X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

TEF-1 antibody

RRID:AB_398237

Antibody ID

AB_398237

Target Antigen

TEF-1 mouse, human, mouse

Proper Citation

(BD Biosciences Cat# 610922, RRID:AB_398237)

Clonality

monoclonal antibody

Comments

Immunofluorescence, Western blot

Host Organism

mouse

Vendor

BD Biosciences Go To Vendor

Cat Num

610922

Publications that use this research resource

Programming of Schwann Cells by Lats1/2-TAZ/YAP Signaling Drives Malignant Peripheral Nerve Sheath Tumorigenesis.

  • Wu LMN
  • Cancer Cell
  • 2018 Feb 12

Literature context:


Abstract:

Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive Schwann cell (SC)-lineage-derived sarcomas. Molecular events driving SC-to-MPNST transformation are incompletely understood. Here, we show that human MPNSTs exhibit elevated HIPPO-TAZ/YAP expression, and that TAZ/YAP hyperactivity in SCs caused by Lats1/2 loss potently induces high-grade nerve-associated tumors with full penetrance. Lats1/2 deficiency reprograms SCs to a cancerous, progenitor-like phenotype and promotes hyperproliferation. Conversely, disruption of TAZ/YAP activity alleviates tumor burden in Lats1/2-deficient mice and inhibits human MPNST cell proliferation. Moreover, genome-wide profiling reveals that TAZ/YAP-TEAD1 directly activates oncogenic programs, including platelet-derived growth factor receptor (PDGFR) signaling. Co-targeting TAZ/YAP and PDGFR pathways inhibits tumor growth. Thus, our findings establish a previously unrecognized convergence between Lats1/2-TAZ/YAP signaling and MPNST pathogenesis, revealing potential therapeutic targets in these untreatable tumors.

Funding information:
  • NHLBI NIH HHS - R01 HL132211()
  • NIA NIH HHS - R01 AG040990(United States)
  • NINDS NIH HHS - R01 NS072427()
  • NINDS NIH HHS - R01 NS075243()
  • NINDS NIH HHS - R01 NS078092()
  • NINDS NIH HHS - R01 NS086219()
  • NINDS NIH HHS - R37 NS096359()

YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis.

  • Lin C
  • Elife
  • 2017 Mar 21

Literature context:


Abstract:

Branching morphogenesis is a fundamental program for tissue patterning. We show that active YAP, a key mediator of Hippo signaling, is distributed throughout the murine lung epithelium and loss of epithelial YAP severely disrupts branching. Failure to branch is restricted to regions where YAP activity is removed. This suggests that YAP controls local epithelial cell properties. In support of this model, mechanical force production is compromised and cell proliferation is reduced in Yap mutant lungs. We propose that defective force generation and insufficient epithelial cell number underlie the branching defects. Through genomic analysis, we also uncovered a feedback control of pMLC levels, which is critical for mechanical force production, likely through the direct induction of multiple regulators by YAP. Our work provides a molecular pathway that could control epithelial cell properties required for proper morphogenetic movement and pattern formation.

Funding information:
  • NINDS NIH HHS - K99 NS097627()