Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Human SOX2 Affinity Purified Polyclonal Ab antibody


Antibody ID


Target Antigen

Human SOX2 Affinity Purified Ab human

Proper Citation

(R and D Systems Cat# AF2018, RRID:AB_355110)


polyclonal antibody


vendor recommendations: IgG Chromatin Immunoprecipitation (ChIP), Immunocytochemistry, Western Blot; Immunocytochemistry; Immunohistochemistry; Western Blot

Host Organism



R and D Systems

hPSC Modeling Reveals that Fate Selection of Cortical Deep Projection Neurons Occurs in the Subplate.

  • Ozair MZ
  • Cell Stem Cell
  • 2018 Jul 5

Literature context: ystems Cat# AF2018; RRID:AB_355110 Rabbit polyclonal anti-TBR2 Abc


Cortical deep projection neurons (DPNs) are implicated in neurodevelopmental disorders. Although recent findings emphasize post-mitotic programs in projection neuron fate selection, the establishment of primate DPN identity during layer formation is not well understood. The subplate lies underneath the developing cortex and is a post-mitotic compartment that is transiently and disproportionately enlarged in primates in the second trimester. The evolutionary significance of subplate expansion, the molecular identity of its neurons, and its contribution to primate corticogenesis remain open questions. By modeling subplate formation with human pluripotent stem cells (hPSCs), we show that all classes of cortical DPNs can be specified from subplate neurons (SPNs). Post-mitotic WNT signaling regulates DPN class selection, and DPNs in the caudal fetal cortex appear to exclusively derive from SPNs. Our findings indicate that SPNs have evolved in primates as an important source of DPNs that contribute to cortical lamination prior to their known role in circuit formation.

Funding information:
  • NIAID NIH HHS - AI020211(United States)

Submucosal Gland Myoepithelial Cells Are Reserve Stem Cells That Can Regenerate Mouse Tracheal Epithelium.

  • Lynch TJ
  • Cell Stem Cell
  • 2018 May 3

Literature context: Cat#AF2018, RRID:AB_355110 PECy7 Rat anti EpCAM eBioscienc


The mouse trachea is thought to contain two distinct stem cell compartments that contribute to airway repair-basal cells in the surface airway epithelium (SAE) and an unknown submucosal gland (SMG) cell type. Whether a lineage relationship exists between these two stem cell compartments remains unclear. Using lineage tracing of glandular myoepithelial cells (MECs), we demonstrate that MECs can give rise to seven cell types of the SAE and SMGs following severe airway injury. MECs progressively adopted a basal cell phenotype on the SAE and established lasting progenitors capable of further regeneration following reinjury. MECs activate Wnt-regulated transcription factors (Lef-1/TCF7) following injury and Lef-1 induction in cultured MECs promoted transition to a basal cell phenotype. Surprisingly, dose-dependent MEC conditional activation of Lef-1 in vivo promoted self-limited airway regeneration in the absence of injury. Thus, modulating the Lef-1 transcriptional program in MEC-derived progenitors may have regenerative medicine applications for lung diseases.

Funding information:
  • Chief Scientist Office - CAF/10/15(United Kingdom)
  • NHLBI NIH HHS - P01 HL051670()
  • NIDDK NIH HHS - P30 DK054759()

Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex.

  • Florio M
  • Elife
  • 2018 Mar 21

Literature context: AF2018, RRID:AB_355110 (1:500)


Understanding the molecular basis that underlies the expansion of the neocortex during primate, and notably human, evolution requires the identification of genes that are particularly active in the neural stem and progenitor cells of the developing neocortex. Here, we have used existing transcriptome datasets to carry out a comprehensive screen for protein-coding genes preferentially expressed in progenitors of fetal human neocortex. We show that 15 human-specific genes exhibit such expression, and many of them evolved distinct neural progenitor cell-type expression profiles and levels compared to their ancestral paralogs. Functional studies on one such gene, NOTCH2NL, demonstrate its ability to promote basal progenitor proliferation in mice. An additional 35 human genes with progenitor-enriched expression are shown to have orthologs only in primates. Our study provides a resource of genes that are promising candidates to exert specific, and novel, roles in neocortical development during primate, and notably human, evolution.

Funding information:
  • Deutsche Forschungsgemeinschaft - SFB655 A2()
  • European Research Council - 250197()
  • Medical Research Council - G0900901(United Kingdom)

Developmental History Provides a Roadmap for the Emergence of Tumor Plasticity.

  • Tata PR
  • Dev. Cell
  • 2018 Mar 26

Literature context: AF2018; RRID:AB_355110 goat anti-SOX9 R&D Systems Cat#


We show that the loss or gain of transcription factor programs that govern embryonic cell-fate specification is associated with a form of tumor plasticity characterized by the acquisition of alternative cell fates normally characteristic of adjacent organs. In human non-small cell lung cancers, downregulation of the lung lineage-specifying TF NKX2-1 is associated with tumors bearing features of various gut tissues. Loss of Nkx2-1 from murine alveolar, but not airway, epithelium results in conversion of lung cells to gastric-like cells. Superimposing oncogenic Kras activation enables further plasticity in both alveolar and airway epithelium, producing tumors that adopt midgut and hindgut fates. Conversely, coupling Nkx2-1 loss with foregut lineage-specifying SOX2 overexpression drives the formation of squamous cancers with features of esophageal differentiation. These findings demonstrate that elements of pathologic tumor plasticity mirror the normal developmental history of organs in that cancer cells acquire cell fates associated with developmentally related neighboring organs.

Funding information:
  • NCI NIH HHS - R01CA172025(United States)
  • NHLBI NIH HHS - K99 HL127181()
  • NHLBI NIH HHS - P30 HL101287()
  • NHLBI NIH HHS - R00 HL127181()
  • NHLBI NIH HHS - R01 HL118185()
  • NIGMS NIH HHS - T32 GM007205()

A role for endothelial nitric oxide synthase in intestinal stem cell proliferation and mesenchymal colorectal cancer.

  • Peñarando J
  • BMC Biol.
  • 2018 Jan 10

Literature context: MN, USA 1:1000, lot KOY0212101, RRID:AB_355110) were used. Stain-free technolo


BACKGROUND: Nitric oxide (NO) has been highlighted as an important agent in cancer-related events. Although the inducible nitric oxide synthase (iNOS) isoform has received most attention, recent studies in the literature indicate that the endothelial isoenzyme (eNOS) can also modulate different tumor processes including resistance, angiogenesis, invasion, and metastasis. However, the role of eNOS in cancer stem cell (CSC) biology and mesenchymal tumors is unknown. RESULTS: Here, we show that eNOS was significantly upregulated in VilCre ERT2 Apc fl/+ and VilCre ERT2 Apc fl/fl mouse intestinal tissue, with intense immunostaining in hyperproliferative crypts. Similarly, the more invasive VilCre ERT2 Apc fl/+ Pten fl/+ mouse model showed an overexpression of eNOS in intestinal tumors whereas this isoform was not expressed in normal tissue. However, none of the three models showed iNOS expression. Notably, when 40 human colorectal tumors were classified into different clinically relevant molecular subtypes, high eNOS expression was found in the poor relapse-free and overall survival mesenchymal subtype, whereas iNOS was absent. Furthermore, Apc fl/fl organoids overexpressed eNOS compared with wild-type organoids and NO depletion with the scavenger carboxy-PTIO (c-PTIO) decreased the proliferation and the expression of stem-cell markers, such as Lgr5, Troy, Vav3, and Slc14a1, in these intestinal organoids. Moreover, specific NO depletion also decreased the expression of CSC-related proteins in human colorectal cancer cells such as β-catenin and Bmi1, impairing the CSC phenotype. To rule out the contribution of iNOS in this effect, we established an iNOS-knockdown colorectal cancer cell line. NO-depleted cells showed a decreased capacity to form tumors and c-PTIO treatment in vivo showed an antitumoral effect in a xenograft mouse model. CONCLUSION: Our data support that eNOS upregulation occurs after Apc loss, emerging as an unexpected potential new target in poor-prognosis mesenchymal colorectal tumors, where NO scavenging could represent an interesting therapeutic alternative to targeting the CSC subpopulation.

Zfp281 is essential for mouse epiblast maturation through transcriptional and epigenetic control of Nodal signaling.

  • Huang X
  • Elife
  • 2017 Nov 23

Literature context: RRID:AB_355110), Lhx1 (R and D, MAB2725, 1:250


Pluripotency is defined by a cell's potential to differentiate into any somatic cell type. How pluripotency is transited during embryo implantation, followed by cell lineage specification and establishment of the basic body plan, is poorly understood. Here we report the transcription factor Zfp281 functions in the exit from naive pluripotency occurring coincident with pre-to-post-implantation mouse embryonic development. By characterizing Zfp281 mutant phenotypes and identifying Zfp281 gene targets and protein partners in developing embryos and cultured pluripotent stem cells, we establish critical roles for Zfp281 in activating components of the Nodal signaling pathway and lineage-specific genes. Mechanistically, Zfp281 cooperates with histone acetylation and methylation complexes at target gene enhancers and promoters to exert transcriptional activation and repression, as well as epigenetic control of epiblast maturation leading up to anterior-posterior axis specification. Our study provides a comprehensive molecular model for understanding pluripotent state progressions in vivo during mammalian embryonic development.

Funding information:
  • NIDA NIH HHS - K02 DA021863-01A1(United States)

Antagonistic Activities of Sox2 and Brachyury Control the Fate Choice of Neuro-Mesodermal Progenitors.

  • Koch F
  • Dev. Cell
  • 2017 Sep 11

Literature context: ystems AF2018; RRID:AB_355110 Rabbit polyclonal anti-Tbx6 Thi


The spinal cord and mesodermal tissues of the trunk such as the vertebral column and skeletal musculature derive from neuro-mesodermal progenitors (NMPs). Sox2, Brachyury (T), and Tbx6 have been correlated with NMP potency and lineage choice; however, their exact role and interaction in these processes have not yet been revealed. Here we present a global analysis of NMPs and their descending lineages performed on purified cells from embryonic day 8.5 wild-type and mutant embryos. We show that T, cooperatively with WNT signaling, controls the progenitor state and the switch toward the mesodermal fate. Sox2 acts antagonistically and promotes neural development. T is also involved in remodeling the chromatin for mesodermal development. Tbx6 reinforces the mesodermal fate choice, represses the progenitor state, and confers paraxial fate commitment. Our findings refine previous models and establish molecular principles underlying mammalian trunk development, comprising NMP maintenance, lineage choice, and mesoderm formation.

Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo.

  • Posfai E
  • Elife
  • 2017 Feb 22

Literature context: x2 1:100 (RRID:AB_355110, AF2018, R


The segregation of the trophectoderm (TE) from the inner cell mass (ICM) in the mouse blastocyst is determined by position-dependent Hippo signaling. However, the window of responsiveness to Hippo signaling, the exact timing of lineage commitment and the overall relationship between cell commitment and global gene expression changes are still unclear. Single-cell RNA sequencing during lineage segregation revealed that the TE transcriptional profile stabilizes earlier than the ICM and prior to blastocyst formation. Using quantitative Cdx2-eGFP expression as a readout of Hippo signaling activity, we assessed the experimental potential of individual blastomeres based on their level of Cdx2-eGFP expression and correlated potential with gene expression dynamics. We find that TE specification and commitment coincide and occur at the time of transcriptional stabilization, whereas ICM cells still retain the ability to regenerate TE up to the early blastocyst stage. Plasticity of both lineages is coincident with their window of sensitivity to Hippo signaling.

Dynamics of olfactory and hippocampal neurogenesis in adult sheep.

  • Brus M
  • J. Comp. Neurol.
  • 2013 Jan 1

Literature context:


Although adult neurogenesis has been conserved in higher vertebrates such as primates and humans, timing of generation, migration, and differentiation of new neurons appears to differ from that in rodents. Sheep could represent an alternative model to studying neurogenesis in primates because they possess a brain as large as a macaque monkey and have a similar life span. By using a marker of cell division, bromodeoxyuridine (BrdU), in combination with several markers, the maturation time of newborn cells in the dentate gyrus (DG) and the main olfactory bulb (MOB) was determined in sheep. In addition, to establish the origin of adult-born neurons in the MOB, an adeno-associated virus that infects neural cells in the ovine brain was injected into the subventricular zone (SVZ). A migratory stream was indicated from the SVZ up to the MOB, consisting of neuroblasts that formed chain-like structures. Results also showed a long neuronal maturation time in both the DG and the MOB, similar to that in primates. The first new neurons were observed at 1 month in the DG and at 3 months in the MOB after BrdU injections. Thus, maturation of adult-born cells in both the DG and the MOB is much longer than that in rodents and resembles that in nonhuman primates. This study points out the importance of studying the features of adult neurogenesis in models other than rodents, especially for translational research for human cellular therapy.

Funding information:
  • NIMH NIH HHS - R21 MH083614(United States)