X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Monoclonal Anti-alpha-Tubulin antibody produced in mouse

RRID:AB_477583

Antibody ID

AB_477583

Target Antigen

alpha-Tubulin antibody produced in mouse yeast, human, chicken, rat, amphibian, fungi, bovine, mouse, yeast/fungi, rat, bovine, xenopus/amphibian, human, chicken/bird, mouse

Proper Citation

(Sigma-Aldrich Cat# T6199, RRID:AB_477583)

Clonality

monoclonal antibody

Comments

Vendor recommendations: IgG1 immunocytochemistry: 0.5-1 mug/mL; Immunoprecipitation; Immunocytochemistry; Other; Immunohistochemistry; Western Blot

Host Organism

mouse

Vendor

Sigma-Aldrich

Rotenone inhibits axonogenesis via an Lfc/RhoA/ROCK pathway in cultured hippocampal neurons.

  • Bisbal M
  • J. Neurochem.
  • 2018 Jul 4

Literature context:


Abstract:

Rotenone, a broad-spectrum insecticide, piscicide and pesticide, produces a complete and selective suppression of axonogenesis in cultured hippocampal neurons. This effect is associated with an inhibition of actin dynamics through activation of Ras homology member A (RhoA) activity. However, the upstream signaling mechanisms involved in rotenone-induced RhoA activation were unknown. We hypothesized that rotenone might inhibit axon growth by the activation of RhoA/ROCK pathway due to changes in microtubule (MT) dynamics and the concomitant release of Lfc, a MT-associated Guanine Nucleotide Exchange Factor (GEF) for RhoA. In the present study we demonstrate that rotenone decreases MT stability in morphologically unpolarized neurons. Taxol (3 nM), a drug that stabilizes MT, attenuates the inhibitory effect of rotenone (0.1 μM) on axon formation. Radiometric Forster Resonance Energy Transfer (FRET), revealed that this effect is associated with inhibition of rotenone-induced RhoA and ROCK activation. Interestingly, silencing of Lfc, but not of the RhoA GEF ArhGEF1, prevents the inhibitory effect of rotenone on axon formation. Our results suggest that rotenone-induced MT de-stabilization releases Lfc from MT thereby promoting RhoA and ROCK activities and the consequent inhibition of axon growth. This article is protected by copyright. All rights reserved.

Funding information:
  • NIAID NIH HHS - R01 AI073785(United States)

Esrrb Unlocks Silenced Enhancers for Reprogramming to Naive Pluripotency.

  • Adachi K
  • Cell Stem Cell
  • 2018 Jun 11

Literature context:


Abstract:

Transcription factor (TF)-mediated reprogramming to pluripotency is a slow and inefficient process, because most pluripotency TFs fail to access relevant target sites in a refractory chromatin environment. It is still unclear how TFs actually orchestrate the opening of repressive chromatin during the long latency period of reprogramming. Here, we show that the orphan nuclear receptor Esrrb plays a pioneering role in recruiting the core pluripotency factors Oct4, Sox2, and Nanog to inactive enhancers in closed chromatin during the reprogramming of epiblast stem cells. Esrrb binds to silenced enhancers containing stable nucleosomes and hypermethylated DNA, which are inaccessible to the core factors. Esrrb binding is accompanied by local loss of DNA methylation, LIF-dependent engagement of p300, and nucleosome displacement, leading to the recruitment of core factors within approximately 2 days. These results suggest that TFs can drive rapid remodeling of the local chromatin structure, highlighting the remarkable plasticity of stable epigenetic information.

Funding information:
  • Intramural NIH HHS - Z01 AI000904-06(United States)

Structural basis for terminal loop recognition and stimulation of pri-miRNA-18a processing by hnRNP A1.

  • Kooshapur H
  • Nat Commun
  • 2018 Jun 26

Literature context:


Abstract:

Post-transcriptional mechanisms play a predominant role in the control of microRNA (miRNA) production. Recognition of the terminal loop of precursor miRNAs by RNA-binding proteins (RBPs) influences their processing; however, the mechanistic basis for how levels of individual or subsets of miRNAs are regulated is mostly unexplored. We previously showed that hnRNP A1, an RBP implicated in many aspects of RNA processing, acts as an auxiliary factor that promotes the Microprocessor-mediated processing of pri-mir-18a. Here, by using an integrative structural biology approach, we show that hnRNP A1 forms a 1:1 complex with pri-mir-18a where both RNA recognition motifs (RRMs) bind to cognate RNA sequence motifs in the terminal loop of pri-mir-18a. Terminal loop binding induces an allosteric destabilization of base-pairing in the pri-mir-18a stem that promotes its downstream processing. Our results highlight terminal loop RNA recognition by RBPs as a potential general principle of miRNA biogenesis and regulation.

Funding information:
  • Canadian Institutes of Health Research - MOP-57885(Canada)
  • Deutsche Forschungsgemeinschaft (German Research Foundation) - GRK1721()
  • EC | Seventh Framework Programme (European Union Seventh Framework Programme) - 291763()
  • Medical Research Council (MRC) - G10000564()
  • Wellcome Trust - 092076()
  • Wellcome Trust - 095518/Z/11/Z()

The HIV-1 Tat protein recruits a ubiquitin ligase to reorganize the 7SK snRNP for transcriptional activation.

  • Faust TB
  • Elife
  • 2018 May 30

Literature context:


Abstract:

The HIV-1 Tat protein hijacks P-TEFb kinase to activate paused RNA polymerase II (RNAP II) at the viral promoter. Tat binds additional host factors, but it is unclear how they regulate RNAP II elongation. Here, we identify the cytoplasmic ubiquitin ligase UBE2O as critical for Tat transcriptional activity. Tat hijacks UBE2O to ubiquitinate the P-TEFb kinase inhibitor HEXIM1 of the 7SK snRNP, a fraction of which also resides in the cytoplasm bound to P-TEFb. HEXIM1 ubiquitination sequesters it in the cytoplasm and releases P-TEFb from the inhibitory 7SK complex. Free P-TEFb then becomes enriched in chromatin, a process that is also stimulated by treating cells with a CDK9 inhibitor. Finally, we demonstrate that UBE2O is critical for P-TEFb recruitment to the HIV-1 promoter. Together, the data support a unique model of elongation control where non-degradative ubiquitination of nuclear and cytoplasmic 7SK snRNP pools increases P-TEFb levels for transcriptional activation.

Funding information:
  • National Institute of Allergy and Infectious Diseases - R01AI114362()
  • National Institute of Allergy and Infectious Diseases - RO1AI114362()
  • National Institute of General Medical Sciences - P50GM082250()
  • NHLBI NIH HHS - R15 HL071526(United States)
  • NIAID NIH HHS - P30 AI027763()
  • Welch Foundation - I-1782()

Retrograde transport of γ-secretase from endosomes to the trans-Golgi network regulates Aβ42 production.

  • Kanatsu K
  • J. Neurochem.
  • 2018 May 31

Literature context:


Abstract:

The aberrant metabolism of amyloid-β protein (Aβ) in the human brain has been implicated in the etiology of Alzheimer disease (AD). γ-Secretase is the enzyme that generates various forms of Aβ, such as Aβ40 and Aβ42, the latter being an aggregation-prone toxic peptide that is involved in the pathogenesis of AD. Recently, we found that clathrin-mediated endocytosis of γ-secretase affects the production and deposition of Aβ42 in vivo, suggesting that the membrane trafficking of γ-secretase affects its enzymatic activity. However, the detailed intracellular trafficking pathway of γ-secretase and its contribution to Aβ42 generation remain unclear. Here we show that Retro-2, which inhibits the retrograde transport, elevated the Aβ42-generating activity both in cultured cells and mice brain. However, the result of in vitro γ-secretase assay using a recombinant substrate suggested that Retro-2 did not elevate the intrinsic Aβ42-production activity of γ-secretase. Immunocytochemistry and cell-surface biotinylation experiments revealed that γ-secretase is recycled via the endosome-to-trans-Golgi network (TGN) transport. In addition, γ-secretase is retrogradely transported by syntaxin 5/6, known as targets of Retro-2, independent pathway. Conversely, TPT-260, which enhances the trafficking function of retromers, lowered Aβ42 levels and the Aβ42/(Aβ40 + Aβ42) ratio in secreted Aβ from cultured cells. Our results strongly suggest that the endosome-to-TGN trafficking of γ-secretase regulates its Aβ42 production activity. Modulation of this trafficking pathway might be a potential target for the development of Aβ42-lowering AD therapeutics. This article is protected by copyright. All rights reserved.

Funding information:
  • NCI NIH HHS - P30 CA08748(United States)

Phosphatidylinositol-5-Phosphate 4-Kinases Regulate Cellular Lipid Metabolism By Facilitating Autophagy.

  • Lundquist MR
  • Mol. Cell
  • 2018 May 3

Literature context:


Abstract:

While the majority of phosphatidylinositol-4, 5-bisphosphate (PI-4, 5-P2) in mammalian cells is generated by the conversion of phosphatidylinositol-4-phosphate (PI-4-P) to PI-4, 5-P2, a small fraction can be made by phosphorylating phosphatidylinositol-5-phosphate (PI-5-P). The physiological relevance of this second pathway is not clear. Here, we show that deletion of the genes encoding the two most active enzymes in this pathway, Pip4k2a and Pip4k2b, in the liver of mice causes a large enrichment in lipid droplets and in autophagic vesicles during fasting. These changes are due to a defect in the clearance of autophagosomes that halts autophagy and reduces the supply of nutrients salvaged through this pathway. Similar defects in autophagy are seen in nutrient-starved Pip4k2a-/-Pip4k2b-/- mouse embryonic fibroblasts and in C. elegans lacking the PI5P4K ortholog. These results suggest that this alternative pathway for PI-4, 5-P2 synthesis evolved, in part, to enhance the ability of multicellular organisms to survive starvation.

Funding information:
  • NCI NIH HHS - R35 CA197588()
  • NCI NIH HHS - U54 CA210184()
  • NCRR NIH HHS - UL1RR024128(United States)
  • NIGMS NIH HHS - R01 GM041890()

Impairing L-Threonine Catabolism Promotes Healthspan through Methylglyoxal-Mediated Proteohormesis.

  • Ravichandran M
  • Cell Metab.
  • 2018 Apr 3

Literature context:


Abstract:

Whether and how regulation of genes and pathways contributes to physiological aging is topic of intense scientific debate. By performing an RNA expression-based screen for genes downregulated during aging of three different species, we identified glycine-C-acetyltransferase (GCAT, EC 2.3.1.29). Impairing gcat expression promotes the lifespan of C. elegans by interfering with threonine catabolism to promote methylglyoxal (MGO; CAS 78-98-8) formation in an amine oxidase-dependent manner. MGO is a reactive dicarbonyl inducing diabetic complications in mammals by causing oxidative stress and damaging cellular components, including proteins. While high concentrations of MGO consistently exert toxicity in nematodes, we unexpectedly find that low-dose MGO promotes lifespan, resembling key mediators of gcat impairment. These were executed by the ubiquitin-proteasome system, namely PBS-3 and RPN-6.1 subunits, regulated by the stress-responsive transcriptional regulators SKN-1/NRF2 and HSF-1. Taken together, GCAT acts as an evolutionary conserved aging-related gene by orchestrating an unexpected nonlinear impact of proteotoxic MGO on longevity.

Funding information:
  • NIGMS NIH HHS - R01-GM-060575(United States)

IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling.

  • Yoneyama Y
  • Elife
  • 2018 Apr 11

Literature context:


Abstract:

Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)-1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling.

Funding information:
  • Austrian Research Promotion Agency (FFG) - 850681()
  • Japan Agency for Medical Research and Development and Ministry of Education, Culture, Sports, Science, and Technology - Platform Project for Supporting in Drug Discovery and Life Scien()
  • Japan Society for the Promotion of Science - 15K18766()
  • Ministry of Education, Culture, Sports, Science, and Technology - The Targeted Proteins Research Program (TPRP)()
  • NIGMS NIH HHS - 2T32GM008646(United States)
  • University of Applied Sciences Upper Austria and the Center for Technological Innovation in Medicine (TIMed Center) - Project GlucoSTAR()

The HCMV Assembly Compartment Is a Dynamic Golgi-Derived MTOC that Controls Nuclear Rotation and Virus Spread.

  • Procter DJ
  • Dev. Cell
  • 2018 Apr 9

Literature context:


Abstract:

Human cytomegalovirus (HCMV), a leading cause of congenital birth defects, forms an unusual cytoplasmic virion maturation site termed the "assembly compartment" (AC). Here, we show that the AC also acts as a microtubule-organizing center (MTOC) wherein centrosome activity is suppressed and Golgi-based microtubule (MT) nucleation is enhanced. This involved viral manipulation of discrete functions of MT plus-end-binding (EB) proteins. In particular, EB3, but not EB1 or EB2, was recruited to the AC and was required to nucleate MTs that were rapidly acetylated. EB3-regulated acetylated MTs were necessary for nuclear rotation prior to cell migration, maintenance of AC structure, and optimal virus replication. Independently, a myristoylated peptide that blocked EB3-mediated enrichment of MT regulatory proteins at Golgi regions of the AC also suppressed acetylated MT formation, nuclear rotation, and infection. Thus, HCMV offers new insights into the regulation and functions of Golgi-derived MTs and the therapeutic potential of targeting EB3.

Funding information:
  • NCI NIH HHS - R01 CA188427()
  • NHLBI NIH HHS - R01 HL103922()
  • NHLBI NIH HHS - T32 HL094290(United States)
  • NIAID NIH HHS - P30 AI117943()
  • NIAID NIH HHS - R01 AI101080()
  • NIGMS NIH HHS - P01 GM105536()

Human LINE-1 retrotransposition requires a metastable coiled coil and a positively charged N-terminus in L1ORF1p.

  • Khazina E
  • Elife
  • 2018 Mar 22

Literature context:


Abstract:

LINE-1 (L1) is an autonomous retrotransposon, which acted throughout mammalian evolution and keeps contributing to human genotypic diversity, genetic disease and cancer. L1 encodes two essential proteins: L1ORF1p, a unique RNA-binding protein, and L1ORF2p, an endonuclease and reverse transcriptase. L1ORF1p contains an essential, but rapidly evolving N-terminal portion, homo-trimerizes via a coiled coil and packages L1RNA into large assemblies. Here, we determined crystal structures of the entire coiled coil domain of human L1ORF1p. We show that retrotransposition requires a non-ideal and metastable coiled coil structure, and a strongly basic L1ORF1p amino terminus. Human L1ORF1p therefore emerges as a highly calibrated molecular machine, sensitive to mutation but functional in different hosts. Our analysis rationalizes the locally rapid L1ORF1p sequence evolution and reveals striking mechanistic parallels to coiled coil-containing membrane fusion proteins. It also suggests how trimeric L1ORF1p could form larger meshworks and indicates critical novel steps in L1 retrotransposition.

Funding information:
  • Max-Planck-Gesellschaft - Open-access funding()
  • NIDCR NIH HHS - R01DE016593(United States)

PINK1 Phosphorylates MIC60/Mitofilin to Control Structural Plasticity of Mitochondrial Crista Junctions.

  • Tsai PI
  • Mol. Cell
  • 2018 Mar 1

Literature context:


Abstract:

Mitochondrial crista structure partitions vital cellular reactions and is precisely regulated by diverse cellular signals. Here, we show that, in Drosophila, mitochondrial cristae undergo dynamic remodeling among distinct subcellular regions and the Parkinson's disease (PD)-linked Ser/Thr kinase PINK1 participates in their regulation. Mitochondria increase crista junctions and numbers in selective subcellular areas, and this remodeling requires PINK1 to phosphorylate the inner mitochondrial membrane protein MIC60/mitofilin, which stabilizes MIC60 oligomerization. Expression of MIC60 restores crista structure and ATP levels of PINK1-null flies and remarkably rescues their behavioral defects and dopaminergic neurodegeneration. In an extension to human relevance, we discover that the PINK1-MIC60 pathway is conserved in human neurons, and expression of several MIC60 coding variants in the mitochondrial targeting sequence found in PD patients in Drosophila impairs crista junction formation and causes locomotion deficits. These findings highlight the importance of maintenance and plasticity of crista junctions to cellular homeostasis in vivo.

Funding information:
  • NIGMS NIH HHS - T32 GM007337(United States)

Hyperinnervation improves Xenopus laevis limb regeneration.

  • Mitogawa K
  • Dev. Biol.
  • 2018 Jan 15

Literature context:


Abstract:

Xenopus laevis (an anuran amphibian) shows limb regeneration ability between that of urodele amphibians and that of amniotes. Xenopus frogs can initiate limb regeneration but fail to form patterned limbs. Regenerated limbs mainly consist of cone-shaped cartilage without any joints or branches. These pattern defects are thought to be caused by loss of proper expressions of patterning-related genes. This study shows that hyperinnervation surgery resulted in the induction of a branching regenerate. The hyperinnervated blastema allows the identification and functional analysis of the molecules controlling this patterning of limb regeneration. This paper focuses on the nerve affects to improve Xenopus limb patterning ability during regeneration. The nerve molecules, which regulate limb patterning, were also investigated. Blastemas grown in a hyperinnervated forelimb upregulate limb patterning-related genes (shh, lmx1b, and hoxa13). Nerves projecting their axons to limbs express some growth factors (bmp7, fgf2, fgf8, and shh). Inputs of these factors to a blastema upregulated some limb patterning-related genes and resulted in changes in the cartilage patterns in the regenerates. These results indicate that additional nerve factors enhance Xenopus limb patterning-related gene expressions and limb regeneration ability, and that bmp, fgf, and shh are candidate nerve substitute factors.

Male Brown Fat-Specific Double Knockout of IGFIR/IR: Atrophy, Mitochondrial Fission Failure, Impaired Thermogenesis, and Obesity.

  • Viana-Huete V
  • Endocrinology
  • 2018 Jan 1

Literature context:


Abstract:

It is unknown how the lack of insulin receptor (IR)/insulinlike growth factor I receptor (IGFIR) in a tissue-specific manner affects brown fat development and mitochondrial integrity and function, as well as its effect on the redistribution of the adipose organ and the metabolic status. To address this important issue, we developed IR/IGFIR double-knockout (DKO) in a brown adipose tissue-specific manner. Lack of those receptors caused severe brown fat atrophy, enhanced beige cell clusters in inguinal fat; loss of mitochondrial mass; mitochondrial damage related to cristae disruption; and the loss of proteins involved in autophagosome formation, mitophagy, mitochondrial quality control, and dynamics and thermogenesis. More important, DKO mice showed an impaired thermogenesis upon cold exposure, based on a failure in the mitochondrial fission mechanisms and a much lower uncoupling protein 1 transcription rate and content. As a result, DKO mice under normal conditions showed an obesity susceptibility, revealed by increased body fat mass and insulin resistance. Upon consumption of a high-fat diet, DKO mice displayed frank obesity, as shown by increased body weight, increased adiposity, insulin resistance, hyperinsulinemia, and hypertriglyceridemia, all consistent with a metabolic syndrome. Collectively, our data suggest a cause-and-effect relationship between failure in brown fat thermogenesis and increased adiposity and obesity.

Funding information:
  • NIDDK NIH HHS - P30 DK036836()
  • NIDDK NIH HHS - R01 DK031036()

Nek9 Phosphorylation Defines a New Role for TPX2 in Eg5-Dependent Centrosome Separation before Nuclear Envelope Breakdown.

  • Eibes S
  • Curr. Biol.
  • 2018 Jan 8

Literature context:


Abstract:

Centrosomes [1, 2] play a central role during spindle assembly in most animal cells [3]. In early mitosis, they organize two symmetrical microtubule arrays that upon separation define the two poles of the forming spindle. Centrosome separation is tightly regulated [4, 5], occurring through partially redundant mechanisms that rely on the action of microtubule-based dynein and kinesin motors and the actomyosin system [6]. While centrosomes can separate in prophase or in prometaphase after nuclear envelope breakdown (NEBD), prophase centrosome separation optimizes spindle assembly and minimizes the occurrence of abnormal chromosome attachments that could end in aneuploidy [7, 8]. Prophase centrosome separation relies on the activity of Eg5/KIF11, a mitotic kinesin [9] that accumulates around centrosomes in early mitosis under the control of CDK1 and the Nek9/Nek6/7 kinase module [10-17]. Here, we show that Eg5 localization and centrosome separation in prophase depend on the nuclear microtubule-associated protein TPX2 [18], a pool of which localizes to the centrosomes before NEBD. This localization involves RHAMM/HMMR [19] and the kinase Nek9 [20], which phosphorylates TPX2 nuclear localization signal (NLS) preventing its interaction with importin and nuclear import. The pool of centrosomal TPX2 in prophase has a critical role for both microtubule aster organization and Eg5 localization, and thereby for centrosome separation. Our results uncover an unsuspected role for TPX2 before NEBD and define a novel regulatory mechanism for centrosome separation in prophase. They furthermore suggest NLS phosphorylation as a novel regulatory mechanism for spindle assembly factors controlled by the importin/Ran system.

Funding information:
  • NIGMS NIH HHS - R01 GM041804(United States)

The HDAC6 Inhibitor Tubacin Induces Release of CD133+ Extracellular Vesicles From Cancer Cells.

  • Chao OS
  • J. Cell. Biochem.
  • 2018 Jan 2

Literature context:


Abstract:

Tumor-derived extracellular vesicles (EVs) are emerging as an important mode of intercellular communication, capable of transferring biologically active molecules that facilitate the malignant growth and metastatic process. CD133 (Prominin-1), a stem cell marker implicated in tumor initiation, differentiation and resistance to anti-cancer therapy, is reportedly associated with EVs in various types of cancer. However, little is known about the factors that regulate the release of these CD133+ EVs. Here, we report that the HDAC6 inhibitor tubacin promoted the extracellular release of CD133+ EVs from human FEMX-I metastatic melanoma and Caco-2 colorectal carcinoma cells, with a concomitant downregulation of intracellular CD133. This effect was specific for tubacin, as inhibition of HDAC6 deacetylase activity by another selective HDAC6 inhibitor, ACY-1215 or the pan-HDAC inhibitor trichostatin A (TSA), and knockdown of HDAC6 did not enhance the release of CD133+ EVs. The tubacin-induced EV release was associated with changes in cellular lipid composition, loss of clonogenic capacity and decrease in the ability to form multicellular aggregates. These findings indicate a novel potential anti-tumor mechanism for tubacin in CD133-expressing malignancies. J. Cell. Biochem. 118: 4414-4424, 2017. © 2017 Wiley Periodicals, Inc.

NuMA recruits dynein activity to microtubule minus-ends at mitosis.

  • Hueschen CL
  • Elife
  • 2017 Nov 29

Literature context:


Abstract:

To build the spindle at mitosis, motors exert spatially regulated forces on microtubules. We know that dynein pulls on mammalian spindle microtubule minus-ends, and this localized activity at ends is predicted to allow dynein to cluster microtubules into poles. How dynein becomes enriched at minus-ends is not known. Here, we use quantitative imaging and laser ablation to show that NuMA targets dynactin to minus-ends, localizing dynein activity there. NuMA is recruited to new minus-ends independently of dynein and more quickly than dynactin; both NuMA and dynactin display specific, steady-state binding at minus-ends. NuMA localization to minus-ends involves a C-terminal region outside NuMA's canonical microtubule-binding domain and is independent of minus-end binders γ-TuRC, CAMSAP1, and KANSL1/3. Both NuMA's minus-end-binding and dynein-dynactin-binding modules are required to rescue focused, bipolar spindle organization. Thus, NuMA may serve as a mitosis-specific minus-end cargo adaptor, targeting dynein activity to minus-ends to cluster spindle microtubules into poles.

Funding information:
  • NIAID NIH HHS - U01 AI82226(United States)

RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain and is required for ubiquitination.

  • Choudhury NR
  • BMC Biol.
  • 2017 Nov 8

Literature context:


Abstract:

BACKGROUND: TRIM25 is a novel RNA-binding protein and a member of the Tripartite Motif (TRIM) family of E3 ubiquitin ligases, which plays a pivotal role in the innate immune response. However, there is scarce knowledge about its RNA-related roles in cell biology. Furthermore, its RNA-binding domain has not been characterized. RESULTS: Here, we reveal that the RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain, which we postulate to be a novel RNA-binding domain. Using CLIP-seq and SILAC-based co-immunoprecipitation assays, we uncover TRIM25's endogenous RNA targets and protein binding partners. We demonstrate that TRIM25 controls the levels of Zinc Finger Antiviral Protein (ZAP). Finally, we show that the RNA-binding activity of TRIM25 is important for its ubiquitin ligase activity towards itself (autoubiquitination) and its physiologically relevant target ZAP. CONCLUSIONS: Our results suggest that many other proteins with the PRY/SPRY domain could have yet uncharacterized RNA-binding potential. Together, our data reveal new insights into the molecular roles and characteristics of RNA-binding E3 ubiquitin ligases and demonstrate that RNA could be an essential factor in their enzymatic activity.

Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells.

  • Wang JT
  • Elife
  • 2017 Sep 14

Literature context:


Abstract:

Centrioles are composed of long-lived microtubules arranged in nine triplets. However, the contribution of triplet microtubules to mammalian centriole formation and stability is unknown. Little is known of the mechanism of triplet microtubule formation, but experiments in unicellular eukaryotes indicate that delta-tubulin and epsilon-tubulin, two less-studied tubulin family members, are required. Here, we report that centrioles in delta-tubulin and epsilon-tubulin null mutant human cells lack triplet microtubules and fail to undergo centriole maturation. These aberrant centrioles are formed de novo each cell cycle, but are unstable and do not persist to the next cell cycle, leading to a futile cycle of centriole formation and disintegration. Disintegration can be suppressed by paclitaxel treatment. Delta-tubulin and epsilon-tubulin physically interact, indicating that these tubulins act together to maintain triplet microtubules and that these are necessary for inheritance of centrioles from one cell cycle to the next.

Funding information:
  • NIAID NIH HHS - R01 AI038382(United States)
  • NIGMS NIH HHS - F32 GM117678()
  • NIGMS NIH HHS - R01 GM052022()

Dynamic Control of X Chromosome Conformation and Repression by a Histone H4K20 Demethylase.

  • Brejc K
  • Cell
  • 2017 Sep 21

Literature context:


Abstract:

Chromatin modification and higher-order chromosome structure play key roles in gene regulation, but their functional interplay in controlling gene expression is elusive. We have discovered the machinery and mechanism underlying the dynamic enrichment of histone modification H4K20me1 on hermaphrodite X chromosomes during C. elegans dosage compensation and demonstrated H4K20me1's pivotal role in regulating higher-order chromosome structure and X-chromosome-wide gene expression. The structure and the activity of the dosage compensation complex (DCC) subunit DPY-21 define a Jumonji demethylase subfamily that converts H4K20me2 to H4K20me1 in worms and mammals. Selective inactivation of demethylase activity eliminates H4K20me1 enrichment in somatic cells, elevates X-linked gene expression, reduces X chromosome compaction, and disrupts X chromosome conformation by diminishing the formation of topologically associating domains (TADs). Unexpectedly, DPY-21 also associates with autosomes of germ cells in a DCC-independent manner to enrich H4K20me1 and trigger chromosome compaction. Our findings demonstrate the direct link between chromatin modification and higher-order chromosome structure in long-range regulation of gene expression.

Golgi-Resident Gαo Promotes Protrusive Membrane Dynamics.

  • Solis GP
  • Cell
  • 2017 Aug 24

Literature context:


Abstract:

To form protrusions like neurites, cells must coordinate their induction and growth. The first requires cytoskeletal rearrangements at the plasma membrane (PM), the second requires directed material delivery from cell's insides. We find that the Gαo-subunit of heterotrimeric G proteins localizes dually to PM and Golgi across phyla and cell types. The PM pool of Gαo induces, and the Golgi pool feeds, the growing protrusions by stimulated trafficking. Golgi-residing KDELR binds and activates monomeric Gαo, atypically for G protein-coupled receptors that normally act on heterotrimeric G proteins. Through multidimensional screenings identifying > 250 Gαo interactors, we pinpoint several basic cellular activities, including vesicular trafficking, as being regulated by Gαo. We further find small Golgi-residing GTPases Rab1 and Rab3 as direct effectors of Gαo. This KDELR → Gαo → Rab1/3 signaling axis is conserved from insects to mammals and controls material delivery from Golgi to PM in various cells and tissues.

The High-Affinity Interaction between ORC and DNA that Is Required for Replication Licensing Is Inhibited by 2-Arylquinolin-4-Amines.

  • Gardner NJ
  • Cell Chem Biol
  • 2017 Aug 17

Literature context:


Abstract:

In late mitosis and G1, origins of DNA replication must be "licensed" for use in the upcoming S phase by being encircled by double hexamers of the minichromosome maintenance proteins MCM2-7. A "licensing checkpoint" delays cells in G1 until sufficient origins have been licensed, but this checkpoint is lost in cancer cells. Inhibition of licensing can therefore kill cancer cells while only delaying normal cells in G1. In a high-throughput cell-based screen for licensing inhibitors we identified a family of 2-arylquinolin-4-amines, the most potent of which we call RL5a. The binding of the origin recognition complex (ORC) to origin DNA is the first step of the licensing reaction. We show that RL5a prevents ORC forming a tight complex with DNA that is required for MCM2-7 loading. Formation of this ORC-DNA complex requires ATP, and we show that RL5a inhibits ORC allosterically to mimic a lack of ATP.

An RNAi Screen in a Novel Model of Oriented Divisions Identifies the Actin-Capping Protein Z β as an Essential Regulator of Spindle Orientation.

  • di Pietro F
  • Curr. Biol.
  • 2017 Aug 21

Literature context:


Abstract:

Oriented cell divisions are controlled by a conserved molecular cascade involving Gαi, LGN, and NuMA. We developed a new cellular model of oriented cell divisions combining micropatterning and localized recruitment of Gαi and performed an RNAi screen for regulators acting downstream of Gαi. Remarkably, this screen revealed a unique subset of dynein regulators as being essential for spindle orientation, shedding light on a core regulatory aspect of oriented divisions. We further analyze the involvement of one novel regulator, the actin-capping protein CAPZB. Mechanistically, we show that CAPZB controls spindle orientation independently of its classical role in the actin cytoskeleton by regulating the assembly, stability, and motor activity of the dynein/dynactin complex at the cell cortex, as well as the dynamics of mitotic microtubules. Finally, we show that CAPZB controls planar divisions in vivo in the developing neuroepithelium. This demonstrates the power of this in cellulo model of oriented cell divisions to uncover new genes required in spindle orientation in vertebrates.

GCL and CUL3 Control the Switch between Cell Lineages by Mediating Localized Degradation of an RTK.

  • Pae J
  • Dev. Cell
  • 2017 Jul 24

Literature context:


Abstract:

The separation of germline from somatic lineages is fundamental to reproduction and species preservation. Here, we show that Drosophila Germ cell-less (GCL) is a critical component in this process by acting as a switch that turns off a somatic lineage pathway. GCL, a conserved BTB (Broad-complex, Tramtrack, and Bric-a-brac) protein, is a substrate-specific adaptor for Cullin3-RING ubiquitin ligase complex (CRL3GCL). We show that CRL3GCL promotes PGC fate by mediating degradation of Torso, a receptor tyrosine kinase (RTK) and major determinant of somatic cell fate. This mode of RTK degradation does not depend upon receptor activation but is prompted by release of GCL from the nuclear envelope during mitosis. The cell-cycle-dependent change in GCL localization provides spatiotemporal specificity for RTK degradation and sequesters CRL3GCL to prevent it from participating in excessive activities. This precisely orchestrated mechanism of CRL3GCL function and regulation defines cell fate at the single-cell level.

Funding information:
  • NCI NIH HHS - R01 CA076584()
  • NCI NIH HHS - R37 CA076584()
  • NCI NIH HHS - T32 CA160002()
  • NICHD NIH HHS - R01 HD041900()
  • NICHD NIH HHS - R37 HD041900()
  • NIGMS NIH HHS - R01 GM057587()
  • NIH HHS - P40 OD018537()

Structure of the ACF7 EF-Hand-GAR Module and Delineation of Microtubule Binding Determinants.

  • Lane TR
  • Structure
  • 2017 Jul 5

Literature context:


Abstract:

Spectraplakins are large molecules that cross-link F-actin and microtubules (MTs). Mutations in spectraplakins yield defective cell polarization, aberrant focal adhesion dynamics, and dystonia. We present the 2.8 Å crystal structure of the hACF7 EF1-EF2-GAR MT-binding module and delineate the GAR residues critical for MT binding. The EF1-EF2 and GAR domains are autonomous domains connected by a flexible linker. The EF1-EF2 domain is an EFβ-scaffold with two bound Ca2+ ions that straddle an N-terminal α helix. The GAR domain has a unique α/β sandwich fold that coordinates Zn2+. While the EF1-EF2 domain is not sufficient for MT binding, the GAR domain is and likely enhances EF1-EF2-MT engagement. Residues in a conserved basic patch, distal to the GAR domain's Zn2+-binding site, mediate MT binding.

Mapping Load-Bearing in the Mammalian Spindle Reveals Local Kinetochore Fiber Anchorage that Provides Mechanical Isolation and Redundancy.

  • Elting MW
  • Curr. Biol.
  • 2017 Jul 24

Literature context:


Abstract:

Active forces generated at kinetochores move chromosomes, and the dynamic spindle must robustly anchor kinetochore fibers (k-fibers) to bear this load. The mammalian spindle bears the load of chromosome movement far from poles, but we do not know where and how-physically and molecularly-this load distributes across the spindle. In part, this is because probing spindle mechanics in live cells is difficult. Yet answering this question is key to understanding how the spindle generates and responds to force and performs its diverse mechanical functions. Here, we map load-bearing across the mammalian spindle in space-time and dissect local anchorage mechanics and mechanism. To do so, we laser-ablate single k-fibers at different spindle locations and in different molecular backgrounds and quantify the immediate relaxation of chromosomes, k-fibers, and microtubule speckles. We find that load redistribution is locally confined in all directions: along the first 3-4 μm from kinetochores, scaling with k-fiber length, and laterally within ∼2 μm of k-fiber sides, without detectable load sharing between neighboring k-fibers. A phenomenological model suggests that dense, transient crosslinks to the spindle along k-fibers bear the load of chromosome movement but that these connections do not limit the timescale of spindle reorganization. The microtubule crosslinker NuMA is needed for the local load-bearing observed, whereas Eg5 and PRC1 are not detectably required, suggesting specialization in mechanical function. Together, the data and model suggest that NuMA-mediated crosslinks locally bear load, providing mechanical isolation and redundancy while allowing spindle fluidity. These features are well suited to support robust chromosome segregation.

Regulatory Expansion in Mammals of Multivalent hnRNP Assemblies that Globally Control Alternative Splicing.

  • Gueroussov S
  • Cell
  • 2017 Jul 13

Literature context:


Abstract:

Alternative splicing (AS) patterns have diverged rapidly during vertebrate evolution, yet the functions of most species- and lineage-specific splicing events are not known. We observe that mammalian-specific AS events are enriched in transcript sequences encoding intrinsically disordered regions (IDRs) of proteins, in particular those containing glycine/tyrosine repeats that mediate formation of higher-order protein assemblies implicated in gene regulation and human disease. These evolutionary changes impact nearly all members of the hnRNP A and D families of RNA binding proteins. Regulation of these events requires formation of unusual, long-range mammalian-specific RNA duplexes. Differential inclusion of the alternative exons controls the formation of tyrosine-dependent multivalent hnRNP assemblies that, in turn, function to globally regulate splicing. Together, our results demonstrate that AS control of IDR-mediated interactions between hnRNPs represents an important and recurring mechanism underlying splicing regulation. Furthermore, this mechanism has expanded the regulatory capacity of mammalian cells.

Drosophila Histone Demethylase KDM4A Has Enzymatic and Non-enzymatic Roles in Controlling Heterochromatin Integrity.

  • Colmenares SU
  • Dev. Cell
  • 2017 Jul 24

Literature context:


Abstract:

Eukaryotic genomes are broadly divided between gene-rich euchromatin and the highly repetitive heterochromatin domain, which is enriched for proteins critical for genome stability and transcriptional silencing. This study shows that Drosophila KDM4A (dKDM4A), previously characterized as a euchromatic histone H3 K36 demethylase and transcriptional regulator, predominantly localizes to heterochromatin and regulates heterochromatin position-effect variegation (PEV), organization of repetitive DNAs, and DNA repair. We demonstrate that dKDM4A demethylase activity is dispensable for PEV. In contrast, dKDM4A enzymatic activity is required to relocate heterochromatic double-strand breaks outside the domain, as well as for organismal survival when DNA repair is compromised. Finally, DNA damage triggers dKDM4A-dependent changes in the levels of H3K56me3, suggesting that dKDM4A demethylates this heterochromatic mark to facilitate repair. We conclude that dKDM4A, in addition to its previously characterized role in euchromatin, utilizes both enzymatic and structural mechanisms to regulate heterochromatin organization and functions.

Funding information:
  • NIGMS NIH HHS - F32 GM086111()
  • NIGMS NIH HHS - R01 GM086613()
  • NIGMS NIH HHS - R01 GM117420()

Hec1 Tail Phosphorylation Differentially Regulates Mammalian Kinetochore Coupling to Polymerizing and Depolymerizing Microtubules.

  • Long AF
  • Curr. Biol.
  • 2017 Jun 5

Literature context:


Abstract:

The kinetochore links chromosomes to dynamic spindle microtubules and drives both chromosome congression and segregation. To do so, the kinetochore must hold on to depolymerizing and polymerizing microtubules. At metaphase, one sister kinetochore couples to depolymerizing microtubules, pulling its sister along polymerizing microtubules [1, 2]. Distinct kinetochore-microtubule interfaces mediate these behaviors: active interfaces transduce microtubule depolymerization into mechanical work, and passive interfaces generate friction as the kinetochore moves along microtubules [3, 4]. Despite a growing understanding of the molecular components that mediate kinetochore binding [5-7], we do not know how kinetochores physically interact with polymerizing versus depolymerizing microtubule bundles, and whether they use the same mechanisms and regulation to do so. To address this question, we focus on the mechanical role of the essential load-bearing protein Hec1 [8-11] in mammalian cells. Hec1's affinity for microtubules is regulated by Aurora B phosphorylation on its N-terminal tail [12-15], but its role at the interface with polymerizing versus depolymerizing microtubules remains unclear. Here we use laser ablation to trigger cellular pulling on mutant kinetochores and decouple sisters in vivo, and thereby separately probe Hec1's role on polymerizing versus depolymerizing microtubules. We show that Hec1 tail phosphorylation tunes friction along polymerizing microtubules and yet does not compromise the kinetochore's ability to grip depolymerizing microtubules. Together, the data suggest that kinetochore regulation has differential effects on engagement with growing and shrinking microtubules. Through this mechanism, the kinetochore can modulate its grip on microtubules over mitosis and yet retain its ability to couple to microtubules powering chromosome movement.

Funding information:
  • NIGMS NIH HHS - DP2 GM119177()

Cryo-EM Reveals How Human Cytoplasmic Dynein Is Auto-inhibited and Activated.

  • Zhang K
  • Cell
  • 2017 Jun 15

Literature context:


Abstract:

Cytoplasmic dynein-1 binds dynactin and cargo adaptor proteins to form a transport machine capable of long-distance processive movement along microtubules. However, it is unclear why dynein-1 moves poorly on its own or how it is activated by dynactin. Here, we present a cryoelectron microscopy structure of the complete 1.4-megadalton human dynein-1 complex in an inhibited state known as the phi-particle. We reveal the 3D structure of the cargo binding dynein tail and show how self-dimerization of the motor domains locks them in a conformation with low microtubule affinity. Disrupting motor dimerization with structure-based mutagenesis drives dynein-1 into an open form with higher affinity for both microtubules and dynactin. We find the open form is also inhibited for movement and that dynactin relieves this by reorienting the motor domains to interact correctly with microtubules. Our model explains how dynactin binding to the dynein-1 tail directly stimulates its motor activity.

Funding information:
  • Wellcome Trust - 16-0093()

Lck/Hck/Fgr-Mediated Tyrosine Phosphorylation Negatively Regulates TBK1 to Restrain Innate Antiviral Responses.

  • Liu S
  • Cell Host Microbe
  • 2017 Jun 14

Literature context:


Abstract:

Cytosolic nucleic acid sensing elicits interferon production for primary antiviral defense through cascades controlled by protein ubiquitination and Ser/Thr phosphorylation. Here we show that TBK1, a core kinase of antiviral pathways, is inhibited by tyrosine phosphorylation. The Src family kinases (SFKs) Lck, Hck, and Fgr directly phosphorylate TBK1 at Tyr354/394, to prevent TBK1 dimerization and activation. Accordingly, antiviral sensing and resistance were substantially enhanced in Lck/Hck/Fgr triple knockout cells and ectopic expression of Lck/Hck/Fgr dampened the antiviral defense in cells and zebrafish. Small-molecule inhibitors of SFKs, which are conventional anti-tumor therapeutics, enhanced antiviral responses and protected zebrafish and mice from viral attack. Viral infection induced the expression of Lck/Hck/Fgr through TBK1-mediated mobilization of IRF3, thus constituting a negative feedback loop. These findings unveil the negative regulation of TBK1 via tyrosine phosphorylation and the functional integration of SFKs into innate antiviral immunity.

Large Cytoplasm Is Linked to the Error-Prone Nature of Oocytes.

  • Kyogoku H
  • Dev. Cell
  • 2017 May 8

Literature context:


Abstract:

Chromosome segregation during meiosis in oocytes is error prone. The uniquely large cytoplasmic size of oocytes, which provides support for embryogenesis after fertilization, might be a predisposing factor for meiotic errors. However, this hypothesis remains unproven. Here, we show that cytoplasmic size affects the functionality of the acentrosomal spindle. Artificially decreasing the cytoplasmic size in mouse oocytes allows the acentrosomal spindle poles to have a better-focused distribution of microtubule-organizing centers and to biorient chromosomes more efficiently, whereas enlargement of the cytoplasmic size has the opposite effects. Moreover, we found that the cytoplasmic size-dependent dilution of nuclear factors, including anaphase inhibitors that are preformed at the nuclear membrane, limits the spindle's capacity to prevent anaphase entry with misaligned chromosomes. The present study defines a large cytoplasmic volume as a cell-intrinsic feature linked to the error-prone nature of oocytes. This may represent a trade-off between meiotic fidelity and post-fertilization developmental competence.

Funding information:
  • NEI NIH HHS - R01 EY022030-03(United States)

Translation of CircRNAs.

  • Pamudurti NR
  • Mol. Cell
  • 2017 Apr 6

Literature context:


Abstract:

Circular RNAs (circRNAs) are abundant and evolutionarily conserved RNAs of largely unknown function. Here, we show that a subset of circRNAs is translated in vivo. By performing ribosome footprinting from fly heads, we demonstrate that a group of circRNAs is associated with translating ribosomes. Many of these ribo-circRNAs use the start codon of the hosting mRNA, are bound by membrane-associated ribosomes, and have evolutionarily conserved termination codons. In addition, we found that a circRNA generated from the muscleblind locus encodes a protein, which we detected in fly head extracts by mass spectrometry. Next, by performing in vivo and in vitro translation assays, we show that UTRs of ribo-circRNAs (cUTRs) allow cap-independent translation. Moreover, we found that starvation and FOXO likely regulate the translation of a circMbl isoform. Altogether, our study provides strong evidence for translation of circRNAs, revealing the existence of an unexplored layer of gene activity.

Mutation of the Human Circadian Clock Gene CRY1 in Familial Delayed Sleep Phase Disorder.

  • Patke A
  • Cell
  • 2017 Apr 6

Literature context:


Abstract:

Patterns of daily human activity are controlled by an intrinsic circadian clock that promotes ∼24 hr rhythms in many behavioral and physiological processes. This system is altered in delayed sleep phase disorder (DSPD), a common form of insomnia in which sleep episodes are shifted to later times misaligned with the societal norm. Here, we report a hereditary form of DSPD associated with a dominant coding variation in the core circadian clock gene CRY1, which creates a transcriptional inhibitor with enhanced affinity for circadian activator proteins Clock and Bmal1. This gain-of-function CRY1 variant causes reduced expression of key transcriptional targets and lengthens the period of circadian molecular rhythms, providing a mechanistic link to DSPD symptoms. The allele has a frequency of up to 0.6%, and reverse phenotyping of unrelated families corroborates late and/or fragmented sleep patterns in carriers, suggesting that it affects sleep behavior in a sizeable portion of the human population.

Funding information:
  • NCATS NIH HHS - UL1 TR000043()
  • NCATS NIH HHS - UL1 TR001866()
  • NINDS NIH HHS - R01 NS052495()

Immunohistochemical analysis of huntingtin-associated protein 1 in adult rat spinal cord and its regional relationship with androgen receptor.

  • Islam MN
  • Neuroscience
  • 2017 Jan 6

Literature context:


Abstract:

Huntingtin-associated protein 1 (HAP1) is a neuronal interactor with causatively polyglutamine (polyQ)-expanded huntingtin in Huntington's disease and also associated with pathologically polyQ-expanded androgen receptor (AR) in spinobulbar muscular atrophy (SBMA), being considered as a protective factor against neurodegenerative apoptosis. In normal brains, it is abundantly expressed particularly in the limbic-hypothalamic regions that tend to be spared from neurodegeneration, whereas the areas with little HAP1 expression, including the striatum, thalamus, cerebral neocortex and cerebellum, are targets in several neurodegenerative diseases. While the spinal cord is another major neurodegenerative target, HAP1-immunoreactive (ir) structures have yet to be determined there. In the current study, HAP1 expression was immunohistochemically evaluated in light and electron microscopy through the cervical, thoracic, lumbar, and sacral spinal cords of the adult male rat. Our results showed that HAP1 is specifically expressed in neurons through the spinal segments and that more than 90% of neurons expressed HAP1 in lamina I-II, lamina X, and autonomic preganglionic regions. Double-immunostaining for HAP1 and AR demonstrated that more than 80% of neurons expressed both in laminae I-II and X. In contrast, HAP1 was specifically lacking in the lamina IX motoneurons with or without AR expression. The present study first demonstrated that HAP1 is abundantly expressed in spinal neurons of the somatosensory, viscerosensory, and autonomic regions but absent in somatomotor neurons, suggesting that the spinal motoneurons are, due to lack of putative HAP1 protectivity, more vulnerable to stresses in neurodegenerative diseases than other HAP1-expressing neurons probably involved in spinal sensory and autonomic functions.

Filamin, a synaptic organizer in Drosophila, determines glutamate receptor composition and membrane growth.

  • Lee G
  • Elife
  • 2016 Dec 3

Literature context:


Abstract:

Filamin is a scaffolding protein that functions in many cells as an actin-crosslinker. FLN90, an isoform of the Drosophila ortholog Filamin/cheerio that lacks the actin-binding domain, is here shown to govern the growth of postsynaptic membrane folds and the composition of glutamate receptor clusters at the larval neuromuscular junction. Genetic and biochemical analyses revealed that FLN90 is present surrounding synaptic boutons. FLN90 is required in the muscle for localization of the kinase dPak and, downstream of dPak, for localization of the GTPase Ral and the exocyst complex to this region. Consequently, Filamin is needed for growth of the subsynaptic reticulum. In addition, in the absence of filamin, type-A glutamate receptor subunits are lacking at the postsynapse, while type-B subunits cluster correctly. Receptor composition is dependent on dPak, but independent of the Ral pathway. Thus two major aspects of synapse formation, morphological plasticity and subtype-specific receptor clustering, require postsynaptic Filamin.

Funding information:
  • NIDCD NIH HHS - R01DC012931(United States)

A Portrait of the Human Organelle Proteome In Space and Time during Cytomegalovirus Infection.

  • Jean Beltran PM
  • Cell Syst
  • 2016 Oct 26

Literature context:


Abstract:

The organelles within a eukaryotic host are manipulated by viruses to support successful virus replication and spread of infection, yet the global impact of viral infection on host organelles is poorly understood. Integrating microscopy, subcellular fractionation, mass spectrometry, and functional analyses, we conducted a cell-wide study of organelles in primary fibroblasts throughout the time course of human cytomegalovirus (HCMV) infection. We used label-free and isobaric-labeling proteomics to characterize nearly 4,000 host and 100 viral proteins, then classified their specific subcellular locations over time using machine learning. We observed a global reorganization of proteins across the secretory pathway, plasma membrane, and mitochondria, including reorganization and processing of lysosomal proteins into distinct subpopulations and translocations of individual proteins between organelles at specific time points. We also demonstrate that MYO18A, an unconventional myosin that translocates from the plasma membrane to the viral assembly complex, is necessary for efficient HCMV replication. This study provides a comprehensive resource for understanding host and virus biology during HCMV pathogenesis.

Essential Role of IGFIR in the Onset of Male Brown Fat Thermogenic Function: Regulation of Glucose Homeostasis by Differential Organ-Specific Insulin Sensitivity.

  • Viana-Huete V
  • Endocrinology
  • 2016 Aug 17

Literature context:


Abstract:

Brown fat is a thermogenic tissue that generates heat to maintain body temperature in cold environments and dissipate excess energy in response to overfeeding. We have addressed the role of the IGFIR in the brown fat development and function. Mice lacking IGFIR exhibited normal brown adipose tissue/body weight in knockout (KO) vs control mice. However, lack of IGFIR decreased uncoupling protein 1 expression in interscapular brown fat and beige cells in inguinal fat. More importantly, the lack of IGFIR resulted in an impaired cold acclimation. No differences in the total fat volume were found in the KO vs control mice. Epididymal fat showed larger adipocytes but with a lower number of adipocytes in KO vs control mice at age 12 months. In addition, KO mice showed a sustained moderate hyperinsulinemia and hypertriglyceridemia upon time and hepatic insulin insensitivity associated with lipid accumulation, with the outcome of a global insulin resistance. In addition, we found that the expression of uncoupling protein 3 in the skeletal muscle was decreased and its expression was increased in the heart in parallel with the expression of beta-2 adrenergic receptors. Upon nonobesogenic high-fat diet, we found a severe insulin resistance in the liver and in the skeletal muscle, but unchanged insulin sensitivity in the heart. In conclusion, our data suggest that IGFIR it is not an essential growth factor in the brown fat development in the presence of the IR and very high plasma levels of IGF-I, but it is indispensable for full brown fat functionality.

Funding information:
  • NINDS NIH HHS - 5K01NS085071-03(United States)

The Lamin B receptor is essential for cholesterol synthesis and perturbed by disease-causing mutations.

  • Tsai PL
  • Elife
  • 2016 Jun 23

Literature context:


Abstract:

Lamin B receptor (LBR) is a polytopic membrane protein residing in the inner nuclear membrane in association with the nuclear lamina. We demonstrate that human LBR is essential for cholesterol synthesis. LBR mutant derivatives implicated in Greenberg skeletal dysplasia or Pelger-Huët anomaly fail to rescue the cholesterol auxotrophy of a LBR-deficient human cell line, consistent with a loss-of-function mechanism for these congenital disorders. These disease-causing variants fall into two classes: point mutations in the sterol reductase domain perturb enzymatic activity by reducing the affinity for the essential cofactor NADPH, while LBR truncations render the mutant protein metabolically unstable, leading to its rapid degradation at the inner nuclear membrane. Thus, metabolically unstable LBR variants may serve as long-sought-after model substrates enabling previously impossible investigations of poorly understood protein turnover mechanisms at the inner nuclear membrane of higher eukaryotes.

Funding information:
  • NCATS NIH HHS - UL1 TR001863()
  • NIGMS NIH HHS - T32 GM007223()
  • NIH HHS - DP2 OD008624()
  • Wellcome Trust - 096919(United Kingdom)

Androgen Deficiency Exacerbates High-Fat Diet-Induced Metabolic Alterations in Male Mice.

  • Dubois V
  • Endocrinology
  • 2016 Feb 2

Literature context:


Abstract:

Androgen deficiency is associated with obesity, metabolic syndrome, and type 2 diabetes mellitus in men, but the mechanisms behind these associations remain unclear. In this study, we investigated the combined effects of androgen deficiency and high-fat diet (HFD) on body composition and glucose homeostasis in C57BL/6J male mice. Two models of androgen deficiency were used: orchidectomy (ORX) and androgen receptor knockout mice. Both models displayed higher adiposity and serum leptin levels upon HFD, whereas no differences were seen on a regular diet. Fat accumulation in HFD ORX animals was accompanied by increased sedentary behavior and occurred in spite of reduced food intake. HFD ORX mice showed white adipocyte hypertrophy, correlated with decreased mitochondrial content but not function as well as increased lipogenesis and decreased lipolysis suggested by the up-regulation of fatty acid synthase and the down-regulation of hormone-sensitive lipase. Both ORX and androgen receptor knockout exacerbated HFD-induced glucose intolerance by impairing insulin action in liver and skeletal muscle, as evidenced by the increased triglyceride and decreased glycogen content in these tissues. In addition, serum IL-1β levels were elevated, and pancreatic insulin secretion was impaired after ORX. Testosterone but not dihydrotestosterone supplementation restored the castration effects on body composition and glucose homeostasis. We conclude that sex steroid deficiency in combination with HFD exacerbates adiposity, insulin resistance, and β-cell failure in 2 preclinical male mouse models. Our findings stress the importance of a healthy diet in a clinical context of androgen deficiency and may have implications for the prevention of metabolic alterations in hypogonadal men.

Funding information:
  • HHMI - R35NS097974(United States)

Granulin knock out zebrafish lack frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis pathology.

  • Solchenberger B
  • PLoS ONE
  • 2015 Mar 19

Literature context:


Abstract:

Loss of function mutations in granulin (GRN) are linked to two distinct neurological disorders, frontotemporal lobar degeneration (FTLD) and neuronal ceroid lipofuscinosis (NCL). It is so far unknown how a complete loss of GRN in NCL and partial loss of GRN in FTLD can result in such distinct diseases. In zebrafish, there are two GRN homologues, Granulin A (Grna) and Granulin B (Grnb). We have generated stable Grna and Grnb loss of function zebrafish mutants by zinc finger nuclease mediated genome editing. Surprisingly, the grna and grnb single and double mutants display neither spinal motor neuron axonopathies nor a reduced number of myogenic progenitor cells as previously reported for Grna and Grnb knock down embryos. Additionally, grna-/-;grnb-/- double mutants have no obvious FTLD- and NCL-related biochemical and neuropathological phenotypes. Taken together, the Grna and Grnb single and double knock out zebrafish lack any obvious morphological, pathological and biochemical phenotypes. Loss of zebrafish Grna and Grnb might therefore either be fully compensated or only become symptomatic upon additional challenge.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/E02209X/1(United Kingdom)
  • NCRR NIH HHS - RR-03051(United States)

Hypoxia inhibits Cavin-1 and Cavin-2 expression and down-regulates caveolae in adipocytes.

  • Regazzetti C
  • Endocrinology
  • 2015 Mar 21

Literature context:


Abstract:

During obesity, a hypoxic state develops within the adipose tissue, resulting in insulin resistance. To understand the underlying mechanism, we analyzed the involvement of caveolae because they play a crucial role in the activation of insulin receptors. In the present study, we demonstrate that in 3T3-L1 adipocytes, hypoxia induces the disappearance of caveolae and inhibits the expression of Cavin-1 and Cavin-2, two proteins necessary for the formation of caveolae. In mice, hypoxia induced by the ligature of the spermatic artery results in the decrease of cavin-1 and cavin-2 expression in the epididymal adipose tissue. Down-regulation of the expression of cavins in response to hypoxia is dependent on hypoxia-inducible factor-1. Indeed, the inhibition of hypoxia-inducible factor-1 restores the expression of cavins and caveolae formation. Expression of cavins regulates insulin signaling because the silencing of cavin-1 and cavin-2 impairs insulin signaling pathway. In human, cavin-1 and cavin-2 are decreased in the sc adipose tissue of obese diabetic patients compared with lean subjects. Moreover, the expression of cavin-2 correlates negatively with the homeostatic model assessment index of insulin resistance and glycated hemoglobin level. In conclusion, we propose a new mechanism in which hypoxia inhibits cavin-1 and cavin-2 expression, resulting in the disappearance of caveolae. This leads to the inhibition of insulin signaling and the establishment of insulin resistance.

Funding information:
  • NIDA NIH HHS - R21 DA034195(United States)

The BCL-2 family protein Bid is critical for pro-inflammatory signaling in astrocytes.

  • König HG
  • Neurobiol. Dis.
  • 2014 Oct 11

Literature context:


Abstract:

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motoneurons in the spinal cord, brainstem and motor cortex. Mutations in the superoxide dismutase 1 (SOD1) gene represent a frequent genetic determinant and recapitulate a disease phenotype similar to ALS when expressed in mice. Previous studies using SOD1(G93A) transgenic mice have suggested a paracrine mechanism of neuronal loss, in which cytokines and other toxic factors released from astroglia or microglia trigger motoneuron degeneration. Several pro-inflammatory cytokines activate death receptors and may downstream from this activate the Bcl-2 family protein, Bid. We here sought to investigate the role of Bid in astrocyte activation and non-cell autonomous motoneuron degeneration. We found that spinal cord Bid protein levels increased significantly during disease progression in SOD1(G93A) mice. Subsequent experiments in vitro indicated that Bid was expressed at relatively low levels in motoneurons, but was enriched in astrocytes and microglia. Bid was strongly induced in astrocytes in response to pro-inflammatory cytokines or exposure to lipopolysaccharide. Experiments in bid-deficient astrocytes or astrocytes treated with a small molecule Bid inhibitor demonstrated that Bid was required for the efficient activation of transcription factor nuclear factor-κB in response to these pro-inflammatory stimuli. Finally, we found that conditioned medium from wild-type astrocytes, but not from bid-deficient astrocytes, was toxic when applied to primary motoneuron cultures. Collectively, our data demonstrate a new role for the Bcl-2 family protein Bid as a mediator of astrocyte activation during neuroinflammation, and suggest that Bid activation may contribute to non-cell autonomous motoneuron degeneration in ALS.

Funding information:
  • NIA NIH HHS - P01 AG031782(United States)
  • NIGMS NIH HHS - T32 GM007413(United States)