X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Phospho-Smad1 (Ser463/465)/ Smad5 (Ser463/465)/ Smad8 (Ser426/428) Antibody

RRID:AB_331671

Antibody ID

AB_331671

Target Antigen

Phospho-Smad1 (Ser463/465)/ Smad5 (Ser463/465)/ Smad8 (Ser426/428) h, m, r, mi, x, other mammalian, mouse, xenopus/amphibian, human, rat

Proper Citation

(Cell Signaling Technology Cat# 9511, RRID:AB_331671)

Clonality

polyclonal antibody

Comments

Discontinued: 2016; Catalog number was changed from 9511S to 9511, July 12, 2016; record consolidated with Cell Signaling Technology Cat# 9511L, RRID:AB_331672; manufacturer recommendations: Western blot,Immunoprecipitation,Chromatin Immunoprecipitation; Immunoprecipitation; Western Blot; ChIP

Host Organism

rabbit

Vendor

Cell Signaling Technology

Hyperinnervation improves Xenopus laevis limb regeneration.

  • Mitogawa K
  • Dev. Biol.
  • 2018 Jan 15

Literature context:


Abstract:

Xenopus laevis (an anuran amphibian) shows limb regeneration ability between that of urodele amphibians and that of amniotes. Xenopus frogs can initiate limb regeneration but fail to form patterned limbs. Regenerated limbs mainly consist of cone-shaped cartilage without any joints or branches. These pattern defects are thought to be caused by loss of proper expressions of patterning-related genes. This study shows that hyperinnervation surgery resulted in the induction of a branching regenerate. The hyperinnervated blastema allows the identification and functional analysis of the molecules controlling this patterning of limb regeneration. This paper focuses on the nerve affects to improve Xenopus limb patterning ability during regeneration. The nerve molecules, which regulate limb patterning, were also investigated. Blastemas grown in a hyperinnervated forelimb upregulate limb patterning-related genes (shh, lmx1b, and hoxa13). Nerves projecting their axons to limbs express some growth factors (bmp7, fgf2, fgf8, and shh). Inputs of these factors to a blastema upregulated some limb patterning-related genes and resulted in changes in the cartilage patterns in the regenerates. These results indicate that additional nerve factors enhance Xenopus limb patterning-related gene expressions and limb regeneration ability, and that bmp, fgf, and shh are candidate nerve substitute factors.

Meis1 Coordinates Cerebellar Granule Cell Development by Regulating Pax6 Transcription, BMP Signaling and Atoh1 Degradation.

  • Owa T
  • J. Neurosci.
  • 2018 Jan 31

Literature context:


Abstract:

Cerebellar granule cell precursors (GCPs) and granule cells (GCs) represent good models to study neuronal development. Here, we report that the transcription factor myeloid ectopic viral integration site 1 homolog (Meis1) plays pivotal roles in the regulation of mouse GC development. We found that Meis1 is expressed in GC lineage cells and astrocytes in the cerebellum during development. Targeted disruption of the Meis1 gene specifically in the GC lineage resulted in smaller cerebella with disorganized lobules. Knock-down/knock-out (KO) experiments for Meis1 and in vitro assays showed that Meis1 binds to an upstream sequence of Pax6 to enhance its transcription in GCPs/GCs and also suggested that the Meis1-Pax6 cascade regulates morphology of GCPs/GCs during development. In the conditional KO (cKO) cerebella, many Atoh1-positive GCPs were observed ectopically in the inner external granule layer (EGL) and a similar phenomenon was observed in cultured cerebellar slices treated with a bone morphogenic protein (BMP) inhibitor. Furthermore, expression of Smad proteins and Smad phosphorylation were severely reduced in the cKO cerebella and Meis1-knock-down GCPs cerebella. Reduction of phosphorylated Smad was also observed in cerebellar slices electroporated with a Pax6 knock-down vector. Because it is known that BMP signaling induces Atoh1 degradation in GCPs, these findings suggest that the Meis1-Pax6 pathway increases the expression of Smad proteins to upregulate BMP signaling, leading to degradation of Atoh1 in the inner EGL, which contributes to differentiation from GCPs to GCs. Therefore, this work reveals crucial functions of Meis1 in GC development and gives insights into the general understanding of the molecular machinery underlying neural differentiation from neural progenitors.SIGNIFICANCE STATEMENT We report that myeloid ectopic viral integration site 1 homolog (Meis1) plays pivotal roles in the regulation of mouse granule cell (GC) development. Here, we show Meis1 is expressed in GC precursors (GCPs) and GCs during development. Our knock-down and conditional knock-out (cKO) experiments and in vitro assays revealed that Meis1 is required for proper cerebellar structure formation and for Pax6 transcription in GCPs and GCs. The Meis1-Pax6 cascade regulates the morphology of GCs. In the cKO cerebella, Smad proteins and bone morphogenic protein (BMP) signaling are severely reduced and Atoh1-expressing GCPs are ectopically detected in the inner external granule layer. These findings suggest that Meis1 regulates degradation of Atoh1 via BMP signaling, contributing to GC differentiation in the inner EGL, and should provide understanding into GC development.

Funding information:
  • British Heart Foundation - RG/07/008/23674(United Kingdom)

Differentiation of Human Pluripotent Stem Cells into Colonic Organoids via Transient Activation of BMP Signaling.

  • Múnera JO
  • Cell Stem Cell
  • 2017 Jul 6

Literature context:


Abstract:

Gastric and small intestinal organoids differentiated from human pluripotent stem cells (hPSCs) have revolutionized the study of gastrointestinal development and disease. Distal gut tissues such as cecum and colon, however, have proved considerably more challenging to derive in vitro. Here we report the differentiation of human colonic organoids (HCOs) from hPSCs. We found that BMP signaling is required to establish a posterior SATB2+ domain in developing and postnatal intestinal epithelium. Brief activation of BMP signaling is sufficient to activate a posterior HOX code and direct hPSC-derived gut tube cultures into HCOs. In vitro, HCOs express colonic markers and contained colon-specific cell populations. Following transplantation into mice, HCOs undergo morphogenesis and maturation to form tissue that exhibits molecular, cellular, and morphologic properties of human colon. Together these data show BMP-dependent patterning of human hindgut into HCOs, which will be valuable for studying diseases including colitis and colon cancer.

Funding information:
  • NIAID NIH HHS - U19 AI116491()
  • NIBIB NIH HHS - U18 EB021780()
  • NIDDK NIH HHS - R01 DK070858()
  • NIDDK NIH HHS - R01 DK092456()
  • NIDDK NIH HHS - R01 DK098350()
  • NIDDK NIH HHS - R01 DK102551()
  • NIDDK NIH HHS - U01 DK103117()

Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration.

  • Wagner I
  • Dev. Cell
  • 2017 Mar 27

Literature context:


Abstract:

Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle.

SMOC can act as both an antagonist and an expander of BMP signaling.

  • Thomas JT
  • Elife
  • 2017 Mar 21

Literature context:


Abstract:

The matricellular protein SMOC (Secreted Modular Calcium binding protein) is conserved phylogenetically from vertebrates to arthropods. We showed previously that SMOC inhibits bone morphogenetic protein (BMP) signaling downstream of its receptor via activation of mitogen-activated protein kinase (MAPK) signaling. In contrast, the most prominent effect of the Drosophila orthologue, pentagone (pent), is expanding the range of BMP signaling during wing patterning. Using SMOC deletion constructs we found that SMOC-∆EC, lacking the extracellular calcium binding (EC) domain, inhibited BMP2 signaling, whereas SMOC-EC (EC domain only) enhanced BMP2 signaling. The SMOC-EC domain bound HSPGs with a similar affinity to BMP2 and could expand the range of BMP signaling in an in vitro assay by competition for HSPG-binding. Together with data from studies in vivo we propose a model to explain how these two activities contribute to the function of Pent in Drosophila wing development and SMOC in mammalian joint formation.

Essential Role of IGFIR in the Onset of Male Brown Fat Thermogenic Function: Regulation of Glucose Homeostasis by Differential Organ-Specific Insulin Sensitivity.

  • Viana-Huete V
  • Endocrinology
  • 2016 Aug 17

Literature context:


Abstract:

Brown fat is a thermogenic tissue that generates heat to maintain body temperature in cold environments and dissipate excess energy in response to overfeeding. We have addressed the role of the IGFIR in the brown fat development and function. Mice lacking IGFIR exhibited normal brown adipose tissue/body weight in knockout (KO) vs control mice. However, lack of IGFIR decreased uncoupling protein 1 expression in interscapular brown fat and beige cells in inguinal fat. More importantly, the lack of IGFIR resulted in an impaired cold acclimation. No differences in the total fat volume were found in the KO vs control mice. Epididymal fat showed larger adipocytes but with a lower number of adipocytes in KO vs control mice at age 12 months. In addition, KO mice showed a sustained moderate hyperinsulinemia and hypertriglyceridemia upon time and hepatic insulin insensitivity associated with lipid accumulation, with the outcome of a global insulin resistance. In addition, we found that the expression of uncoupling protein 3 in the skeletal muscle was decreased and its expression was increased in the heart in parallel with the expression of beta-2 adrenergic receptors. Upon nonobesogenic high-fat diet, we found a severe insulin resistance in the liver and in the skeletal muscle, but unchanged insulin sensitivity in the heart. In conclusion, our data suggest that IGFIR it is not an essential growth factor in the brown fat development in the presence of the IR and very high plasma levels of IGF-I, but it is indispensable for full brown fat functionality.

Funding information:
  • NINDS NIH HHS - 5K01NS085071-03(United States)

BMP4 and BMP7 Suppress StAR and Progesterone Production via ALK3 and SMAD1/5/8-SMAD4 in Human Granulosa-Lutein Cells.

  • Zhang H
  • Endocrinology
  • 2015 Nov 17

Literature context:


Abstract:

Adequate production of progesterone by the corpus luteum is critical to the successful establishment of pregnancy. In animal models, bone morphogenetic protein (BMP) 4 and BMP7 have been shown to suppress either basal or gonadotropin-induced progesterone production, depending on the species examined. However, the effects of BMP4 and BMP7 on progesterone production in human granulosa cells are unknown. In the present study, we used immortalized (SVOG) and primary human granulosa-lutein cells to investigate the effects of BMP4 and BMP7 on steroidogenic acute regulatory protein (StAR) expression and progesterone production and to examine the underlying molecular mechanism. Treatment of primary and immortalized human granulosa cells with recombinant BMP4 or BMP7 decreased StAR expression and progesterone accumulation. In SVOG cells, the suppressive effects of BMP4 and BMP7 on StAR expression were blocked by pretreatment with inhibitors of activin receptor-like kinase (ALK)2/3/6 (dorsomorphin) or ALK2/3 (DMH1) but not ALK4/5/7 (SB-431542). Moreover, small interfering RNA-mediated depletion of ALK3, but not ALK2 or ALK6, reversed the effects of BMP4 and BMP7 on StAR expression. Likewise, BMP4- and BMP7-induced phosphorylation of SMAD 1/5/8 was reversed by treatment with DMH1 or small interfering RNA targeting ALK3. Knockdown of SMAD4, the essential common SMAD for BMP/TGF-β signaling, abolished the effects of BMP4 and BMP7 on StAR expression. Our results suggest that BMP4 and BMP7 down-regulate StAR and progesterone production via ALK3 and SMAD1/5/8-SMAD4 signaling in human granulosa-lutein cells.

Funding information:
  • NIDA NIH HHS - R01 DA016602(United States)

Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling.

  • Ray P
  • PLoS ONE
  • 2015 Aug 5

Literature context:


Abstract:

Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.

Bone Morphogenetic Protein-4 (BMP4): A Paracrine Regulator of Human Adrenal C19 Steroid Synthesis.

  • Rege J
  • Endocrinology
  • 2015 Jul 20

Literature context:


Abstract:

Bone morphogenetic proteins (BMPs) comprise one of the largest subgroups in the TGF-β ligand superfamily. We have identified a functional BMP system equipped with the ligand (BMP4), receptors (BMP type II receptor, BMP type IA receptor, also called ALK3) and the signaling proteins, namely the mothers against decapentaplegic homologs 1, 4, and 5 in the human adrenal gland and the human adrenocortical cell line H295R. Microarray, quantitative RT-PCR, and immunohistochemistry confirmed that BMP4 expression was highest in the adrenal zona glomerulosa followed by the zona fasciculata and zona reticularis. Treatment of H295R cells with BMP4 caused phosphorylation of the mothers against decapentaplegic and a profound decrease in synthesis of the C19 steroids dehydroepiandrosterone (DHEA), DHEA sulfate, and androstenedione. Administration of BMP4 to cultures of H295R cells also caused a profound decrease in the mRNA and protein levels of 17α-hydroxylase/17,20-lyase (CYP17A1 and P450c17, respectively) but no significant effect on the mRNA levels of cholesterol side-chain cleavage cytochrome P450 (CYP11A1) or type 2 3β-hydroxysteroid dehydrogenase (HSD3B2). Furthermore, Noggin (a BMP inhibitor) was able to reverse the negative effects of BMP4 with respect to both CYP17A1 transcription and DHEA secretion in the H295R cell line. Collectively the present data suggest that BMP4 is an autocrine/paracrine negative regulator of C19 steroid synthesis in the human adrenal and works by suppressing P450c17.

Funding information:
  • NIAID NIH HHS - K22 AI093595(United States)

Activins A and B Regulate Fate-Determining Gene Expression in Islet Cell Lines and Islet Cells From Male Mice.

  • Andrzejewski D
  • Endocrinology
  • 2015 Jul 20

Literature context:


Abstract:

TGFβ superfamily ligands, receptors, and second messengers, including activins A and B, have been identified in pancreatic islets and proposed to have important roles regulating development, proliferation, and function. We previously demonstrated that Fstl3 (an antagonist of activin activity) null mice have larger islets with β-cell hyperplasia and improved glucose tolerance and insulin sensitivity in the absence of altered β-cell proliferation. This suggested the hypothesis that increased activin signaling influences β-cell expansion by destabilizing the α-cell phenotype and promoting transdifferentiation to β-cells. We tested the first part of this hypothesis by treating α- and β-cell lines and sorted mouse islet cells with activin and related ligands. Treatment of the αTC1-6 α cell line with activins A or B suppressed critical α-cell gene expression, including Arx, glucagon, and MafB while also enhancing β-cell gene expression. In INS-1E β-cells, activin A treatment induced a significant increase in Pax4 (a fate determining β-cell gene) and insulin expression. In sorted primary islet cells, α-cell gene expression was again suppressed by activin treatment in α-cells, whereas Pax4 was enhanced in β-cells. Activin treatment in both cell lines and primary cells resulted in phosphorylated mothers against decapentaplegic-2 phosphorylation. Finally, treatment of αTC1-6 cells with activins A or B significantly inhibited proliferation. These results support the hypothesis that activin signaling destabilized the α-cell phenotype while promoting a β-cell fate. Moreover, these results support a model in which the β-cell expansion observed in Fstl3 null mice may be due, at least in part, to enhanced α- to β-cell transdifferentiation.

Funding information:
  • Canadian Institutes of Health Research - 43881(Canada)
  • NIDDK NIH HHS - R01DK069351(United States)

Essential roles of epithelial bone morphogenetic protein signaling during prostatic development.

  • Omori A
  • Endocrinology
  • 2014 Jul 21

Literature context:


Abstract:

Prostate is a male sex-accessory organ. The prostatic epithelia consist primarily of basal and luminal cells that differentiate from embryonic urogenital sinus epithelia. Prostate tumors are believed to originate in the basal and luminal cells. However, factors that promote normal epithelial differentiation have not been well elucidated, particularly for bone morphogenetic protein (Bmp) signaling. This study shows that Bmp signaling prominently increases during prostatic differentiation in the luminal epithelia, which is monitored by the expression of phosphorylated Smad1/5/8. To elucidate the mechanism of epithelial differentiation and the function of Bmp signaling during prostatic development, conditional male mutant mouse analysis for the epithelial-specific Bmp receptor 1a (Bmpr1a) was performed. We demonstrate that Bmp signaling is indispensable for luminal cell maturation, which regulates basal cell proliferation. Expression of the prostatic epithelial regulatory gene Nkx3.1 was significantly reduced in the Bmpr1a mutants. These results indicate that Bmp signaling is a key factor for prostatic epithelial differentiation, possibly by controlling the prostatic regulatory gene Nkx3.1.

Funding information:
  • NIAMS NIH HHS - R01 AR066703(United States)

Bone morphogenetic protein 2 stimulates noncanonical SMAD2/3 signaling via the BMP type 1A receptor in gonadotrope-like cells: implications for FSH synthesis.

  • Wang Y
  • Endocrinology
  • 2014 May 21

Literature context:


Abstract:

FSH is an essential regulator of mammalian reproduction. Its synthesis by pituitary gonadotrope cells is regulated by multiple endocrine and paracrine factors, including TGFβ superfamily ligands, such as the activins and inhibins. Activins stimulate FSH synthesis via transcriptional regulation of its β-subunit gene (Fshb). More recently, bone morphogenetic proteins (BMPs) were shown to stimulate murine Fshb transcription alone and in synergy with activins. BMP2 signals via its canonical type I receptor, BMPR1A (or activin receptor-like kinase 3 [ALK3]), and SMAD1 and SMAD5 to stimulate transcription of inhibitor of DNA binding proteins. Inhibitor of DNA binding proteins then potentiate the actions of activin-stimulated SMAD3 to regulate the Fshb gene in the gonadotrope-like LβT2 cell line. Here, we report the unexpected observation that BMP2 also stimulates the SMAD2/3 pathway in these cells and that it does so directly via ALK3. Indeed, this novel, noncanonical ALK3 activity is completely independent of ALK4, ALK5, and ALK7, the type I receptors most often associated with SMAD2/3 pathway activation. Induction of the SMAD2/3 pathway by ALK3 is dependent upon its own previous activation by associated type II receptors, which phosphorylate conserved serine and threonine residues in the ALK3 juxtamembrane glycine-serine-rich domain. ALK3 signaling via SMAD3 is necessary for the receptor to stimulate Fshb transcription, whereas its activation of the SMAD1/5/8 pathway alone is insufficient. These data challenge current dogma that ALK3 and other BMP type I receptors signal via SMAD1, SMAD5, and SMAD8 and not SMAD2 or SMAD3. Moreover, they suggest that BMPs and activins may use similar intracellular signaling mechanisms to activate the murine Fshb promoter in immortalized gonadotrope-like cells.

Funding information:
  • NHLBI NIH HHS - R21-HL122443(United States)

Unsaturated fatty acids disrupt Smad signaling in gonadotrope cells leading to inhibition of FSHβ gene expression.

  • Garrel G
  • Endocrinology
  • 2014 Feb 22

Literature context:


Abstract:

Reproductive function is highly dependent on nutritional input. We recently provided evidence that the unsaturated ω6 fatty acid (FA), linoleic acid (linoleic), interferes with transcription and secretion of the gonadotropin LH, highlighting the existence of a lipid sensing in pituitary gonadotropes. Here, we show, using a combination of in vivo and in vitro models, that linoleic differentially regulates Lhb and Fshb expression. Central exposure of rats to linoleic over 7 days was associated with increase of Lhb but not Fshb transcript levels. Consistently, exposure of rat pituitary cells or LβT2 cells to linoleic increased Lhb, whereas it dramatically decreased Fshb transcript levels without affecting its stability. This effect was also induced by ω9 and ω3-polyunsaturated FA but not by saturated palmitic acid. Analysis of the underlying mechanisms in LβT2 cells using small interfering RNA revealed that early growth response protein 1 mediates linoleic stimulation of Lhb expression. Furthermore, we demonstrated that linoleic counteracts activin and bone morphogenetic protein-2 stimulation of Fshb expression. Using Western blotting and Smad-responsive reporter gene assays, linoleic was shown to decrease basal Smad2/3 phosphorylation levels as well as activin- and bone morphogenetic protein-2-dependent activation of Smad, uncovering a new FA-sensitive signaling cascade. Finally, the protein phosphatase magnesium-dependent 1A was shown to mediate linoleic inhibition of basal Smad phosphorylation and Fshb expression, identifying protein phosphatase magnesium-dependent 1A as a new target of FA in gonadotropes. Altogether, this study provides a novel mechanism by which FAs target gene expression and underlines the relevant role of pituitary gonadotropes in mediating the effects of nutritional FA on reproductive function.

Funding information:
  • NIGMS NIH HHS - R01 GM095867(United States)