Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

GM130 antibody


Antibody ID


Target Antigen

GM130 dog, human, mouse, rat, human, canine, mouse, rat

Proper Citation

(BD Biosciences Cat# 610822, RRID:AB_398141)


monoclonal antibody


Immunofluorescence, Western blot

Host Organism



BD Biosciences Go To Vendor

Alpha protocadherins and Pyk2 kinase regulate cortical neuron migration and cytoskeletal dynamics via Rac1 GTPase and WAVE complex in mice.

  • Fan L
  • Elife
  • 2018 Jun 18

Literature context:


Diverse clustered protocadherins are thought to function in neurite morphogenesis and neuronal connectivity in the brain. Here we report that the protocadherin alpha (Pcdha) gene cluster regulates neuronal migration during cortical development and cytoskeletal dynamics in primary cortical culture through the WAVE (Wiskott-Aldrich syndrome family verprolin homologous protein, also known as WASP or Wasf) complex. In addition, overexpression of proline-rich tyrosine kinase 2 (Pyk2, also known as Ptk2b, Cakb, Raftk, Fak2, and Cadtk), a non-receptor cell-adhesion kinase and scaffold protein downstream of Pcdha, impairs cortical neuron migration via inactivation of the small GTPase Rac1. Thus, we define a molecular Pcdha/WAVE/Pyk2/Rac1 axis from protocadherin cell-surface receptors to actin cytoskeletal dynamics in cortical neuron migration in mouse brain.

Funding information:
  • Ministry of Science and Technology of the People's Republic of China - 2017YFA0504203()
  • National Natural Science Foundation of China - 31470820()
  • National Natural Science Foundation of China - 31630039()
  • National Natural Science Foundation of China - 91640118()
  • NIGMS NIH HHS - GM052872(United States)

Endosomal Rab cycles regulate Parkin-mediated mitophagy.

  • Yamano K
  • Elife
  • 2018 Jan 23

Literature context:


Damaged mitochondria are selectively eliminated by mitophagy. Parkin and PINK1, gene products mutated in familial Parkinson's disease, play essential roles in mitophagy through ubiquitination of mitochondria. Cargo ubiquitination by E3 ubiquitin ligase Parkin is important to trigger selective autophagy. Although autophagy receptors recruit LC3-labeled autophagic membranes onto damaged mitochondria, how other essential autophagy units such as ATG9A-integrated vesicles are recruited remains unclear. Here, using mammalian cultured cells, we demonstrate that RABGEF1, the upstream factor of the endosomal Rab GTPase cascade, is recruited to damaged mitochondria via ubiquitin binding downstream of Parkin. RABGEF1 directs the downstream Rab proteins, RAB5 and RAB7A, to damaged mitochondria, whose associations are further regulated by mitochondrial Rab-GAPs. Furthermore, depletion of RAB7A inhibited ATG9A vesicle assembly and subsequent encapsulation of the mitochondria by autophagic membranes. These results strongly suggest that endosomal Rab cycles on damaged mitochondria are a crucial regulator of mitophagy through assembling ATG9A vesicles.

Funding information:
  • Japan Science and Technology Agency - JPMJCR13M7(International)
  • Japan Society for the Promotion of Science - 16K15095(International)
  • Japan Society for the Promotion of Science - JP15H01196(International)
  • Japan Society for the Promotion of Science - JP16K18545(International)
  • Japan Society for the Promotion of Science - JP26000014(International)
  • Japan Society for the Promotion of Science - JP26111729(International)
  • Japan Society for the Promotion of Science - JP26840033(International)
  • NIDCR NIH HHS - R03 DE018415-02(United States)
  • NINDS NIH HHS - Intramural program(United States)

Deciphering caveolar functions by syndapin III KO-mediated impairment of caveolar invagination.

  • Seemann E
  • Elife
  • 2017 Dec 5

Literature context:


Several human diseases are associated with a lack of caveolae. Yet, the functions of caveolae and the molecular mechanisms critical for shaping them still are debated. We show that muscle cells of syndapin III KO mice show severe reductions of caveolae reminiscent of human caveolinopathies. Yet, different from other mouse models, the levels of the plasma membrane-associated caveolar coat proteins caveolin3 and cavin1 were both not reduced upon syndapin III KO. This allowed for dissecting bona fide caveolar functions from those supported by mere caveolin presence and also demonstrated that neither caveolin3 nor caveolin3 and cavin1 are sufficient to form caveolae. The membrane-shaping protein syndapin III is crucial for caveolar invagination and KO rendered the cells sensitive to membrane tensions. Consistent with this physiological role of caveolae in counterpoising membrane tensions, syndapin III KO skeletal muscles showed pathological parameters upon physical exercise that are also found in CAVEOLIN3 mutation-associated muscle diseases.

Funding information:
  • NHLBI NIH HHS - HL095590(United States)

Impaired axonal retrograde trafficking of the retromer complex augments lysosomal deficits in Alzheimer's disease neurons.

  • Tammineni P
  • Hum. Mol. Genet.
  • 2017 Nov 15

Literature context:


Lysosomal proteolysis is essential for the quality control of intracellular components and the maintenance of cellular homeostasis. Lysosomal alterations have been implicated as one of the main cellular defects contributing to the onset and progression of Alzheimer's disease (AD). However, the mechanism underlying lysosomal deficits in AD remains poorly understood. Here, we reveal that lysosomal deficits are attributed to retromer dysfunction induced by altered retromer trafficking in the axon of AD-related mutant human amyloid precursor protein (hAPP) transgenic (Tg) mouse neurons. We demonstrate that retrograde transport of retromer is impaired, leading to its significant reduction in the soma and abnormal retention within late endosomes in distal axons of mutant hAPP neurons. Therefore, retromer-mediated endosome-to-Golgi retrieval of cation-independent mannose-6-phosphate receptors (CI-MPR) in the soma is disrupted in mutant hAPP neurons, causing defects in lysosome biogenesis. Such defects result in protease deficiency in lysosomes and impaired lysosomal proteolysis, as evidenced by aberrant accumulation of sequestered substrates within lysosomes. Intriguingly, enhancement of retrograde transport in mutant hAPP neurons facilitates the trafficking of axonal retromer toward the soma and thus enhances protease transport to lysosomes, thereby restoring lysosomal proteolytic activity. Taken together, our study provides new insights into the regulation of retromer trafficking through retrograde axonal transport to fulfil its function in promoting lysosome biogenesis in the soma, suggesting a potential approach for rescuing lysosomal proteolysis deficits in AD.

Funding information:
  • NIA NIH HHS - R00 AG033658()
  • NINDS NIH HHS - R01 NS089737()
  • NINDS NIH HHS - R21 NS102780()

Centriolar Satellites Control GABARAP Ubiquitination and GABARAP-Mediated Autophagy.

  • Joachim J
  • Curr. Biol.
  • 2017 Jul 24

Literature context:


Autophagy maintains cellular health and homeostasis during stress by delivering cytosolic material captured by autophagosomes to lysosomes for degradation. Autophagosome formation is complex: initiated by the recruitment of autophagy (Atg) proteins to the formation site, it is sustained by activation of Atg proteins to allow growth and closure of the autophagosome. How Atg proteins are translocated to the forming autophagosome is not fully understood. Transport of the ATG8 family member GABARAP from the centrosome occurs during starvation-induced autophagosome biogenesis, but how centrosomal proteins regulate GABARAP localization is unknown. We show that the centriolar satellite protein PCM1 regulates the recruitment of GABARAP to the pericentriolar material. In addition to residing on the pericentriolar material, GABARAP marks a subtype of PCM1-positive centriolar satellites. GABARAP, but not another ATG8 family member LC3B, binds directly to PCM1 through a canonical LIR motif. Loss of PCM1 results in destabilization of GABARAP, but not LC3B, through proteasomal degradation. GABARAP instability is mediated through the centriolar satellite E3 ligase Mib1, which interacts with GABARAP through its substrate-binding region and promotes K48-linked ubiquitination of GABARAP. Ubiquitination of GABARAP occurs in the N terminus, a domain associated with ATG8-family-specific functions during autophagosome formation, on residues absent in the LC3 family. Furthermore, PCM1-GABARAP-positive centriolar satellites colocalize with forming autophagosomes. PCM1 enhances GABARAP/WIPI2/p62-positive autophagosome formation and flux but has no significant effect on LC3B-positive autophagosome formation. These data suggest a mechanism for how centriolar satellites can specifically regulate an ATG8 ortholog, the centrosomal GABARAP reservoir, and centrosome-autophagosome crosstalk.

Funding information:
  • NIGMS NIH HHS - R01 HD069647()
  • Wellcome Trust - R01 GM120776()

Vesicular acetylcholine transporter (VAChT) over-expression induces major modifications of striatal cholinergic interneuron morphology and function.

  • Janickova H
  • J. Neurochem.
  • 2017 Jun 19

Literature context:


Striatal cholinergic interneurons (CIN) are pivotal for the regulation of the striatal network. Acetylcholine (ACh) released by CIN is centrally involved in reward behavior as well as locomotor or cognitive functions. Recently, BAC transgenic mice expressing channelrhodopsin-2 (ChR2) protein under the control of the choline acetyltransferase (ChAT) promoter (ChAT-ChR2) and displaying almost 50 extra copies of the VAChT gene were used to dissect cholinergic circuit connectivity and function using optogenetic approaches. These mice display over-expression of the vesicular acetylcholine transporter (VAChT) and increased cholinergic tone. Consequently, ChAT-ChR2 mice are a valuable model to investigate hypercholinergic phenotypes. Previous experiments established that ChAT-ChR2 mice display an increased sensitivity to amphetamine induced-locomotor activity and stereotypes. In the present report, we analyzed the impact of VAChT over-expression in the striatum of ChAT-ChR2 mice. ChAT-ChR2 mice displayed increased locomotor sensitization in response to low dose of cocaine. In addition, we observed a dramatic remodeling of the morphology of CIN in ChAT-ChR2 transgenic mice. VAChT immunolabeling was markedly enhanced in the soma and terminal of CIN from ChAT-ChR2 mice as previously shown (Crittenden et al. 2014). Interestingly, the number of cholinergic varicosities was markedly reduced (-87%) whereas their size was significantly increased (+177%). Moreover, VAChT over-expression dramatically modified its trafficking along the somatodendritic and axonal arbor. These findings demonstrate that ChAT-ChR2 mice present major alterations of CIN neuronal morphology and increased behavioral sensitization to cocaine, supporting the notion that the increased levels of VAChT observed in these mice make them fundamentally different from wild-type mice.

Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface.

  • Boulay AC
  • Cell Discov
  • 2017 Apr 5

Literature context:


Astrocytes send out long processes that are terminated by endfeet at the vascular surface and regulate vascular functions as well as homeostasis at the vascular interface. To date, the astroglial mechanisms underlying these functions have been poorly addressed. Here we demonstrate that a subset of messenger RNAs is distributed in astrocyte endfeet. We identified, among this transcriptome, a pool of messenger RNAs bound to ribosomes, the endfeetome, that primarily encodes for secreted and membrane proteins. We detected nascent protein synthesis in astrocyte endfeet. Finally, we determined the presence of smooth and rough endoplasmic reticulum and the Golgi apparatus in astrocyte perivascular processes and endfeet, suggesting for local maturation of membrane and secreted proteins. These results demonstrate for the first time that protein synthesis occurs in astrocyte perivascular distal processes that may sustain their structural and functional polarization at the vascular interface.

Ambra1 spatially regulates Src activity and Src/FAK-mediated cancer cell invasion via trafficking networks.

  • Schoenherr C
  • Elife
  • 2017 Mar 31

Literature context:


Here, using mouse squamous cell carcinoma cells, we report a completely new function for the autophagy protein Ambra1 as the first described 'spatial rheostat' controlling the Src/FAK pathway. Ambra1 regulates the targeting of active phospho-Src away from focal adhesions into autophagic structures that cancer cells use to survive adhesion stress. Ambra1 binds to both FAK and Src in cancer cells. When FAK is present, Ambra1 is recruited to focal adhesions, promoting FAK-regulated cancer cell direction-sensing and invasion. However, when Ambra1 cannot bind to FAK, abnormally high levels of phospho-Src and phospho-FAK accumulate at focal adhesions, positively regulating adhesion and invasive migration. Spatial control of active Src requires the trafficking proteins Dynactin one and IFITM3, which we identified as Ambra1 binding partners by interaction proteomics. We conclude that Ambra1 is a core component of an intracellular trafficking network linked to tight spatial control of active Src and FAK levels, and so crucially regulates their cancer-associated biological outputs.

Funding information:
  • European Research Council - 294440()

CLASP2 Links Reelin to the Cytoskeleton during Neocortical Development.

  • Dillon GM
  • Neuron
  • 2017 Mar 22

Literature context:


The Reelin signaling pathway plays a crucial role in regulating neocortical development. However, little is known about how Reelin controls the cytoskeleton during neuronal migration. Here, we identify CLASP2 as a key cytoskeletal effector in the Reelin signaling pathway. We demonstrate that CLASP2 has distinct roles during neocortical development regulating neuron production and controlling neuron migration, polarity, and morphogenesis. We found downregulation of CLASP2 in migrating neurons leads to mislocalized cells in deeper cortical layers, abnormal positioning of the centrosome-Golgi complex, and aberrant length/orientation of the leading process. We discovered that Reelin regulates several phosphorylation sites within the positively charged serine/arginine-rich region that constitute consensus GSK3β phosphorylation motifs of CLASP2. Furthermore, phosphorylation of CLASP2 regulates its interaction with the Reelin adaptor Dab1 and this association is required for CLASP2 effects on neurite extension and motility. Together, our data reveal that CLASP2 is an essential Reelin effector orchestrating cytoskeleton dynamics during brain development.

Funding information:
  • NIMH NIH HHS - R21 MH100581()

Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons.

  • Cao M
  • Neuron
  • 2017 Feb 22

Literature context:


Synaptojanin 1 (SJ1) is a major presynaptic phosphatase that couples synaptic vesicle endocytosis to the dephosphorylation of PI(4,5)P2, a reaction needed for the shedding of endocytic factors from their membranes. While the role of SJ1's 5-phosphatase module in this process is well recognized, the contribution of its Sac phosphatase domain, whose preferred substrate is PI4P, remains unclear. Recently a homozygous mutation in its Sac domain was identified in early-onset parkinsonism patients. We show that mice carrying this mutation developed neurological manifestations similar to those of human patients. Synapses of these mice displayed endocytic defects and a striking accumulation of clathrin-coated intermediates, strongly implicating Sac domain's activity in endocytic protein dynamics. Mutant brains had elevated auxilin (PARK19) and parkin (PARK2) levels. Moreover, dystrophic axonal terminal changes were selectively observed in dopaminergic axons in the dorsal striatum. These results strengthen evidence for a link between synaptic endocytic dysfunction and Parkinson's disease.

Funding information:
  • NCATS NIH HHS - UL1 TR001863()
  • NIDA NIH HHS - P30 DA018343()
  • NIGMS NIH HHS - P41 GM103412()
  • NINDS NIH HHS - R01 NS036251()
  • NINDS NIH HHS - R01 NS036942()
  • NINDS NIH HHS - R37 NS036251()
  • NINDS NIH HHS - R37 NS036942()

The Golgi apparatus acts as a platform for TBK1 activation after viral RNA sensing.

  • Pourcelot M
  • BMC Biol.
  • 2016 Aug 18

Literature context:


BACKGROUND: After viral infection and the stimulation of some pattern-recognition receptors, TANK-binding kinase I (TBK1) is activated by K63-linked polyubiquitination followed by trans-autophosphorylation. While the activated TBK1 induces type I interferon production by phosphorylating the transcription factor IRF3, the precise molecular mechanisms underlying TBK1 activation remain unclear. RESULTS: We report here the localization of the ubiquitinated and phosphorylated active form of TBK1 to the Golgi apparatus after the stimulation of RIG-I-like receptors (RLRs) or Toll-like receptor-3 (TLR3), due to TBK1 K63-linked ubiquitination on lysine residues 30 and 401. The ubiquitin-binding protein optineurin (OPTN) recruits ubiquitinated TBK1 to the Golgi apparatus, leading to the formation of complexes in which TBK1 is activated by trans-autophosphorylation. Indeed, OPTN deficiency in various cell lines and primary cells impairs TBK1 targeting to the Golgi apparatus and its activation following RLR or TLR3 stimulation. Interestingly, the Bluetongue virus NS3 protein binds OPTN at the Golgi apparatus, neutralizing its activity and thereby decreasing TBK1 activation and downstream signaling. CONCLUSIONS: Our results highlight an unexpected role of the Golgi apparatus in innate immunity as a key subcellular gateway for TBK1 activation after RNA virus infection.

Funding information:
  • NICHD NIH HHS - NIH P30 HD003352(United States)
  • NIGMS NIH HHS - T32 GM007184(United States)

α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2.

  • Kett LR
  • J. Neurosci.
  • 2015 Apr 8

Literature context:


Accumulating evidence from genetic and biochemical studies implicates dysfunction of the autophagic-lysosomal pathway as a key feature in the pathogenesis of Parkinson's disease (PD). Most studies have focused on accumulation of neurotoxic α-synuclein secondary to defects in autophagy as the cause of neurodegeneration, but abnormalities of the autophagic-lysosomal system likely mediate toxicity through multiple mechanisms. To further explore how endolysosomal dysfunction causes PD-related neurodegeneration, we generated a murine model of Kufor-Rakeb syndrome (KRS), characterized by early-onset Parkinsonism with additional neurological features. KRS is caused by recessive loss-of-function mutations in the ATP13A2 gene encoding the endolysosomal ATPase ATP13A2. We show that loss of ATP13A2 causes a specific protein trafficking defect, and that Atp13a2 null mice develop age-related motor dysfunction that is preceded by neuropathological changes, including gliosis, accumulation of ubiquitinated protein aggregates, lipofuscinosis, and endolysosomal abnormalities. Contrary to predictions from in vitro data, in vivo mouse genetic studies demonstrate that these phenotypes are α-synuclein independent. Our findings indicate that endolysosomal dysfunction and abnormalities of α-synuclein homeostasis are not synonymous, even in the context of an endolysosomal genetic defect linked to Parkinsonism, and highlight the presence of α-synuclein-independent neurotoxicity consequent to endolysosomal dysfunction.

Funding information:
  • NINDS NIH HHS - R01 NS090390(United States)

Distribution and neuronal expression of phosphatidylinositol phosphate kinase IIgamma in the mouse brain.

  • Clarke JH
  • J. Comp. Neurol.
  • 2009 Nov 20

Literature context:


The role of cellular phosphatidylinositol 5-phosphate (PtdIns5P), as a signalling molecule or as a substrate for the production of small, compartmentalized pools of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)], may be dependent on cell type and subcellular localization. PtdIns5P levels are primarily regulated by the PtdIns5P 4-kinases (type II PIP kinases or PIP4Ks), and we have investigated the expression and localization in the brain of the least-studied PIP4K isoform, PIP4Kgamma. In situ hybridization and immunohistochemistry, using antisense oligonucleotide probes and a PIP4Kgamma-specific antibody, revealed that this isoform has a restricted CNS expression profile. The use of antibodies to different cell markers showed that this expression is limited to neurons, particularly the cerebellar Purkinje cells, pyramidal cells of the hippocampus, large neuronal cell types in the cerebral cortex including pyramidal cells, and mitral cells in the olfactory bulb and is not expressed in cerebellar, hippocampal formation, or olfactory bulb granule cells. In neurons expressing this enzyme, PIP4Kgamma has a vesicular distribution and shows partial colocalization with markers of cellular compartments of the endomembrane trafficking pathway. The PIP4Kgamma isoform expression is established after day 7 of postnatal development. Overall, our data suggest that PIP4Kgamma may have a role in neuron function, specifically in the regulation of vesicular transport, in specific regions of the developed brain.