; distinct hindbrain cell groups, including locus coeruleus and Mauthner neurons; and the spinal cord. ucn3 Expression was localized to the optic tectum, serotonergic raphe, and distinct rhombomeric cell clusters. The prominent expression of uts1 and ucn3 in brainstem is consistent with proposed roles of CRH-related peptides in stress-induced modulation of locomotor activity through monoaminergic brainstem neuromodulatory systems.

Funding information:
  • NINDS NIH HHS - R01 NS054814(United States)
  • Wellcome Trust - ME050495MES(United Kingdom)

Evidence of early nervous differentiation and early catecholaminergic sensory system during Sepia officinalis embryogenesis.

  • Baratte S
  • J. Comp. Neurol.
  • 2009 Dec 1

Literature context:


Abstract:

Within Mollusca, cephalopods exhibit a particularly complex nervous system. The adult brain is formed from the fusion of several "typical" molluscan ganglia but it remains poorly understood how these ganglia emerge, migrate, and differentiate during embryogenesis. We studied the development of both central and peripheral nervous system by antibodies raised against alpha-tubulin and tyrosine hydroxylase (TH) in Sepia officinalis embryos to visualize neurites and catecholamine-containing neurons, respectively. In early embryos, when organs start delineating, some ganglia already exhibited a significant fiber network. TH-like immunoreactivity was detected in these fibers and in some primary sensory neurons in the embryo periphery. These data attest to the occurrence of an early embryonic sensory nervous system, likely effective, transient in part, and in relation to the perception of external cues. Concerning the peripheral nervous network, the stellate ganglia emerged as a plexus of numerous converging axons from TH-like immunoreactive sensory cells, first at the mantle edge, and then in the whole mantle surface. Later, TH-immunopositive motor fibers, originating from the stellate ganglia, penetrated the circular muscles of the mantle. These patterns reveal the setup of a mantle midline with likely attractive and repulsive properties. Our findings seem to challenge the widespread, still accepted, view of a late differentiation of cephalopod ganglia, and provides significant data for further investigations about axonal guidance during cephalopod development.

Extensive presence of serotonergic cells and fibers in the peripheral nervous system of lampreys.

  • Barreiro-Iglesias A
  • J. Comp. Neurol.
  • 2009 Feb 1

Literature context:


Abstract:

Lampreys are suitable animal models for studying the evolution of the vertebrate nervous system because they belong to the earliest group of extant vertebrates, the agnathans. The general organization of the serotonergic central nervous system is well known in lampreys, but information about its peripheral organization is lacking. In the present study, high-performance liquid chromatography and immunohistochemistry with an antibody against serotonin were used to study the presence and peripheral distribution of serotonergic elements in the head of larval sea lampreys. Adult lampreys were also analyzed in order to compare the organization of the system in larval and postmetamorphic stages. Serotonergic cells were observed in the cranial nerve ganglia, the musculature, the taste buds, and in the gills. Serotonergic fibers were extensive in all tissues except the epidermis. Possible roles were proposed for the different cell types observed in relation to their location, structure, and innervation patterns. The serotonergic cells appear to be involved in the oxygen and taste chemoreception processes, the modulation of musculature contraction, and in the regulation of cilia beat frequency and mucus secretion in lampreys. The extensive presence of serotonergic elements in the peripheral nervous system of lampreys suggests a close relationship with the organization of this system in invertebrate groups.

Funding information:
  • NIMH NIH HHS - R01 MH049428(United States)

Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi-ciliated cells of the earliest vertebrates.

  • Barreiro-Iglesias A
  • J. Comp. Neurol.
  • 2008 Dec 1

Literature context:


Abstract:

Neuroactive substances such as serotonin and other monoamines have been suggested to be involved in the transmission of gustatory signals from taste bud cells to afferent fibers. Lampreys are the earliest vertebrates that possess taste buds, although these differ in structure from taste buds in jawed vertebrates, and their neurochemistry remains unknown. We used immunofluorescence methods with antibodies raised against serotonin, tyrosine hydroxylase (TH), gamma-aminobutyric acid (GABA), glutamate, calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), calretinin, and acetylated alpha-tubulin to characterize the neurochemistry and innervation of taste buds in the sea lamprey, Petromyzon marinus L. For localization of proliferative cells in taste buds we used bromodeoxyuridine labeling and proliferating cell nuclear antigen immunohistochemistry. Results with both markers indicate that proliferating cells are restricted to a few basal cells and that almost all cells in taste buds are nonproliferating. A large number of serotonin-, calretinin-, and CGRP-immunoreactive bi-ciliated cells were revealed in lamprey taste buds. This suggests that serotonin participates in the transmission of gustatory signals and indicates that this substance appeared early on in vertebrate evolution. The basal surface of the bi-ciliated taste bud cells was contacted by tubulin-immunoreactive fibers. Some of the fibers surrounding the taste bud were calretinin immunoreactive. Lamprey taste bud cells or afferent fibers did not exhibit TH, GABA, glutamate, or NPY immunoreactivity, which suggests that expression of these substances evolved in taste buds of some gnathostomes lines after the separation of gnathostomes and lampreys.

Funding information:
  • NEI NIH HHS - EY018431(United States)

Development of enteric and vagal innervation of the zebrafish (Danio rerio) gut.

  • Olsson C
  • J. Comp. Neurol.
  • 2008 Jun 10

Literature context:


Abstract:

The autonomic nervous system develops following migration and differentiation of precursor cells originating in the neural crest. Using immunohistochemistry on intact zebrafish embryos and larvae we followed the development of the intrinsic enteric and extrinsic vagal innervation of the gut. At 3 days postfertilization (dpf), enteric nerve cell bodies and fibers were seen mainly in the middle and distal intestine, while the innervation of the proximal intestine was scarcer. The number of fibers and cell bodies gradually increased, although a large intraindividual variation was seen in the timing (but not the order) of development. At 11-13 dpf most of the proximal intestine received a similar degree of innervation as the rest of the gut. The main intestinal branches of the vagus were similarly often already well developed at 3 dpf, entering the gut at the transition between the proximal and middle intestine and projecting posteriorly along the length of the gut. Subsequently, fibers branching off the vagus innervated all regions of the gut. The presence of several putative enteric neurotransmitters was suggested by using markers for neurokinin A (NKA), pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP), nitric oxide, serotonin (5-hydroxytryptamine, 5-HT), and calcitonin gene-related peptide (CGRP). The present results corroborate the belief that the enteric innervation is well developed before the onset of feeding (normally occurring around 5-6 dpf). Further, the more detailed picture of how development proceeds at stages previously not examined suggests a correlation between increasing innervation and more regular and elaborated motility patterns.

Funding information:
  • NIDA NIH HHS - DA16272(United States)
  • NIGMS NIH HHS - GM069593(United States)

Sprouting interneurons in mushroom bodies of adult cricket brains.

  • Mashaly A
  • J. Comp. Neurol.
  • 2008 May 1

Literature context:


Abstract:

In crickets, neurogenesis persists throughout adulthood for certain local brain interneurons, the Kenyon cells in the mushroom bodies, which represent a prominent compartment for sensory integration, learning, and memory. Several classes of these neurons originate from a perikaryal layer, which includes a cluster of neuroblasts, surrounded by somata that provide the mushroom body's columnar neuropil. We describe the form, distribution, and cytology of Kenyon cell groups in the process of generation and growth in comparison to developed parts of the mushroom bodies in adult crickets of the species Gryllus bimaculatus. A subset of growing Kenyon cells with sprouting processes has been distinguished from adjacent Kenyon cells by its prominent f-actin labelling. Growth cone-like elements are detected in the perikaryal layer and in their associated sprouting fiber bundles. Sprouting fibers distant from the perikarya contain ribosomes and rough endoplasmic reticulum not found in the dendritic processes of the calyx. A core of sprouting Kenyon cell processes is devoid of synapses and is not invaded by extrinsic neuronal elements. Measurements of fiber cross-sections and counts of synapses and organelles suggest a continuous gradient of growth and maturation leading from the core of added new processes out to the periphery of mature Kenyon cell fiber groups. Our results are discussed in the context of Kenyon cell classification, growth dynamics, axonal fiber maturation, and function.

Funding information:
  • NCRR NIH HHS - R24 RR024790(United States)

Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish.

  • Pellegrini E
  • J. Comp. Neurol.
  • 2007 Mar 1

Literature context:


Abstract:

Compared with other vertebrates, the brain of adult teleost fish exhibits two unique features: it exhibits unusually high neurogenic activity and strongly expresses aromatase, a key enzyme that converts aromatizable androgens into estrogens. Until now, these two features, high neurogenic and aromatase activities, have never been related to each other. Recently, it was shown that aromatase is expressed in radial glial cells of the forebrain and not in neurons. Here, we further document that Aromatase B is never detected in cells expressing the markers of postmitotic neurons, Hu and acetylated tubulin. By using a combination of bromodeoxyuridine (BrdU) treatment and immunohistochemical techniques, we demonstrate for the first time to our knowledge that aromatase-positive radial cells actively divide to generate newborn cells in many forebrain regions. Such newborn cells can further divide, as shown by BrdU-proliferating cell nuclear antigen double staining. We also demonstrate that, over time, newborn cells move away from the ventricles, most likely by migrating along the radial processes. Finally, by using antisera to Hu and acetylated tubulin, we further document that some of the newborn cells derived from radial glia differentiate into neurons. These data provide new evidence for the mechanism of neurogenesis in the brain of adult fish. In addition, given that estrogens are well-known neurotrophic and neuroprotective factors affecting proliferation, apoptosis, migration, and differentiation, the expression of aromatase in the neural stem cells of the adult strongly demonstrates that the fish brain is an outstanding model for studying the effects of estrogens on adult neurogenesis and brain repair.

Funding information:
  • NEI NIH HHS - T32 EY013934(United States)
  • NIAMS NIH HHS - R01 AR061569(United States)

Embryonic origin of the Drosophila brain neuropile.

  • Younossi-Hartenstein A
  • J. Comp. Neurol.
  • 2006 Aug 20

Literature context:


Abstract:

Neurons of the Drosophila larval brain are formed by a stereotyped set of neuroblasts. As differentiation sets in, neuroblast lineages produce axon bundles that initially form a scaffold of unbranched fibers in the center of the brain primordium. Subsequently, axons elaborate interlaced axonal and dendritic arbors, which, together with sheath-like processes formed by glial cells, establish the neuropile compartments of the larval brain. By using markers that visualize differentiating axons and glial cells, we have analyzed the formation of neuropile compartments and their relationship to neuroblast lineages. Neurons of each lineage extend their axons as a cohesive tract ("primary axon bundle"). We generated a map of the primary axon bundles that visualizes the location of the primary lineages in the brain cortex where the axon bundles originate, the trajectory of the axon bundles into the neuropile, and the relationship of these bundles to the early-formed scaffold of neuropile pioneer tracts (Nassif et al. [1998] J. Comp. Neurol. 402:10-31). The map further shows the growth of neuropile compartments at specific locations around the pioneer tracts. Following the time course of glial development reveals that glial processes, which form prominent septa around compartments in the larval brain, appear very late in the embryonic neuropile, clearly after the compartments themselves have crystallized. This suggests that spatial information residing within neurons, rather than glial cells, specifies the location and initial shape of neuropile compartments.

Funding information:
  • NIMH NIH HHS - K02 MH082998-01(United States)