X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

p44/42 MAP kinase (phosphorylated Erk1/2) antibody

RRID:AB_331646

Antibody ID

AB_331646

Target Antigen

chicken, fish, hamster, human, mouse, other, rat, human, mouse, rat, chicken, hamster, zebrafish

Proper Citation

(Cell Signaling Technology Cat# 9101, RRID:AB_331646)

Clonality

unknown

Comments

Applications: W, IP, IF-IC, F. Consolidation: AB_2315036, AB_2315114, AB_2315111, AB_2315113.

Host Organism

rabbit

Vendor

Cell Signaling Technology

Cat Num

9101 also 9101S, 9101L

Publications that use this research resource

IDH2 Deficiency in Microglia Decreases the Pro-inflammatory Response via the ERK and NF-κB Pathways.

  • Chae U
  • Inflammation
  • 2018 Jul 9

Literature context:


Abstract:

In various neuronal diseases, the activation of microglia contributes to the production of excessive neurotoxic factors, such as pro-inflammatory mediators. In particular, the overproduction of pro-inflammatory cytokines and nitric oxide (NO) has critical effects on the development of neurodegenerative diseases and gliomas in the brain. Recent studies have suggested that isocitrate dehydrogenase 2 (IDH2) plays a key role in inducing gliomas and neurodegeneration. IDH2 dysfunction has been linked to various cancers and neurodegenerative diseases associated with uncontrolled inflammatory responses, such as the excessive generation of pro-inflammatory cytokines. In this study, we demonstrate that IDH2 contributes to the regulation of pro-inflammatory mediators in microglia. The downregulation of IDH2 decreased the lipopolysaccharide (LPS)-induced pro-inflammatory response in BV-2 and primary microglial cells. Furthermore, IDH2 deficiency downregulated pro-inflammatory mediators via modulation of the ERK and NF-κB pathways. These results indicate that IDH2 is a potential target for the regulation of pro-inflammatory responses in LPS-activated microglial cells. Our findings also provide a basis for the development of new therapies for pro-inflammatory responses in dysfunction-associated neuronal diseases.

Funding information:
  • National Research Foundation of Korea - NRF-2015R1A4A1042271()
  • National Research Foundation of Korea - NRF-2017R1A2B4008176()
  • National Research Foundation of Korea - NRF-2017R1A5A2015391()
  • NHLBI NIH HHS - HL079071(United States)

BRET-based RAS biosensors that show a novel small molecule is an inhibitor of RAS-effector protein-protein interactions.

  • Bery N
  • Elife
  • 2018 Jul 10

Literature context:


Abstract:

The RAS family of proteins is amongst the most highly mutated in human cancers and has so far eluded drug therapy. Currently, much effort is being made to discover mutant RAS inhibitors and in vitro screening for RAS-binding drugs must be followed by cell-based assays. Here, we have developed a robust set of bioluminescence resonance energy transfer (BRET)-based RAS biosensors that enable monitoring of RAS-effector interaction inhibition in living cells. These include KRAS, HRAS and NRAS and a variety of different mutations that mirror those found in human cancers with the major RAS effectors such as CRAF, PI3K and RALGDS. We highlighted the utility of these RAS biosensors by showing a RAS-binding compound is a potent pan-RAS-effector interactions inhibitor in cells. The RAS biosensors represent a useful tool to investigate and characterize the potency of anti-RAS inhibitors in cells and more generally any RAS protein-protein interaction (PPI) in cells.

Funding information:
  • Bloodwise - 12051()
  • Medical Research Council - MR/J000612/1()
  • NIDDK NIH HHS - U24 DK059637(United States)
  • Wellcome - 099246/Z/12/Z()
  • Wellcome - 100842/Z/12/Z()

Arctic Aβ40 blocks the nicotine-induced neuroprotective effect of CHRNA7 by inhibiting the ERK1/2 pathway in human neuroblastoma cells.

  • Ju Y
  • Neurochem. Int.
  • 2018 Jun 6

Literature context:


Abstract:

Amyloid β protein (Aβ) plays a central role in Alzheimer's disease (AD) pathogenesis. Point mutations in the Aβ sequence, which cluster around the central hydrophobic core of the peptide, are associated with familial AD (FAD). Several mutations have been identified, with the Arctic mutation exhibiting a purely cognitive phenotype that is typical of AD. Our previous findings suggest that Arctic Aβ40 binds to and aggregates with CHRNA7, thereby inhibiting the calcium response and signaling pathways downstream of the receptor. Activation of CHRNA7 is neuroprotective both in vitro and in vivo. Therefore, in the present study, we investigated whether Arctic Aβ40 affects neuronal survival and/or death via CHRNA7. Using human neuroblastoma SH-SY5Y cells, we found that the neuroprotective function of CHRNA7 is blocked by CHRNA7 knockdown using RNA interference. Furthermore, Arctic Aβ40 blocked the neuroprotective effect of nicotine by inhibiting the ERK1/2 pathway downstream of CHRNA7. Moreover, we show that ERK1/2 activation mediates the neuroprotective effect of nicotine against oxidative stress. Collectively, our findings further our understanding of the molecular pathogenesis of Arctic FAD.

Funding information:
  • Medical Research Council - G0801983(United Kingdom)

An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion.

  • Baumgartner C
  • Cell Stem Cell
  • 2018 Jun 1

Literature context:


Abstract:

Hematopoietic stem cells (HSCs) sustain hematopoiesis throughout life. HSCs exit dormancy to restore hemostasis in response to stressful events, such as acute blood loss, and must return to a quiescent state to prevent their exhaustion and resulting bone marrow failure. HSC activation is driven in part through the phosphatidylinositol 3-kinase (PI3K)/AKT/mTORC1 signaling pathway, but less is known about the cell-intrinsic pathways that control HSC dormancy. Here, we delineate an ERK-dependent, rate-limiting feedback mechanism that controls HSC fitness and their re-entry into quiescence. We show that the MEK/ERK and PI3K pathways are synchronously activated in HSCs during emergency hematopoiesis and that feedback phosphorylation of MEK1 by activated ERK counterbalances AKT/mTORC1 activation. Genetic or chemical ablation of this feedback loop tilts the balance between HSC dormancy and activation, increasing differentiated cell output and accelerating HSC exhaustion. These results suggest that MEK inhibitors developed for cancer therapy may find additional utility in controlling HSC activation.

Funding information:
  • NIA NIH HHS - K08 AG024816-05(United States)

Protease activated receptor 2 controls myelin development, resiliency and repair.

  • Yoon H
  • Glia
  • 2018 Jun 5

Literature context:


Abstract:

Oligodendrocytes are essential regulators of axonal energy homeostasis and electrical conduction and emerging target cells for restoration of neurological function. Here we investigate the role of protease activated receptor 2 (PAR2), a unique protease activated G protein-coupled receptor, in myelin development and repair using the spinal cord as a model. Results demonstrate that genetic deletion of PAR2 accelerates myelin production, including higher proteolipid protein (PLP) levels in the spinal cord at birth and higher levels of myelin basic protein and thickened myelin sheaths in adulthood. Enhancements in spinal cord myelin with PAR2 loss-of-function were accompanied by increased numbers of Olig2- and CC1-positive oligodendrocytes, as well as in levels of cyclic adenosine monophosphate (cAMP), and extracellular signal related kinase 1/2 (ERK1/2) signaling. Parallel promyelinating effects were observed after blocking PAR2 expression in purified oligodendrocyte cultures, whereas inhibiting adenylate cyclase reversed these effects. Conversely, PAR2 activation reduced PLP expression and this effect was prevented by brain derived neurotrophic factor (BDNF), a promyelinating growth factor that signals through cAMP. PAR2 knockout mice also showed improved myelin resiliency after traumatic spinal cord injury and an accelerated pattern of myelin regeneration after focal demyelination. These findings suggest that PAR2 is an important controller of myelin production and regeneration, both in the developing and adult spinal cord.

Gain-of-Function Mutation of Card14 Leads to Spontaneous Psoriasis-like Skin Inflammation through Enhanced Keratinocyte Response to IL-17A.

  • Wang M
  • Immunity
  • 2018 Jun 28

Literature context:


Abstract:

Genetic mutations of CARD14 (encoding CARMA2) are observed in psoriasis patients. Here we showed that Card14E138A/+ and Card14ΔQ136/+ mice developed spontaneous psoriasis-like skin inflammation, which resulted from constitutively activated CARMA2 via self-aggregation leading to the enhanced activation of the IL-23-IL-17A cytokine axis. Card14-/- mice displayed attenuated skin inflammation in the imiquimod-induced psoriasis model due to impaired IL-17A signaling in keratinocytes. CARMA2, mainly expressed in keratinocytes, associates with the ACT1-TRAF6 signaling complex and mediates IL-17A-induced NF-κB and MAPK signaling pathway activation, which leads to expression of pro-inflammatory factors. Thus, CARMA2 serves as a key mediator of IL-17A signaling and its constitutive activation in keratinocytes leads to the onset of psoriasis, which indicates an important role of NF-κB activation in keratinocytes in psoriatic initiation.

Funding information:
  • NIGMS NIH HHS - R01 GM28896(United States)

The cJUN NH2-terminal kinase (JNK) signaling pathway promotes genome stability and prevents tumor initiation.

  • Girnius N
  • Elife
  • 2018 Jun 1

Literature context:


Abstract:

Breast cancer is the most commonly diagnosed malignancy in women. Analysis of breast cancer genomic DNA indicates frequent loss-of-function mutations in components of the cJUN NH2-terminal kinase (JNK) signaling pathway. Since JNK signaling can promote cell proliferation by activating the AP1 transcription factor, this apparent association of reduced JNK signaling with tumor development was unexpected. We examined the effect of JNK deficiency in the murine breast epithelium. Loss of JNK signaling caused genomic instability and the development of breast cancer. Moreover, JNK deficiency caused widespread early neoplasia and rapid tumor formation in a murine model of breast cancer. This tumor suppressive function was not mediated by a role of JNK in the growth of established tumors, but by a requirement of JNK to prevent tumor initiation. Together, these data identify JNK pathway defects as 'driver' mutations that promote genome instability and tumor initiation.

Funding information:
  • Howard Hughes Medical Institute - Investigator()
  • National Institute of Diabetes and Digestive and Kidney Diseases - DK107220()
  • National Institute of Diabetes and Digestive and Kidney Diseases - DK112698()
  • NIDDK NIH HHS - R01 DK092062(United States)

R-Ras1 and R-Ras2 Are Essential for Oligodendrocyte Differentiation and Survival for Correct Myelination in the Central Nervous System.

  • Sanz-Rodriguez M
  • J. Neurosci.
  • 2018 May 30

Literature context:


Abstract:

Rapid and effective neural transmission of information requires correct axonal myelination. Modifications in myelination alter axonal capacity to transmit electric impulses and enable pathological conditions. In the CNS, oligodendrocytes (OLs) myelinate axons, a complex process involving various cellular interactions. However, we know little about the mechanisms that orchestrate correct myelination. Here, we demonstrate that OLs express R-Ras1 and R-Ras2. Using female and male mutant mice to delete these proteins, we found that activation of the PI3K/Akt and Erk1/2-MAPK pathways was weaker in mice lacking one or both of these GTPases, suggesting that both proteins coordinate the activity of these two pathways. Loss of R-Ras1 and/or R-Ras2 diminishes the number of OLs in major myelinated CNS tracts and increases the proportion of immature OLs. In R-Ras1-/- and R-Ras2-/--null mice, OLs show aberrant morphologies and fail to differentiate correctly into myelin-forming phenotypes. The smaller OL population and abnormal OL maturation induce severe hypomyelination, with shorter nodes of Ranvier in R-Ras1-/- and/or R-Ras2-/- mice. These defects explain the slower conduction velocity of myelinated axons that we observed in the absence of R-Ras1 and R-Ras2. Together, these results suggest that R-Ras1 and R-Ras2 are upstream elements that regulate the survival and differentiation of progenitors into OLs through the PI3K/Akt and Erk1/2-MAPK pathways for proper myelination.SIGNIFICANCE STATEMENT In this study, we show that R-Ras1 and R-Ras2 play essential roles in regulating myelination in vivo and control fundamental aspects of oligodendrocyte (OL) survival and differentiation through synergistic activation of PI3K/Akt and Erk1/2-MAPK signaling. Mice lacking R-Ras1 and/or R-Ras2 show a diminished OL population with a higher proportion of immature OLs, explaining the observed hypomyelination in main CNS tracts. In vivo electrophysiology recordings demonstrate a slower conduction velocity of nerve impulses in the absence of R-Ras1 and R-Ras2. Therefore, R-Ras1 and R-Ras2 are essential for proper axonal myelination and accurate neural transmission.

Funding information:
  • Intramural NIH HHS - ZIA BC011010-06(United States)

Endogenous, regulatory cysteine sulfenylation of ERK kinases in response to proliferative signals.

  • Keyes JD
  • Free Radic. Biol. Med.
  • 2018 May 29

Literature context:


Abstract:

ERK-dependent signaling is key to many pathways through which extracellular signals are transduced into cell-fate decisions. One conundrum is the way in which disparate signals induce specific responses through a common, ERK-dependent kinase cascade. While studies have revealed intricate ways of controlling ERK signaling through spatiotemporal localization and phosphorylation dynamics, additional modes of ERK regulation undoubtedly remain to be discovered. We hypothesized that fine-tuning of ERK signaling could occur by cysteine oxidation. We report that ERK is actively and directly oxidized by signal-generated H2O2 during proliferative signaling, and that ERK oxidation occurs downstream of a variety of receptor classes tested in four cell lines. Furthermore, within the tested cell lines and proliferative signals, we observed that both activation loop-phosphorylated and non-phosphorylated ERK undergo sulfenylation in cells and that dynamics of ERK sulfenylation is dependent on the cell growth conditions prior to stimulation. We also tested the effect of endogenous ERK oxidation on kinase activity and report that phosphotransfer reactions are reversibly inhibited by oxidation by as much as 80-90%, underscoring the importance of considering this additional modification when assessing ERK activation in response to extracellular signals.

Pan-RAF and MEK vertical inhibition enhances therapeutic response in non-V600 BRAF mutant cells.

  • Molnár E
  • BMC Cancer
  • 2018 May 8

Literature context:


Abstract:

BACKGROUND: Currently, there are no available targeted therapy options for non-V600 BRAF mutated tumors. The aim of this study was to investigate the effects of RAF and MEK concurrent inhibition on tumor growth, migration, signaling and apoptosis induction in preclinical models of non-V600 BRAF mutant tumor cell lines. METHODS: Six BRAF mutated human tumor cell lines CRL5885 (G466 V), WM3629 (D594G), WM3670 (G469E), MDAMB231 (G464 V), CRL5922 (L597 V) and A375 (V600E as control) were investigated. Pan-RAF inhibitor (sorafenib or AZ628) and MEK inhibitor (selumetinib) or their combination were used in in vitro viability, video microscopy, immunoblot, cell cycle and TUNEL assays. The in vivo effects of the drugs were assessed in an orthotopic NSG mouse breast cancer model. RESULTS: All cell lines showed a significant growth inhibition with synergism in the sorafenib/AZ628 and selumetinib combination. Combination treatment resulted in higher Erk1/2 inhibition and in increased induction of apoptosis when compared to single agent treatments. However, single selumetinib treatment could cause adverse therapeutic effects, like increased cell migration in certain cells, selumetinib and sorafenib combination treatment lowered migratory capacity in all the cell lines. Importantly, combination resulted in significantly increased tumor growth inhibition in orthotropic xenografts of MDAMB231 cells when compared to sorafenib - but not to selumetinib - treatment. CONCLUSIONS: Our data suggests that combined blocking of RAF and MEK may achieve increased therapeutic response in non-V600 BRAF mutant tumors.

Funding information:
  • Ernst Mach Fellowship - ICM-2015-02193()
  • HAS Postdoctoral Fellowship Program - 450071()
  • Hungarian National Research, Development and Innovation Office - K109626 and KNN121510()
  • Hungarian National Research, Development and Innovation Office - MOB80325()
  • New National Excellence Program of the Ministry of Human Capacities - ÚNKP-16-3-IV()
  • NIDCR NIH HHS - DE13118(United States)

Increased Circulating FGF23 Does Not Lead to Cardiac Hypertrophy in the Male Hyp Mouse Model of XLH.

  • Liu ES
  • Endocrinology
  • 2018 May 1

Literature context:


Abstract:

Serum levels of fibroblast growth factor 23 (FGF23) markedly increase with renal impairment, with FGF23 levels correlating with the presence of left ventricular hypertrophy (LVH) and mortality in patients with chronic kidney disease (CKD). FGF23 activates calcineurin/nuclear factor of activated T cell (NFAT) signaling and induces hypertrophy in murine cardiomyocytes. X-linked hypophosphatemia (XLH) is characterized by high circulating levels of FGF23 but, in contrast to CKD, is associated with hypophosphatemia. The cardiac effects of high circulating levels of FGF23 in XLH are not well defined. Thus, studies were undertaken to define the cardiac phenotype in the mouse model of XLH (Hyp mice). Echocardiographic and histological analyses demonstrated that Hyp left ventricles (LVs) are smaller than those of wild-type mice. Messenger RNA expression of cardiac hypertrophy markers was not altered in the LV or right ventricle of Hyp mice. However, the Hyp LVs had increased expression of the NFAT target genes NFATc1 and RCAN1. To determine whether phosphate alone can induce markers of hypertrophy, differentiated C2C12 myocytes were treated with phosphate. Phosphate treatment increased expression of cardiac hypertrophy markers, supporting a primary role for phosphate in inducing LVH. Although previous studies showed that increased circulating FGF23 and phosphate levels are associated with LVH, our results demonstrated that in XLH, high circulating levels of FGF23 in the setting of hypophosphatemia do not induce cardiac hypertrophy.

Funding information:
  • NIEHS NIH HHS - ES-017014(United States)

miR-4725-3p targeting Stim1 signaling is involved in xanthohumol inhibition of glioma cell invasion.

  • Ho KH
  • J. Neurochem.
  • 2018 May 10

Literature context:


Abstract:

Glioblastoma multiforme (GBM) is the most common brain tumor in adults. Due to its highly invasive nature, it is not easy to treat, resulting in high mortality rates. Stromal interacting molecule 1 (Stim1) plays important roles in regulating store-operated Ca2+ entry (SOCE), and controls invasion by cancer cells. However, the mechanisms and functions of Stim1 in glioma progression are still unclear. In this study, we investigated the effects of targeting Stim1 expression on glioma cell invasion. By analyzing profiles of GBM patients from RNA-sequencing data in The Cancer Genome Atlas (TCGA), higher expression levels of STIM1 were correlated with the poor survival. Furthermore, signaling pathways associated with tumor malignancy, including the epithelial-to-mesenchymal transition (EMT), were activated in patients with high STIM1 expression according to gene set enrichment analyses. Higher Stim1 levels were found in glioma cells compared to human astrocytes, and these higher levels enhanced glioma cell invasion. Xanthohumol (XN), a prenylated flavonoid extracted from the hop plant Humulus lupulus L. (Cannabaceae), significantly reduced cell invasion through inhibiting Stim1 expression. From an micro(mi)RNA array analysis, miR-4725-3p was upregulated by XN treatment. Overexpression of miR-4725-3p inhibited glioma cell invasion via directly targeting the 3'-untranslated region of STIM1. The extracellular signal-regulated kinase/c-Fos pathway was also validated to participate in XN-upregulated miR-4725-3p expression according to promoter and chromatin immunoprecipitation assays. These results emphasize that miR-4725-3p-inhibited STIM1 signaling is involved in XN-attenuated glioma cell invasion. These findings may provide insights into novel therapeutic strategies for future glioblastoma therapy and drug development. This article is protected by copyright. All rights reserved.

Funding information:
  • NIH HHS - P40 OD010440(United States)

Spred1 Safeguards Hematopoietic Homeostasis against Diet-Induced Systemic Stress.

  • Tadokoro Y
  • Cell Stem Cell
  • 2018 May 3

Literature context:


Abstract:

Stem cell self-renewal is critical for tissue homeostasis, and its dysregulation can lead to organ failure or tumorigenesis. While obesity can induce varied abnormalities in bone marrow components, it is unclear how diet might affect hematopoietic stem cell (HSC) self-renewal. Here, we show that Spred1, a negative regulator of RAS-MAPK signaling, safeguards HSC homeostasis in animals fed a high-fat diet (HFD). Under steady-state conditions, Spred1 negatively regulates HSC self-renewal and fitness, in part through Rho kinase activity. Spred1 deficiency mitigates HSC failure induced by infection mimetics and prolongs HSC lifespan, but it does not initiate leukemogenesis due to compensatory upregulation of Spred2. In contrast, HFD induces ERK hyperactivation and aberrant self-renewal in Spred1-deficient HSCs, resulting in functional HSC failure, severe anemia, and myeloproliferative neoplasm-like disease. HFD-induced hematopoietic abnormalities are mediated partly through alterations to the gut microbiota. Together, these findings reveal that diet-induced stress disrupts fine-tuning of Spred1-mediated signals to govern HSC homeostasis.

Funding information:
  • Arthritis Research UK - 17522(United Kingdom)

Selective Androgen Receptor Modulator S42 Suppresses Prostate Cancer Cell Proliferation.

  • Kawanami T
  • Endocrinology
  • 2018 Apr 1

Literature context:


Abstract:

We previously identified the selective androgen receptor (AR) modulator S42, which does not stimulate prostate growth but has a beneficial effect on lipid metabolism. In the prostate cancer (PC) cell line LNCaP, S42 did not induce AR transactivation but antagonized 5α-dihydrotestosterone (DHT)‒induced AR activation. Next, we investigated whether S42 suppresses the growth of PC cell lines. Basal growth of LNCaP cells was significantly suppressed by treatment with S42 compared with vehicle, as determined by cell counting and 5-bromo-2'-deoxyuridine assays. The suppressive effect of S42 on cell growth was evident in the AR-positive PC cells LNCaP and 22Rv1 and was slightly observed even in the AR-negative PC-3 cells. However, S42 did not induce apoptosis as determined by the terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay. S42 had an even greater suppressive effect on DHT-dependent LNCaP cell proliferation than on basal proliferation (P < 0.05). DHT treatment increased the expression of phosphorylated extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase (MAPK), a major signaling molecule for PC proliferation, and this was significantly inhibited by S42. DHT also significantly upregulated AR, insulinlike growth factor-1 receptor (IGF-1R), and insulin receptor (IR)-β protein levels, which were similarly reduced by S42 treatment. Importantly, S42 administration to mice attenuated the growth of LNCaP tumors and reduced tumor expression of the prostate-specific antigen, P504S, Ki67, and phosphorylated ERK-MAPK. These data suggest that S42 attenuates LNCaP tumor growth not by inducing apoptosis but by inhibiting the expression of proliferation-related receptors, including IGF-1R, IR, and AR, and by suppressing ERK-MAPK activation. S42 may thus be a feasible candidate for PC treatment.

Funding information:
  • NHLBI NIH HHS - P01 HL32262-25(United States)

Catch-Up Growth in Zebrafish Embryo Requires Neural Crest Cells Sustained by Irs1 Signaling.

  • Kamei H
  • Endocrinology
  • 2018 Apr 1

Literature context:


Abstract:

Most animals display retarded growth in adverse conditions; however, upon the removal of unfavorable factors, they often show quick growth restoration, which is known as "catch-up" growth. In zebrafish embryos, hypoxia causes growth arrest, but subsequent reoxygenation induces catch-up growth. Here, we report the role of insulin receptor substrate (Irs)1-mediated insulin/insulinlike growth factor signaling (IIS) and the involvement of stem cells in catch-up growth in reoxygenated zebrafish embryos. Disturbed irs1 expression attenuated IIS, resulting in greater inhibition in catch-up growth than in normal growth and forced IIS activation‒restored catch-up growth. The irs1 knockdown induced noticeable cell death in neural crest cells (NCCs; multipotent stem cells) under hypoxia, and the pharmacological/genetic ablation of NCCs hindered catch-up growth. Furthermore, inhibition of the apoptotic pathway by pan-caspase inhibition or forced activation of Akt signaling in irs1 knocked-down embryos blocked NCC cell death and rescued catch-up growth. Our data indicate that this multipotent stem cell is indispensable for embryonic catch-up growth and that Irs1-mediated IIS is a prerequisite for its survival under severe adverse environments such as prolonged hypoxia.

CD69 partially inhibits apoptosis and erythroid differentiation via CD24, and their knockdown increase imatinib sensitivity in BCR-ABL-positive cells.

  • Huang SY
  • J. Cell. Physiol.
  • 2018 Apr 18

Literature context:


Abstract:

Chronic myeloid leukemia (CML) is caused by a constitutively active BCR-ABL tyrosine kinase. Tyrosine kinase inhibitors (TKIs) imatinib and its derivatives represent a breakthrough for CML therapy, but the use of TKI alone is ineffective for many CML patients. CD69, an early activation marker of lymphocytes, participates in immune and inflammatory responses. Previous studies revealed that BCR-ABL upregulates CD69 expression; however, the role of CD69 in CML cells is unknown. Here, we demonstrate that BCR-ABL induced CD69 promoter activity and mRNA and protein expression via the NF-κB pathway. CD69 knockdown partially increased apoptosis and expression of erythroid differentiation markers, α-globin, ζ-globin, and glycophorin A, and increased imatinib sensitivity in K562 and KU812 CML cells. Gene microarray analysis and quantitative real-time PCR verified that CD24, an oncogenic gene, downregulated in K562 cells upon CD69 knockdown. CD69 overexpression increased, whereas CD69 knockdown inhibited CD24 promoter activity and mRNA and protein levels. CD24 knockdown also partially increased apoptosis, erythroid differentiation, and imatinib sensitivity in K562 cells, whereas its overexpression inhibited the effects of CD69 knockdown on apoptosis, erythroid differentiation, and imatinib sensitivity in K562 cells. Imatinib-induced apoptosis and erythroid differentiation were also inhibited by CD69 or CD24 overexpression in BCR-ABL-expressing CML cell lines and CD34+ cells. Taken together, CD24 is a downstream effector of CD69. CD69 and CD24 partially inhibit apoptosis and erythroid differentiation in CML cells; thus, they may be potential targets to increase imatinib sensitivity.

Funding information:
  • NCI NIH HHS - UO1CA153086(United States)

Crosstalk control and limits of physiological c-Jun N-terminal kinase activity for cell viability and neurite stability in differentiated PC12 cells.

  • Waetzig V
  • Mol. Cell. Neurosci.
  • 2018 Apr 24

Literature context:


Abstract:

The c-Jun N-terminal kinases (JNKs) are important mediators of cell viability and structural integrity in postmitotic neurons, which is required for maintaining synaptic connections and neural plasticity. In the present study, we chose differentiated PC12 cells as a well-characterised neuronal model system to selectively examine the regulation of basal JNK activity by extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt. We detected a complex interaction between the kinases to prevent cell death and neurite loss. Especially the appropriate level of JNK activation determined cellular survival. Basal activity of ERK1/2 attenuated the potentiation of JNK phosphorylation and thereby the induction of apoptosis. Importantly, when JNK activity was too low, cell viability and the number of neurite-bearing cells also decreased, even though the activation of ERK1/2 was enhanced. In this case, the JNK-mediated survival signals via activating transcription factor-3 (ATF3) were inhibited. Furthermore, the phosphorylation of ERK1/2 induced by the JNK inhibitor SP600125 inhibited the basal activity of Akt, which normally supported cell viability. Thus, controlling JNK activity is crucial to promote survival and neurite stability of differentiated neuronal cells.

Swedish Nerve Growth Factor Mutation (NGFR100W) Defines a Role for TrkA and p75NTR in Nociception.

  • Sung K
  • J. Neurosci.
  • 2018 Apr 4

Literature context:


Abstract:

Nerve growth factor (NGF) exerts multiple functions on target neurons throughout development. The recent discovery of a point mutation leading to a change from arginine to tryptophan at residue 100 in the mature NGFβ sequence (NGFR100W) in patients with hereditary sensory and autonomic neuropathy type V (HSAN V) made it possible to distinguish the signaling mechanisms that lead to two functionally different outcomes of NGF: trophic versus nociceptive. We performed extensive biochemical, cellular, and live-imaging experiments to examine the binding and signaling properties of NGFR100W Our results show that, similar to the wild-type NGF (wtNGF), the naturally occurring NGFR100W mutant was capable of binding to and activating the TrkA receptor and its downstream signaling pathways to support neuronal survival and differentiation. However, NGFR100W failed to bind and stimulate the 75 kDa neurotrophic factor receptor (p75NTR)-mediated signaling cascades (i.e., the RhoA-Cofilin pathway). Intraplantar injection of NGFR100W into adult rats induced neither TrkA-mediated thermal nor mechanical acute hyperalgesia, but retained the ability to induce chronic hyperalgesia based on agonism for TrkA signaling. Together, our studies provide evidence that NGFR100W retains trophic support capability through TrkA and one aspect of its nociceptive signaling, but fails to engage p75NTR signaling pathways. Our findings suggest that wtNGF acts via TrkA to regulate the delayed priming of nociceptive responses. The integration of both TrkA and p75NTR signaling thus appears to regulate neuroplastic effects of NGF in peripheral nociception.SIGNIFICANCE STATEMENT In the present study, we characterized the naturally occurring nerve growth factor NGFR100W mutant that is associated with hereditary sensory and autonomic neuropathy type V. We have demonstrated for the first time that NGFR100W retains trophic support capability through TrkA, but fails to engage p75NTR signaling pathways. Furthermore, after intraplantar injection into adult rats, NGFR100W induced neither thermal nor mechanical acute hyperalgesia, but retained the ability to induce chronic hyperalgesia. We have also provided evidence that the integration of both TrkA- and p75NTR-mediated signaling appears to regulate neuroplastic effects of NGF in peripheral nociception. Our study with NGFR100W suggests that it is possible to uncouple trophic effect from nociceptive function, both induced by wild-type NGF.

Funding information:
  • NEI NIH HHS - PN2 EY016525()
  • NIAID NIH HHS - L30 AI062141(United States)
  • NINDS NIH HHS - R01 NS084545()

EGFR-Phosphorylated Platelet Isoform of Phosphofructokinase 1 Promotes PI3K Activation.

  • Lee JH
  • Mol. Cell
  • 2018 Apr 19

Literature context:


Abstract:

EGFR activates phosphatidylinositide 3-kinase (PI3K), but the mechanism underlying this activation is not completely understood. We demonstrated here that EGFR activation resulted in lysine acetyltransferase 5 (KAT5)-mediated K395 acetylation of the platelet isoform of phosphofructokinase 1 (PFKP) and subsequent translocation of PFKP to the plasma membrane, where the PFKP was phosphorylated at Y64 by EGFR. Phosphorylated PFKP binds to the N-terminal SH2 domain of p85α, which is distinct from binding of Gab1 to the C-terminal SH2 domain of p85α, and recruited p85α to the plasma membrane resulting in PI3K activation. PI3K-dependent AKT activation results in enhanced phosphofructokinase 2 (PFK2) phosphorylation and production of fructose-2,6-bisphosphate, which in turn promotes PFK1 activation. PFKP Y64 phosphorylation-enhanced PI3K/AKT-dependent PFK1 activation and GLUT1 expression promoted the Warburg effect, tumor cell proliferation, and brain tumorigenesis. These findings underscore the instrumental role of PFKP in PI3K activation and enhanced glycolysis through PI3K/AKT-dependent positive-feedback regulation.

Funding information:
  • NCI NIH HHS - T32 CA121938(United States)

The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity.

  • Lal NK
  • Cell Host Microbe
  • 2018 Apr 11

Literature context:


Abstract:

Plants employ cell-surface pattern recognition receptors (PRRs) to detect pathogens. Although phytohormones produced during PRR signaling play an essential role in innate immunity, a direct link between PRR activation and hormone regulation is unknown. EFR is a PRR that recognizes bacterial EF-Tu and activates immune signaling. Here we report that EFR regulates the phytohormone jasmonic acid (JA) through direct phosphorylation of a receptor-like cytoplasmic kinase, BIK1. The BIK1 structure revealed that the EFR-phosphorylated sites reside on a uniquely extended loop away from the BIK1 kinase core domain. Phosphomimetic mutations of these sites resulted in increased phytohormones and enhanced resistance to bacterial infections. In addition to its documented plasma membrane localization, BIK1 also localizes to the nucleus and interacts directly with WRKY transcription factors involved in the JA and salicylic acid (SA) regulation. These findings demonstrate the mechanistic basis of signal transduction from PRR to phytohormones, mediated through a PRR-BIK1-WRKY axis.

Funding information:
  • NIEHS NIH HHS - P01 ES022832(United States)

The Dietary Supplement Chondroitin-4-Sulfate Exhibits Oncogene-Specific Pro-tumor Effects on BRAF V600E Melanoma Cells.

  • Lin R
  • Mol. Cell
  • 2018 Mar 15

Literature context:


Abstract:

Dietary supplements such as vitamins and minerals are widely used in the hope of improving health but may have unidentified risks and side effects. In particular, a pathogenic link between dietary supplements and specific oncogenes remains unknown. Here we report that chondroitin-4-sulfate (CHSA), a natural glycosaminoglycan approved as a dietary supplement used for osteoarthritis, selectively promotes the tumor growth potential of BRAF V600E-expressing human melanoma cells in patient- and cell line-derived xenograft mice and confers resistance to BRAF inhibitors. Mechanistically, chondroitin sulfate glucuronyltransferase (CSGlcA-T) signals through its product CHSA to enhance casein kinase 2 (CK2)-PTEN binding and consequent phosphorylation and inhibition of PTEN, which requires CHSA chains and is essential to sustain AKT activation in BRAF V600E-expressing melanoma cells. However, this CHSA-dependent PTEN inhibition is dispensable in cancer cells expressing mutant NRAS or PI3KCA, which directly activate the PI3K-AKT pathway. These results suggest that dietary supplements may exhibit oncogene-dependent pro-tumor effects.

Funding information:
  • NCI NIH HHS - R01 CA140515()
  • NCI NIH HHS - R01 CA174786()
  • NCI NIH HHS - R01 CA183594()
  • Wellcome Trust - 090532(United Kingdom)

Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes.

  • Watson SS
  • Cell Syst
  • 2018 Mar 28

Literature context:


Abstract:

Extrinsic signals are implicated in breast cancer resistance to HER2-targeted tyrosine kinase inhibitors (TKIs). To examine how microenvironmental signals influence resistance, we monitored TKI-treated breast cancer cell lines grown on microenvironment microarrays composed of printed extracellular matrix proteins supplemented with soluble proteins. We tested ∼2,500 combinations of 56 soluble and 46 matrix microenvironmental proteins on basal-like HER2+ (HER2E) or luminal-like HER2+ (L-HER2+) cells treated with the TKIs lapatinib or neratinib. In HER2E cells, hepatocyte growth factor, a ligand for MET, induced resistance that could be reversed with crizotinib, an inhibitor of MET. In L-HER2+ cells, neuregulin1-β1 (NRG1β), a ligand for HER3, induced resistance that could be reversed with pertuzumab, an inhibitor of HER2-HER3 heterodimerization. The subtype-specific responses were also observed in 3D cultures and murine xenografts. These results, along with bioinformatic pathway analysis and siRNA knockdown experiments, suggest different mechanisms of resistance specific to each HER2+ subtype: MET signaling for HER2E and HER2-HER3 heterodimerization for L-HER2+ cells.

Funding information:
  • Intramural NIH HHS - (United States)

An RNAi screen of Rho signalling networks identifies RhoH as a regulator of Rac1 in prostate cancer cell migration.

  • Tajadura-Ortega V
  • BMC Biol.
  • 2018 Mar 6

Literature context:


Abstract:

BACKGROUND: Cell migration is essential for development and tissue repair, but it also contributes to disease. Rho GTPases regulate cell migration, but a comprehensive analysis of how each Rho signalling component affects migration has not been carried out. RESULTS: Through an RNA interference screen, and using a prostate cancer cell line, we find that approximately 25% of Rho network components alter migration. Some genes enhance migration while others decrease basal and/or hepatocyte growth factor-stimulated migration. Surprisingly, we identify RhoH as a screen hit. RhoH expression is normally restricted to haematopoietic cells, but we find it is expressed in multiple epithelial cancer cell lines. High RhoH expression in samples from prostate cancer patients correlates with earlier relapse. RhoH depletion reduces cell speed and persistence and decreases migratory polarity. Rac1 activity normally localizes to the front of migrating cells at areas of dynamic membrane movement, but in RhoH-depleted cells active Rac1 is localised around the whole cell periphery and associated with membrane regions that are not extending or retracting. RhoH interacts with Rac1 and with several p21-activated kinases (PAKs), which are Rac effectors. Similar to RhoH depletion, PAK2 depletion increases cell spread area and reduces cell migration. In addition, RhoH depletion reduces lamellipodium extension induced by PAK2 overexpression. CONCLUSIONS: We describe a novel role for RhoH in prostate cancer cell migration. We propose that RhoH promotes cell migration by coupling Rac1 activity and PAK2 to membrane protrusion. Our results also suggest that RhoH expression levels correlate with prostate cancer progression.

Funding information:
  • Cancer Research UK - C41786/A132()
  • Cancer Research UK - C6220/A8833()
  • Cancer Research UK - C6620/A15961()
  • National Institutes of Health - PO1-GM103723()
  • National Institutes of Health - R01-GM079271()
  • National Institutes of Health - U01-EB018816()
  • NCI NIH HHS - R01 CA133966-04(United States)

GDC-0879, a BRAFV600E Inhibitor, Protects Kidney Podocytes from Death.

  • Sieber J
  • Cell Chem Biol
  • 2018 Feb 15

Literature context:


Abstract:

Progressive kidney diseases affect approximately 500 million people worldwide. Podocytes are terminally differentiated cells of the kidney filter, the loss of which leads to disease progression and kidney failure. To date, there are no therapies to promote podocyte survival. Drug repurposing may therefore help accelerate the development of cures in an area of tremendous unmet need. In a newly developed high-throughput screening assay of podocyte viability, we identified the BRAFV600E inhibitor GDC-0879 and the adenylate cyclase agonist forskolin as podocyte-survival-promoting compounds. GDC-0879 protects podocytes from injury through paradoxical activation of the MEK/ERK pathway. Forskolin promotes podocyte survival by attenuating protein biosynthesis. Importantly, GDC-0879 and forskolin are shown to promote podocyte survival against an array of cellular stressors. This work reveals new therapeutic targets for much needed podocyte-protective therapies and provides insights into the use of GDC-0879-like molecules for the treatment of progressive kidney diseases.

Funding information:
  • NIDDK NIH HHS - R01 DK095045()
  • NIDDK NIH HHS - R01 DK099465()
  • NINDS NIH HHS - 4R00NS057944-03(United States)

c-RAF Ablation Induces Regression of Advanced Kras/Trp53 Mutant Lung Adenocarcinomas by a Mechanism Independent of MAPK Signaling.

  • Sanclemente M
  • Cancer Cell
  • 2018 Feb 12

Literature context:


Abstract:

A quarter of all solid tumors harbor KRAS oncogenes. Yet, no selective drugs have been approved to treat these malignancies. Genetic interrogation of the MAPK pathway revealed that systemic ablation of MEK or ERK kinases in adult mice prevent tumor development but are unacceptably toxic. Here, we demonstrate that ablation of c-RAF expression in advanced tumors driven by KrasG12V/Trp53 mutations leads to significant tumor regression with no detectable appearance of resistance mechanisms. Tumor regression results from massive apoptosis. Importantly, systemic abrogation of c-RAF expression does not inhibit canonical MAPK signaling, hence, resulting in limited toxicities. These results are of significant relevance for the design of therapeutic strategies to treat K-RAS mutant cancers.

Funding information:
  • NHLBI NIH HHS - HL076604(United States)

The Neuroprotective Effect of Thalidomide against Ischemia through the Cereblon-mediated Repression of AMPK Activity.

  • Sawamura N
  • Sci Rep
  • 2018 Feb 6

Literature context:


Abstract:

Thalidomide was originally used as a sedative and found to be a teratogen, but now thalidomide and its derivatives are widely used to treat haematologic malignancies. Accumulated evidence suggests that thalidomide suppresses nerve cell death in neurologic model mice. However, detailed molecular mechanisms are unknown. Here we examined the molecular mechanism of thalidomide's neuroprotective effects, focusing on its target protein, cereblon (CRBN), and its binding protein, AMP-activated protein kinase (AMPK), which plays an important role in maintaining intracellular energy homeostasis in the brain. We used a cerebral ischemia rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). Thalidomide treatment significantly decreased the infarct volume and neurological deficits of MCAO/R rats. AMPK was the key signalling protein in this mechanism. Furthermore, we considered that the AMPK-CRBN interaction was altered when neuroprotective action by thalidomide occurred in cells under ischemic conditions. Binding was strong between AMPK and CRBN in normal SH-SY5Y cells, but was weakened by the addition of H2O2. However, when thalidomide was administered at the same time as H2O2, the binding of AMPK and CRBN was partly restored. These results suggest that thalidomide inhibits the activity of AMPK via CRBN under oxidative stress and suppresses nerve cell death.

Funding information:
  • NCI NIH HHS - HHSN261200800001E(United States)

A Tyrosine Phosphorylation Cycle Regulates Fungal Activation of a Plant Receptor Ser/Thr Kinase.

  • Liu J
  • Cell Host Microbe
  • 2018 Feb 14

Literature context:


Abstract:

Plants initiate immunity by cell-surface pattern-recognition receptors (PRRs), which perceive non-self molecules. PRRs are predominantly receptor serine/threonine (Ser/Thr) kinases that are evolutionarily related to animal interleukin-1 receptor-associated kinase (IRAK)/Pelle-soluble kinases. However, how the activity of these receptor kinases is modulated remains poorly understood. We report that the Arabidopsis PRR chitin elicitor receptor kinase 1 (CERK1) is autophosphorylated in unstimulated cells at tyrosine428 (Tyr428), a modification that is required for CERK1 activation upon binding to the fungal cell wall component chitin. Upon chitin activation, CERK1 recruits the CERK1-interacting protein phosphatase 1 (CIPP1), a predicted Ser/Thr phosphatase, to dephosphorylate Tyr428 and dampen CERK1 signaling. CIPP1 subsequently dissociates from Tyr428-dephosphorylated CERK1, allowing CERK1 to regain Tyr428 autophosphorylation and return to a standby state. This work sheds light onto plant chitin signaling and shows that a receptor kinase and phosphatase can coordinately regulate signal transduction of a receptor kinase through a phosphorylation cycle.

Funding information:
  • NIAID NIH HHS - R01 AI066109(United States)

Intestinal Epithelial Cell Autophagy Is Required to Protect against TNF-Induced Apoptosis during Chronic Colitis in Mice.

  • Pott J
  • Cell Host Microbe
  • 2018 Feb 14

Literature context:


Abstract:

Genome-wide association studies have linked polymorphisms in the autophagy gene ATG16L1 with susceptibility to inflammatory bowel disease (IBD). However, the cell-type-specific effects of autophagy on the regulation of chronic intestinal inflammation have not been investigated. Here, we assessed the effect of myeloid-specific or intestinal epithelial cell (IEC)-specific deletion of Atg16l1 on chronic colitis triggered by the intestinal opportunistic pathogen Helicobacter hepaticus in mice. Although Atg16l1 deficiency in myeloid cells had little effect on disease, mice selectively lacking Atg16l1 in IECs (Atg16l1VC) developed severely exacerbated pathology, accompanied by elevated pro-inflammatory cytokine secretion and increased IEC apoptosis. Using ex vivo IEC organoids, we demonstrate that autophagy intrinsically controls TNF-induced apoptosis and in vivo blockade of TNF attenuated the exacerbated pathology in Atg16l1VC mice. These findings suggest that the IBD susceptibility gene ATG16L1 and the process of autophagy within the epithelium control inflammation-induced apoptosis and barrier integrity to limit chronic intestinal inflammation.

Funding information:
  • Medical Research Council - MR/K011898/1()
  • NLM NIH HHS - R01 LM010022(United States)

Interleukin-10 Directly Inhibits CD8+ T Cell Function by Enhancing N-Glycan Branching to Decrease Antigen Sensitivity.

  • Smith LK
  • Immunity
  • 2018 Feb 20

Literature context:


Abstract:

Chronic viral infections remain a global health concern. The early events that facilitate viral persistence have been linked to the activity of the immunoregulatory cytokine IL-10. However, the mechanisms by which IL-10 facilitates the establishment of chronic infection are not fully understood. Herein, we demonstrated that the antigen sensitivity of CD8+ T cells was decreased during chronic infection and that this was directly mediated by IL-10. Mechanistically, we showed that IL-10 induced the expression of Mgat5, a glycosyltransferase that enhances N-glycan branching on surface glycoproteins. Increased N-glycan branching on CD8+ T cells promoted the formation of a galectin 3-mediated membrane lattice, which restricted the interaction of key glycoproteins, ultimately increasing the antigenic threshold required for T cell activation. Our study identified a regulatory loop in which IL-10 directly restricts CD8+ T cell activation and function through modification of cell surface glycosylation allowing the establishment of chronic infection.

Funding information:
  • NIGMS NIH HHS - 1R01GM090293-0109(United States)

β2 Adrenergic-Neurotrophin Feedforward Loop Promotes Pancreatic Cancer.

  • Renz BW
  • Cancer Cell
  • 2018 Jan 8

Literature context:


Abstract:

Catecholamines stimulate epithelial proliferation, but the role of sympathetic nerve signaling in pancreatic ductal adenocarcinoma (PDAC) is poorly understood. Catecholamines promoted ADRB2-dependent PDAC development, nerve growth factor (NGF) secretion, and pancreatic nerve density. Pancreatic Ngf overexpression accelerated tumor development in LSL-Kras+/G12D;Pdx1-Cre (KC) mice. ADRB2 blockade together with gemcitabine reduced NGF expression and nerve density, and increased survival of LSL-Kras+/G12D;LSL-Trp53+/R172H;Pdx1-Cre (KPC) mice. Therapy with a Trk inhibitor together with gemcitabine also increased survival of KPC mice. Analysis of PDAC patient cohorts revealed a correlation between brain-derived neurotrophic factor (BDNF) expression, nerve density, and increased survival of patients on nonselective β-blockers. These findings suggest that catecholamines drive a feedforward loop, whereby upregulation of neurotrophins increases sympathetic innervation and local norepinephrine accumulation.

Funding information:
  • NCI NIH HHS - P30 CA013696()
  • NCI NIH HHS - R35 CA210088()
  • NCRR NIH HHS - S10 RR025686()
  • NIDDK NIH HHS - DK053904(United States)

Desacyl Ghrelin Decreases Anxiety-like Behavior in Male Mice.

  • Mahbod P
  • Endocrinology
  • 2018 Jan 1

Literature context:


Abstract:

Ghrelin is a 28-amino acid polypeptide that regulates feeding, glucose metabolism, and emotionality (stress, anxiety, and depression). Plasma ghrelin circulates as desacyl ghrelin (DAG) or, in an acylated form, acyl ghrelin (AG), through the actions of ghrelin O-acyltransferase (GOAT), exhibiting low or high affinity, respectively, for the growth hormone secretagogue receptor (GHSR) 1a. We investigated the role of endogenous AG, DAG, and GHSR1a signaling on anxiety and stress responses using ghrelin knockout (Ghr KO), GOAT KO, and Ghsr stop-floxed (Ghsr null) mice. Behavioral and hormonal responses were tested in the elevated plus maze and light/dark (LD) box. Mice lacking both AG and DAG (Ghr KO) increased anxiety-like behaviors across tests, whereas anxiety reactions were attenuated in DAG-treated Ghr KO mice and in mice lacking AG (GOAT KO). Notably, loss of GHSR1a (Ghsr null) did not affect anxiety-like behavior in any test. Administration of AG and DAG to Ghr KO mice with lifelong ghrelin deficiency reduced anxiety-like behavior and decreased phospho-extracellular signal-regulated kinase phosphorylation in the Edinger-Westphal nucleus in wild-type mice, a site normally expressing GHSR1a and involved in stress- and anxiety-related behavior. Collectively, our data demonstrate distinct roles for endogenous AG and DAG in regulation of anxiety responses and suggest that the behavioral impact of ghrelin may be context dependent.

Microglial TNFα Induces COX2 and PGI2 Synthase Expression in Spinal Endothelial Cells during Neuropathic Pain.

  • Kanda H
  • eNeuro
  • 2018 Jan 29

Literature context:


Abstract:

Prostaglandins (PGs) are typical lipid mediators that play a role in homeostasis and disease. They are synthesized from arachidonic acid by cyclooxygenase 1 (COX1) and COX2. Although COX2 has been reported to be upregulated in the spinal cord after nerve injury, its expression and functional roles in neuropathic pain remain unclear. In this study, we investigated the expression of Cox2, PGI2 synthase (Pgis), and prostaglandin I2 receptor (IP receptor) mRNA in the rat spinal cord after spared nerve injury (SNI). Levels of Cox2 and Pgis mRNA increased in endothelial cells from 24 to 48 h after nerve injury. IP receptor mRNA was constitutively expressed in dorsal horn neurons. A COX2 inhibitor and IP receptor antagonists attenuated pain behavior in the early phase of neuropathic pain. Furthermore, we examined the relationship between COX2 and tumor necrosis factor-α (TNFα) in the spinal cord of a rat SNI model. Levels of TNFα mRNA transiently increased in the spinal microglia 24 h after SNI. The TNF receptors Tnfr1 and Tnfr2 mRNA were colocalized with COX2. Intrathecal injection of TNFα induced Cox2 and Pgis mRNA expression in endothelial cells. These results revealed that microglia-derived TNFα induced COX2 and PGIS expression in spinal endothelial cells and that endothelial PGI2 played a critical role in neuropathic pain via neuronal IP receptor. These findings further suggest that the glia-endothelial cell interaction of the neurovascular unit via transient TNFα is involved in the generation of neuropathic pain.

Notch Signaling Regulates Differentiation and Steroidogenesis in Female Mouse Ovarian Granulosa Cells.

  • Prasasya RD
  • Endocrinology
  • 2018 Jan 1

Literature context:


Abstract:

The Notch pathway is a highly conserved juxtacrine signaling mechanism that is important for many cellular processes during development, including differentiation and proliferation. Although Notch is important during ovarian follicle formation and early development, its functions during the gonadotropin-dependent stages of follicle development are largely unexplored. We observed positive regulation of Notch activity and expression of Notch ligands and receptors following activation of the luteinizing hormone-receptor in prepubertal mouse ovary. JAG1, the most abundantly expressed Notch ligand in mouse ovary, revealed a striking shift in localization from oocytes to somatic cells following hormone stimulation. Using primary cultures of granulosa cells, we investigated the functions of Jag1 using small interfering RNA knockdown. The loss of JAG1 led to suppression of granulosa cell differentiation as marked by reduced expression of enzymes and factors involved in steroid biosynthesis, and in steroid secretion. Jag1 knockdown also resulted in enhanced cell proliferation. These phenotypes were replicated, although less robustly, following knockdown of the obligate canonical Notch transcription factor RBPJ. Intracellular signaling analysis revealed increased activation of the mitogenic phosphatidylinositol 3-kinase/protein kinase B and mitogen-activated protein kinase/extracellular signal-regulated kinase pathways following Notch knockdown, with a mitogen-activated protein kinase kinase inhibitor blocking the enhanced proliferation observed in Jag1 knockdown granulosa cells. Activation of YB-1, a known regulator of granulosa cell differentiation genes, was suppressed by Jag1 knockdown. Overall, this study reveals a role of Notch signaling in promoting the differentiation of preovulatory granulosa cells, adding to the diverse functions of Notch in the mammalian ovary.

Funding information:
  • NIA NIH HHS - R56 AG016379(United States)
  • NICHD NIH HHS - P01 HD021921(United States)
  • NICHD NIH HHS - P50 HD028934(United States)
  • NIGMS NIH HHS - T32 GM008061(United States)

Hyperinnervation improves Xenopus laevis limb regeneration.

  • Mitogawa K
  • Dev. Biol.
  • 2018 Jan 15

Literature context:


Abstract:

Xenopus laevis (an anuran amphibian) shows limb regeneration ability between that of urodele amphibians and that of amniotes. Xenopus frogs can initiate limb regeneration but fail to form patterned limbs. Regenerated limbs mainly consist of cone-shaped cartilage without any joints or branches. These pattern defects are thought to be caused by loss of proper expressions of patterning-related genes. This study shows that hyperinnervation surgery resulted in the induction of a branching regenerate. The hyperinnervated blastema allows the identification and functional analysis of the molecules controlling this patterning of limb regeneration. This paper focuses on the nerve affects to improve Xenopus limb patterning ability during regeneration. The nerve molecules, which regulate limb patterning, were also investigated. Blastemas grown in a hyperinnervated forelimb upregulate limb patterning-related genes (shh, lmx1b, and hoxa13). Nerves projecting their axons to limbs express some growth factors (bmp7, fgf2, fgf8, and shh). Inputs of these factors to a blastema upregulated some limb patterning-related genes and resulted in changes in the cartilage patterns in the regenerates. These results indicate that additional nerve factors enhance Xenopus limb patterning-related gene expressions and limb regeneration ability, and that bmp, fgf, and shh are candidate nerve substitute factors.

Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor.

  • Barrow AD
  • Cell
  • 2018 Jan 25

Literature context:


Abstract:

Many tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRβ signaling. By screening a secretome library, we found that the human immunoreceptor NKp44, encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells, recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of interferon gamma (IFN)-γ and tumor necrosis factor alpha (TNF-α) that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, while cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion.

Funding information:
  • Intramural NIH HHS - ZIA DK043403-11(United States)

PEP-1-glutaredoxin-1 induces dedifferentiation of rabbit articular chondrocytes by the endoplasmic reticulum stress-dependent ERK-1/2 pathway and the endoplasmic reticulum stress-independent p38 kinase and PI-3 kinase pathways.

  • Yu SM
  • Int. J. Biol. Macromol.
  • 2018 Jan 26

Literature context:


Abstract:

Glutaredoxin-1 (GRX-1), belonging to the oxidoreductase family, is a component of the endogenous antioxidant defense system. In this study, we evaluated the effects of PEP-1-GRX-1 in rabbit articular chondrocytes. We found that PEP-1-GRX-1 causes a loss of the differentiated chondrocyte phenotype. PEP-1-GRX-1-treated cells exhibited decreases in type II collagen expression and sulfated-proteoglycan synthesis in a dose- and time-dependent manner. PEP-1-GRX-1 causes endoplasmic reticulum (ER)-stress, as evidenced by increases in ER stress marker proteins, i.e., glucose-regulated protein (GRP) 78, GRP 94, and phospho-eukaryotic initiation factor 2 (eIF2) α. These effects were inhibited by ER stress inhibitors. PEP-1-GRX-1 increased the phosphorylation of Akt, extracellular signal-regulated kinase (ERK)-1/2, and p38. Inhibition of ERK-1/2 by PD98059 prevented PEP-1-GRX-1-induced dedifferentiation and inhibited ER stress. The blockage of PI-3K/Akt or p38 kinase with SB203580 and LY294002 accelerated PEP-1-GRX-1-induced dedifferentiation, but did not have any effect on PEP-GRX-1-induced ER stress. Our results indicate that the ERK-1/2 pathway mediates chondrocyte dedifferentiation by PEP-GRX-1-induced ER stress. The PI-3K and p38 kinase pathways regulate PEP-1-GRX-1-induced chondrocyte dedifferentiation by an ER stress-independent pathway.

Funding information:
  • NIGMS NIH HHS - R01 GM049831(United States)

Tuning of in vivo cognate B-T cell interactions by Intersectin 2 is required for effective anti-viral B cell immunity.

  • Burbage M
  • Elife
  • 2018 Jan 16

Literature context:


Abstract:

Wiskott-Aldrich syndrome (WAS) is an immune pathology associated with mutations in WAS protein (WASp) or in WASp interacting protein (WIP). Together with the small GTPase Cdc42 and other effectors, these proteins participate in the remodelling of the actin network downstream of BCR engagement. Here we show that mice lacking the adaptor protein ITSN2, a G-nucleotide exchange factor (GEF) for Cdc42 that also interacts with WASp and WIP, exhibited increased mortality during primary infection, incomplete protection after Flu vaccination, reduced germinal centre formation and impaired antibody responses to vaccination. These defects were found, at least in part, to be intrinsic to the B cell compartment. In vivo, ITSN2 deficient B cells show a reduction in the expression of SLAM, CD84 or ICOSL that correlates with a diminished ability to form long term conjugates with T cells, to proliferate in vivo, and to differentiate into germinal centre cells. In conclusion, our study not only revealed a key role for ITSN2 as an important regulator of adaptive immune-response during vaccination and viral infection but it is also likely to contribute to a better understanding of human immune pathologies.

Funding information:
  • NIAID NIH HHS - FC001035 ()
  • NIGMS NIH HHS - UM1 AI100663()
  • Wellcome Trust - 085448/Z/08/Z(United Kingdom)
  • Wellcome Trust - DP2 GM119419()

Glutamatergic neurotransmission in the prefrontal cortex mediates the suppressive effect of intra-prelimbic cortical infusion of BDNF on cocaine-seeking.

  • Go BS
  • Eur Neuropsychopharmacol
  • 2018 Jan 5

Literature context:


Abstract:

Cocaine self-administration induces dysfunctional neuroadaptations in the prefrontal cortex that underlie relapse to cocaine-seeking. Cocaine self-administration disturbs glutamatergic transmission in the nucleus accumbens that is prevented by infusion of brain-derived neurotrophic factor (BDNF) into the prelimbic area of the prefrontal cortex. Intra-prelimbic infusion of BDNF decreases cocaine-seeking in a TrkB-ERK MAP kinase-dependent manner. Neuronal activity triggers an interaction between TrkB receptors and NMDA receptors, leading to ERK activation. In the present study, infusion of the GluN2A-containing NMDA receptor antagonist, TCN-201, or the GluN2B-containing NMDA receptor antagonist, Ro-25-6981, into the prelimbic cortex of rats blocked the suppressive effect of BDNF on cocaine-seeking. During early withdrawal from cocaine self-administration, tyrosine phosphorylation of ERK, GluN2A, and GluN2B in the prelimbic cortex was reduced and this reduction of phospho-proteins was prevented by intra-prelimbic BDNF infusion. TCN-201 infusion into the prelimbic cortex inhibited the BDNF-mediated increase in pERK and pGluN2A whereas Ro-25-6981 infusion into the prelimbic cortex blocked BDNF-induced elevation of pERK and pGluN2B, indicating that both GluN2A- and GluN2B-containing NMDA receptors underlie BDNF-induced ERK activation. These data demonstrate that BDNF-mediated activation of GluN2A- and GluN2B-containing NMDA receptors underlies ERK activation in the prelimbic cortex during early withdrawal, preventing subsequent relapse to cocaine-seeking.

Acetyl-CoA Carboxylase 1-Dependent Protein Acetylation Controls Breast Cancer Metastasis and Recurrence.

  • Rios Garcia M
  • Cell Metab.
  • 2017 Dec 5

Literature context:


Abstract:

Breast tumor recurrence and metastasis represent the main causes of cancer-related death in women, and treatments are still lacking. Here, we define the lipogenic enzyme acetyl-CoA carboxylase (ACC) 1 as a key player in breast cancer metastasis. ACC1 phosphorylation was increased in invading cells both in murine and human breast cancer, serving as a point of convergence for leptin and transforming growth factor (TGF) β signaling. ACC1 phosphorylation was mediated by TGFβ-activated kinase (TAK) 1, and ACC1 inhibition was indispensable for the elevation of cellular acetyl-CoA, the subsequent increase in Smad2 transcription factor acetylation and activation, and ultimately epithelial-mesenchymal transition and metastasis induction. ACC1 deficiency worsened tumor recurrence upon primary tumor resection in mice, and ACC1 phosphorylation levels correlated with metastatic potential in breast and lung cancer patients. Given the demonstrated effectiveness of anti-leptin receptor antibody treatment in halting ACC1-dependent tumor invasiveness, our work defines a "metabolocentric" approach in metastatic breast cancer therapy.

Funding information:
  • NIDDK NIH HHS - P30 DK065988(United States)

Origins and Specification of the Drosophila Wing.

  • Requena D
  • Curr. Biol.
  • 2017 Dec 18

Literature context:


Abstract:

The insect wing is a key evolutionary innovation that was essential for insect diversification. Yet despite its importance, there is still debate about its evolutionary origins. Two main hypotheses have been proposed: the paranotal hypothesis, which suggests that wings evolved as an extension of the dorsal thorax, and the gill-exite hypothesis, which proposes that wings were derived from a modification of a pre-existing branch at the dorsal base (subcoxa) of the leg. Here, we address this question by studying how wing fates are initially specified during Drosophila embryogenesis, by characterizing a cis-regulatory module (CRM) from the snail (sna) gene, sna-DP (for dorsal primordia). sna-DP specifically marks the early primordia for both the wing and haltere, collectively referred to as the DP. We found that the inputs that activate sna-DP are distinct from those that activate Distalless, a marker for leg fates. Further, in genetic backgrounds in which the leg primordia are absent, the DP are still partially specified. However, lineage-tracing experiments demonstrate that cells from the early leg primordia contribute to both ventral and dorsal appendage fates. Together, these results suggest that the wings of Drosophila have a dual developmental origin: two groups of cells, one ventral and one more dorsal, give rise to the mature wing. We suggest that the dual developmental origins of the wing may be a molecular remnant of the evolutionary history of this appendage, in which cells of the subcoxa of the leg coalesced with dorsal outgrowths to evolve a dorsal appendage with motor control.

Funding information:
  • NHLBI NIH HHS - HL109102(United States)
  • NIGMS NIH HHS - R01 GM058575()
  • NIGMS NIH HHS - R35 GM118336()

Extracellular Lactate Dehydrogenase A Release From Damaged Neurons Drives Central Nervous System Angiogenesis.

  • Lin H
  • EBioMedicine
  • 2017 Dec 19

Literature context:


Abstract:

Angiogenesis, a prominent feature of pathology, is known to be guided by factors secreted by living cells around a lesion. Although many cells are disrupted in a response to injury, the relevance of degenerating cells in pathological angiogenesis is unclear. Here, we show that the release of lactate dehydrogenase A (LDHA) from degenerating neurons drives central nervous system (CNS) angiogenesis. Silencing neuronal LDHA expression suppressed angiogenesis around experimental autoimmune encephalomyelitis (EAE)- and controlled cortical impact-induced lesions. Extracellular LDHA-mediated angiogenesis was dependent on surface vimentin expression and vascular endothelial growth factor receptor (VEGFR) phosphorylation in vascular endothelial cells. Silencing vimentin expression in vascular endothelial cells prevented angiogenesis around EAE lesions and improved survival in a mouse model of glioblastoma. These results elucidate novel mechanisms that may mediate pathologic angiogenesis and identify a potential molecular target for the treatment of CNS diseases involving angiogenesis.

Funding information:
  • Intramural NIH HHS - ZIA AR041159-05(United States)

Oncogenic Role of THOR, a Conserved Cancer/Testis Long Non-coding RNA.

  • Hosono Y
  • Cell
  • 2017 Dec 14

Literature context:


Abstract:

Large-scale transcriptome sequencing efforts have vastly expanded the catalog of long non-coding RNAs (lncRNAs) with varying evolutionary conservation, lineage expression, and cancer specificity. Here, we functionally characterize a novel ultraconserved lncRNA, THOR (ENSG00000226856), which exhibits expression exclusively in testis and a broad range of human cancers. THOR knockdown and overexpression in multiple cell lines and animal models alters cell or tumor growth supporting an oncogenic role. We discovered a conserved interaction of THOR with IGF2BP1 and show that THOR contributes to the mRNA stabilization activities of IGF2BP1. Notably, transgenic THOR knockout produced fertilization defects in zebrafish and also conferred a resistance to melanoma onset. Likewise, ectopic expression of human THOR in zebrafish accelerated the onset of melanoma. THOR represents a novel class of functionally important cancer/testis lncRNAs whose structure and function have undergone positive evolutionary selection.

Funding information:
  • Howard Hughes Medical Institute - P30 DK081943()
  • NCI NIH HHS - R01 CA154365()
  • NCI NIH HHS - U01 CA214170()
  • NIDDK NIH HHS - F30 CA200328()
  • NIDDK NIH HHS - K99 DK091405()
  • NIDDK NIH HHS - R00 DK091405()
  • NIGMS NIH HHS - R01-GM62317(United States)

MST4 Phosphorylation of ATG4B Regulates Autophagic Activity, Tumorigenicity, and Radioresistance in Glioblastoma.

  • Huang T
  • Cancer Cell
  • 2017 Dec 11

Literature context:


Abstract:

ATG4B stimulates autophagy by promoting autophagosome formation through reversible modification of ATG8. We identify ATG4B as a substrate of mammalian sterile20-like kinase (STK) 26/MST4. MST4 phosphorylates ATG4B at serine residue 383, which stimulates ATG4B activity and increases autophagic flux. Inhibition of MST4 or ATG4B activities using genetic approaches or an inhibitor of ATG4B suppresses autophagy and the tumorigenicity of glioblastoma (GBM) cells. Furthermore, radiation induces MST4 expression, ATG4B phosphorylation, and autophagy. Inhibiting ATG4B in combination with radiotherapy in treating mice with intracranial GBM xenograft markedly slows tumor growth and provides a significant survival benefit. Our work describes an MST4-ATG4B signaling axis that influences GBM autophagy and malignancy, and whose therapeutic targeting enhances the anti-tumor effects of radiotherapy.

Funding information:
  • NCI NIH HHS - P01 CA163205()
  • NCI NIH HHS - R01 CA159467()
  • NCI NIH HHS - R21 CA175875()
  • NCI NIH HHS - T32 CA070085()
  • NIAAA NIH HHS - R01 AA021751()
  • NIGMS NIH HHS - R01 GM038660(United States)
  • NIMHD NIH HHS - L32 MD010147()
  • NINDS NIH HHS - P30 NS081774()
  • NINDS NIH HHS - R01 NS080619()
  • NINDS NIH HHS - R01 NS083767()
  • NINDS NIH HHS - R01 NS093843()
  • NINDS NIH HHS - R01 NS095634()
  • NINDS NIH HHS - R01 NS102669()
  • NLM NIH HHS - K99 LM011673()
  • NLM NIH HHS - R00 LM011673()
  • NLM NIH HHS - R01 LM012011()

OsMAPK3 Phosphorylates OsbHLH002/OsICE1 and Inhibits Its Ubiquitination to Activate OsTPP1 and Enhances Rice Chilling Tolerance.

  • Zhang Z
  • Dev. Cell
  • 2017 Dec 18

Literature context:


Abstract:

Improvement of chilling tolerance is a major target in rice breeding. The signaling pathways regulating chilling consist of complex networks, including key transcription factors and their targets. However, it remains largely unknown how transcription factors are activated by chilling stress. Here, we report that the transcription factor OsbHLH002/OsICE1 is phosphorylated by OsMAPK3 under chilling stress. The osbhlh002-1 knockout mutant and antisense transgenic plants showed chilling hypersensitivity, whereas OsbHLH002-overexpressing plants exhibited enhanced chilling tolerance. OsbHLH002 can directly target OsTPP1, which encodes a key enzyme for trehalose biosynthesis. OsMAPK3 interacts with OsbHLH002 to prevent its ubiquitination by the E3 ligase OsHOS1. Under chilling stress, active OsMAPK3 phosphorylates OsbHLH002, leading to accumulation of phospho-OsbHLH002, which promotes OsTPP1 expression and increases trehalose content and resistance to chilling damage. Taken together, these results indicate that OsbHLH002 is phosphorylated by OsMAPK3, which enhances OsbHLH002 activation to its target OsTPP1 during chilling stress.

Funding information:
  • NIGMS NIH HHS - T32 GM007198(United States)

Stress-Activated NRF2-MDM2 Cascade Controls Neoplastic Progression in Pancreas.

  • Todoric J
  • Cancer Cell
  • 2017 Dec 11

Literature context:


Abstract:

Despite expression of oncogenic KRAS, premalignant pancreatic intraepithelial neoplasia 1 (PanIN1) lesions rarely become fully malignant pancreatic ductal adenocarcinoma (PDAC). The molecular mechanisms through which established risk factors, such as chronic pancreatitis, acinar cell damage, and/or defective autophagy increase the likelihood of PDAC development are poorly understood. We show that accumulation of the autophagy substrate p62/SQSTM1 in stressed KrasG12D acinar cells is associated with PDAC development and maintenance of malignancy in human cells and mice. p62 accumulation promotes neoplastic progression by controlling the NRF2-mediated induction of MDM2, which acts through p53-dependent and -independent mechanisms to abrogate checkpoints that prevent conversion of differentiated acinar cells to proliferative ductal progenitors. MDM2 targeting may be useful for preventing PDAC development in high-risk individuals.

Funding information:
  • NEI NIH HHS - R01 EY020535(United States)

MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability.

  • Zhao C
  • Dev. Cell
  • 2017 Dec 4

Literature context:


Abstract:

Mitogen-activated protein kinase cascades are important signaling modules that convert environmental stimuli into cellular responses. We show that MPK3, MPK4, and MPK6 are rapidly activated after cold treatment. The mpk3 and mpk6 mutants display increased expression of CBF genes and enhanced freezing tolerance, whereas constitutive activation of the MKK4/5-MPK3/6 cascade in plants causes reduced expression of CBF genes and hypersensitivity to freezing, suggesting that the MKK4/5-MPK3/6 cascade negatively regulates the cold response. MPK3 and MPK6 can phosphorylate ICE1, a basic-helix-loop-helix transcription factor that regulates the expression of CBF genes, and the phosphorylation promotes the degradation of ICE1. Interestingly, the MEKK1-MKK2-MPK4 pathway constitutively suppresses MPK3 and MPK6 activities and has a positive role in the cold response. Furthermore, the MAPKKK YDA and two calcium/calmodulin-regulated receptor-like kinases, CRLK1 and CRLK2, negatively modulate the cold activation of MPK3/6. Our results uncover important roles of MAPK cascades in the regulation of plant cold response.

Funding information:
  • Medical Research Council - G0601546(United Kingdom)
  • NIGMS NIH HHS - R01 GM059138()
  • NIGMS NIH HHS - R01 GM109080()

Cannabinoid Receptor Type 1 Agonist ACEA Protects Neurons from Death and Attenuates Endoplasmic Reticulum Stress-Related Apoptotic Pathway Signaling.

  • Vrechi TA
  • Neurotox Res
  • 2017 Nov 15

Literature context:


Abstract:

Neurodegeneration is the result of progressive destruction of neurons in the central nervous system, with unknown causes and pathological mechanisms not yet fully elucidated. Several factors contribute to neurodegenerative processes, including neuroinflammation, accumulation of neurotoxic factors, and misfolded proteins in the lumen of the endoplasmic reticulum (ER). Endocannabinoid signaling has been pointed out as an important modulatory system in several neurodegeneration-related processes, inhibiting the inflammatory response and increasing neuronal survival. Thus, we investigated the presumptive protective effect of the selective cannabinoid type 1 (CB1) receptor agonist arachidonyl-2'-chloroethylamide (ACEA) against inflammatory (lipopolysaccharide, LPS) and ER stress (tunicamycin) stimuli in an in vitro neuronal model (Neuro-2a neuroblastoma cells). Cell viability analysis revealed that ACEA was able to protect against cell death induced by LPS and tunicamycin. This neuroprotective effect occurs via the CB1 receptor in the inflammation process and via the transient receptor potential of vanilloid type-1 (TRPV1) channel in ER stress. Furthermore, the immunoblotting analyses indicated that the neuroprotective effect of ACEA seems to involve the modulation of eukaryotic initiation factor 2 (eIF2α), transcription factor C/EBP homologous protein (CHOP), and caspase 12, as well as the survival/death p44/42 MAPK, ERK1/2-related signaling pathways. Together, these data suggest that the endocannabinoid system is a potential therapeutic target in neurodegenerative processes, especially in ER-related neurodegenerative diseases.

Funding information:
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - 1233360()
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - 1279985()
  • Fundação de Amparo à Pesquisa do Estado de São Paulo - 2014/06372-0()

Cytokine-induced apoptosis inhibitor-1 causes dedifferentiation of rabbit articular chondrocytes via the ERK-1/2 and p38 kinase pathways.

  • Yu SM
  • Int. J. Biochem. Cell Biol.
  • 2017 Nov 7

Literature context:


Abstract:

Cytokine-induced apoptosis inhibitor-1 (CIAPIN-1, formally named anamorsin) is a well-known regulator of apoptosis in many different cell types. Recently, it has been reported that some anti-apoptotic proteins are involved with the regulation of cell differentiation. However, relatively little is known about the role of CIAPIN-1 on rabbit articular chondrocytes differentiation. In this study, we investigated the effects of CIAPIN-1 in chondrocytes, focusing on extracellular signal-regulated kinase (ERK)-1/2 and p38 kinase signaling. CIAPIN-1 caused dedifferentiation, as determined by the inhibition of type II collagen expression and sulfated-proteoglycan synthesis. CIAPIN-1 activated ERK-1/2 and inactivated p38 kinase, as determined by the phosphorylation level of each protein. CIAPIN-1-induced ERK phosphorylation was abolished by the MEK inhibitor, PD98059, which also prevented the CIAPIN-1-induced loss of type II collagen expression. Inhibition of p38 kinase with SB203580 enhanced the decrease in type II collagen expression. Our findings collectively suggest that ERK-1/2 and p38 kinase regulate CIAPIN-1-induced dedifferentiation in rabbit articular chondrocytes.

FGF19, FGF21, and an FGFR1/β-Klotho-Activating Antibody Act on the Nervous System to Regulate Body Weight and Glycemia.

  • Lan T
  • Cell Metab.
  • 2017 Nov 7

Literature context:


Abstract:

Despite the different physiologic functions of FGF19 and FGF21 as hormonal regulators of fed and fasted metabolism, their pharmacologic administration causes similar increases in energy expenditure, weight loss, and enhanced insulin sensitivity in obese animals. Here, in genetic loss-of-function studies of the shared co-receptor β-Klotho, we show that these pharmacologic effects are mediated through a common, tissue-specific pathway. Surprisingly, FGF19 and FGF21 actions in liver and adipose tissue are not required for their longer-term weight loss and glycemic effects. In contrast, β-Klotho in neurons is essential for both FGF19 and FGF21 to cause weight loss and lower glucose and insulin levels. We further show an FGF21 mimetic antibody that activates the FGF receptor 1/β-Klotho complex also requires neuronal β-Klotho for its metabolic effects. These studies highlight the importance of the nervous system in mediating the beneficial weight loss and glycemic effects of endocrine FGF drugs.

Funding information:
  • NIDDK NIH HHS - R01 DK067158()

Long-Fiber Carbon Nanotubes Replicate Asbestos-Induced Mesothelioma with Disruption of the Tumor Suppressor Gene Cdkn2a (Ink4a/Arf).

  • Chernova T
  • Curr. Biol.
  • 2017 Nov 6

Literature context:


Abstract:

Mesothelioma is a fatal tumor of the pleura and is strongly associated with asbestos exposure. The molecular mechanisms underlying the long latency period of mesothelioma and driving carcinogenesis are unknown. Moreover, late diagnosis means that mesothelioma research is commonly focused on end-stage disease. Although disruption of the CDKN2A (INK4A/ARF) locus has been reported in end-stage disease, information is lacking on the status of this key tumor suppressor gene in pleural lesions preceding mesothelioma. Manufactured carbon nanotubes (CNTs) are similar to asbestos in terms of their fibrous shape and biopersistent properties and thus may pose an asbestos-like inhalation hazard. Here we show that instillation of either long CNTs or long asbestos fibers into the pleural cavity of mice induces mesothelioma that exhibits common key pro-oncogenic molecular events throughout the latency period of disease progression. Sustained activation of pro-oncogenic signaling pathways, increased proliferation, and oxidative DNA damage form a common molecular signature of long-CNT- and long-asbestos-fiber-induced pathology. We show that hypermethylation of p16/Ink4a and p19/Arf in CNT- and asbestos-induced inflammatory lesions precedes mesothelioma; this results in silencing of Cdkn2a (Ink4a/Arf) and loss of p16 and p19 protein, consistent with epigenetic alterations playing a gatekeeper role in cancer. In end-stage mesothelioma, silencing of p16/Ink4a is sustained and deletion of p19/Arf is detected, recapitulating human disease. This study addresses the long-standing question of which early molecular changes drive carcinogenesis during the long latency period of mesothelioma development and shows that CNT and asbestos pose a similar health hazard.

Protein kinase Cɛ activity regulates mGluR5 surface expression in the rat nucleus accumbens.

  • Schwendt M
  • J. Neurosci. Res.
  • 2017 Nov 16

Literature context:


Abstract:

Type 5 metabotropic glutamate receptors (mGluR5) activate protein kinase C (PKC) via coupling to Gαq/11 protein signaling. We have previously demonstrated that the epsilon isoform of PKC (PKCɛ) is a critical downstream target of mGluR5 in regulating behavioral and biochemical responses to alcohol. Recent evidence suggests that PKC-mediated phosphorylation of mGluR5 can lead to receptor desensitization and internalization. We therefore sought to examine the specific involvement of PKCɛ in the regulation of mGluR5 surface expression in the nucleus accumbens (NAc), a key regulator of alcohol-associated behaviors. Coronal brain sections from male Wistar rats were analyzed for either colocalization of mGluR5 and PKCɛ via immunohistochemistry or changes in mGluR5 surface expression and PKCɛ phosphorylation following local application of PKCɛ translocation activator or inhibitor peptides and/or an orthosteric mGluR5 agonist. We observed colocalization of mGluR5 and PKCɛ in the NAc. We also showed that intra-NAc infusion of the PKCɛ translocation inhibitor ɛV1-2 increased mGluR5 surface expression under baseline conditions. Stimulation of mGluR5 with an orthosteric agonist DHPG, dose dependently increased ERK1/2 and PKCɛ phosphorylation as well as mGluR5 internalization in acute NAc slices. Finally, we observed that activation of PKCɛ translocation with Tat-ΨɛRACK peptide mediates agonist-independent mGluR5 internalization, whereas PKCɛ translocation inhibitor ɛV1-2 prevents agonist-dependent internalization of mGluR5 in NAc slice preparations. These findings suggest that the subcellular localization of mGluR5 in the NAc is regulated by PKCɛ under basal and stimulation conditions, which may influence the role of mGluR5-PKCɛ signaling in alcohol-related behaviors. © 2016 Wiley Periodicals, Inc.

AKT isoforms have distinct hippocampal expression and roles in synaptic plasticity.

  • Levenga J
  • Elife
  • 2017 Nov 27

Literature context:


Abstract:

AKT is a kinase regulating numerous cellular processes in the brain, and mutations in AKT are known to affect brain function. AKT is indirectly implicated in synaptic plasticity, but its direct role has not been studied. Moreover, three highly related AKT isoforms are expressed in the brain, but their individual roles are poorly understood. We find in Mus musculus, each AKT isoform has a unique expression pattern in the hippocampus, with AKT1 and AKT3 primarily in neurons but displaying local differences, while AKT2 is in astrocytes. We also find isoform-specific roles for AKT in multiple paradigms of hippocampal synaptic plasticity in area CA1. AKT1, but not AKT2 or AKT3, is required for L-LTP through regulating activity-induced protein synthesis. Interestingly, AKT activity inhibits mGluR-LTD, with overlapping functions for AKT1 and AKT3. In summary, our studies identify distinct expression patterns and roles in synaptic plasticity for AKT isoforms in the hippocampus.

Funding information:
  • NCI NIH HHS - R01-CA106456(United States)
  • NIMH NIH HHS - T32 MH019524()
  • NINDS NIH HHS - F31 NS083277()
  • NINDS NIH HHS - R01 NS086933()

Activation of Ras-ERK Signaling and GSK-3 by Amyloid Precursor Protein and Amyloid Beta Facilitates Neurodegeneration in Alzheimer's Disease.

  • Kirouac L
  • eNeuro
  • 2017 Oct 27

Literature context:


Abstract:

It is widely accepted that amyloid β (Aβ) generated from amyloid precursor protein (APP) oligomerizes and fibrillizes to form neuritic plaques in Alzheimer's disease (AD), yet little is known about the contribution of APP to intracellular signaling events preceding AD pathogenesis. The data presented here demonstrate that APP expression and neuronal exposure to oligomeric Aβ42 enhance Ras/ERK signaling cascade and glycogen synthase kinase 3 (GSK-3) activation. We find that RNA interference (RNAi)-directed knockdown of APP in B103 rat neuroblastoma cells expressing APP inhibits Ras-ERK signaling and GSK-3 activation, indicating that APP acts upstream of these signal transduction events. Both ERK and GSK-3 are known to induce hyperphosphorylation of tau and APP at Thr668, and our findings suggest that aberrant signaling by APP facilitates these events. Supporting this notion, analysis of human AD brain samples showed increased expression of Ras, activation of GSK-3, and phosphorylation of APP and tau, which correlated with Aβ levels in the AD brains. Furthermore, treatment of primary rat neurons with Aβ recapitulated these events and showed enhanced Ras-ERK signaling, GSK-3 activation, upregulation of cyclin D1, and phosphorylation of APP and tau. The finding that Aβ induces Thr668 phosphorylation on APP, which enhances APP proteolysis and Aβ generation, denotes a vicious feedforward mechanism by which APP and Aβ promote tau hyperphosphorylation and neurodegeneration in AD. Based on these results, we hypothesize that aberrant proliferative signaling by APP plays a fundamental role in AD neurodegeneration and that inhibition of this would impede cell cycle deregulation and neurodegeneration observed in AD.

Carbon Black Nanoparticles Inhibit Aromatase Expression and Estradiol Secretion in Human Granulosa Cells Through the ERK1/2 Pathway.

  • Simon V
  • Endocrinology
  • 2017 Oct 1

Literature context:


Abstract:

Secretion of 17-β-estradiol (E2) by human granulosa cells can be disrupted by various environmental toxicants. In the current study, we investigated whether carbon black nanoparticles (CB NPs) affect the steroidogenic activity of cultured human granulosa cells. The human granulosa cell line KGN and granulosa cells from patients undergoing in vitro fertilization were treated with increasing concentrations of CB NPs (1 to 100 µg/mL) together or not with follicle-stimulating hormone (FSH). We observed that CB NPs are internalized in KGN cells without affecting cell viability. CB NPs could be localized in the cytoplasm, within mitochondria and in association with the outer face of the endoplasmic reticulum membrane. In both cell types, CB NPs reduced in a dose-dependent manner the activity of aromatase enzyme, as reflected by a decrease in E2 secretion. A significant decrease was observed in response to CB NPs concentrations from 25 and 50 µg/mL in KGN cell line and primary cultures, respectively. Furthermore, CB NPs decreased aromatase protein levels in both cells and reduced aromatase transcript levels in KGN cells. CB NPs rapidly activated extracellular signal-regulated kinase 1 and 2 in KGN cells and pharmacological inhibition of this signaling pathway using PD 98059 significantly attenuated the inhibitory effects of CB NPs on CYP19A1 gene expression and aromatase activity. CB NPs also inhibited the stimulatory effect of FSH on aromatase expression and activity. Altogether, our study on cultured ovarian granulosa cells reveals that CB NPs decrease estrogens production and highlights possible detrimental effect of these common NPs on female reproductive health.

A corticostriatal deficit promotes temporal distortion of automatic action in ageing.

  • Matamales M
  • Elife
  • 2017 Oct 23

Literature context:


Abstract:

The acquisition of motor skills involves implementing action sequences that increase task efficiency while reducing cognitive loads. This learning capacity depends on specific cortico-basal ganglia circuits that are affected by normal ageing. Here, combining a series of novel behavioural tasks with extensive neuronal mapping and targeted cell manipulations in mice, we explored how ageing of cortico-basal ganglia networks alters the microstructure of action throughout sequence learning. We found that, after extended training, aged mice produced shorter actions and displayed squeezed automatic behaviours characterised by ultrafast oligomeric action chunks that correlated with deficient reorganisation of corticostriatal activity. Chemogenetic disruption of a striatal subcircuit in young mice reproduced age-related within-sequence features, and the introduction of an action-related feedback cue temporarily restored normal sequence structure in aged mice. Our results reveal static properties of aged cortico-basal ganglia networks that introduce temporal limits to action automaticity, something that can compromise procedural learning in ageing.

A General Strategy for Discovery of Inhibitors and Activators of RING and U-box E3 Ligases with Ubiquitin Variants.

  • Gabrielsen M
  • Mol. Cell
  • 2017 Oct 19

Literature context:


Abstract:

RING and U-box E3 ubiquitin ligases regulate diverse eukaryotic processes and have been implicated in numerous diseases, but targeting these enzymes remains a major challenge. We report the development of three ubiquitin variants (UbVs), each binding selectively to the RING or U-box domain of a distinct E3 ligase: monomeric UBE4B, phosphorylated active CBL, or dimeric XIAP. Structural and biochemical analyses revealed that UbVs specifically inhibited the activity of UBE4B or phosphorylated CBL by blocking the E2∼Ub binding site. Surprisingly, the UbV selective for dimeric XIAP formed a dimer to stimulate E3 activity by stabilizing the closed E2∼Ub conformation. We further verified the inhibitory and stimulatory functions of UbVs in cells. Our work provides a general strategy to inhibit or activate RING/U-box E3 ligases and provides a resource for the research community to modulate these enzymes.

A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice.

  • Roberts MN
  • Cell Metab.
  • 2017 Sep 5

Literature context:


Abstract:

Calorie restriction, without malnutrition, has been shown to increase lifespan and is associated with a shift away from glycolysis toward beta-oxidation. The objective of this study was to mimic this metabolic shift using low-carbohydrate diets and to determine the influence of these diets on longevity and healthspan in mice. C57BL/6 mice were assigned to a ketogenic, low-carbohydrate, or control diet at 12 months of age and were either allowed to live their natural lifespan or tested for physiological function after 1 or 14 months of dietary intervention. The ketogenic diet (KD) significantly increased median lifespan and survival compared to controls. In aged mice, only those consuming a KD displayed preservation of physiological function. The KD increased protein acetylation levels and regulated mTORC1 signaling in a tissue-dependent manner. This study demonstrates that a KD extends longevity and healthspan in mice.

Funding information:
  • NIA NIH HHS - P01 AG025532()
  • NIDDK NIH HHS - U24 DK092993()

Stimulus-evoked ERK-dependent phosphorylation of activity-regulated cytoskeleton-associated protein (Arc) regulates its neuronal subcellular localization.

  • Nikolaienko O
  • Neuroscience
  • 2017 Sep 30

Literature context:


Abstract:

Activity-regulated cytoskeletal-associated protein (Arc) is implicated as a master regulator of long-term synaptic plasticity and memory formation in mammalian brain. Arc acts at synapses and within the nucleus, but the mechanisms controlling Arc localization and function are little known. As Arc transcription and translation are regulated by extracellularsignal-regulated kinase (ERK) signaling, we asked whether Arc protein itself is phosphorylated by ERK. GST-fused Arc of rat origin was able to pull down endogenous ERK2 from rat hippocampal lysates. Using a peptide array, we show that ERK binds a non-canonical docking (D) motif in the C-terminal domain of Arc, and this interaction is abolished by phosphorylation of Tyr309. Activated ERK2 phosphorylated bacterially expressed Arc in vitro at all five predicted sites, as confirmed by phospho-specific protein staining and LC-MS/MS analysis. In neuroblastoma cells expressing epitope tagged-Arc, we demonstrate ERK-dependent phosphorylation of Arc in response to activation of muscarinic cholinergic receptors with carbachol. Using phosphosite-specific antibodies, this stimulus-evoked phosphorylation was shown to occur on Ser206 located within the central hinge region of Arc. In cultured hippocampal neurons expressing phosphomutant Arc under control of the activity-dependent promoter, we show that Ser206 phosphorylation regulates the nuclear:cytosolic localization of Arc. Thus, the neuronal activity-induced phosphomimic exhibits enhanced cytosolic localization relative to phosphodeficient and wild-type Arc. Furthermore, enhanced Ser206 phosphorylation of endogenous Arc was detected in the dentate gyrus cytoskeletal fraction after induction of long-term potentiation (LTP) in live rats. Taken together, this work demonstrates stimulus-evoked ERK-dependent phosphorylation and regulation of Arc protein.

Funding information:
  • Howard Hughes Medical Institute - (United States)

Anti-Inflammatory Chromatinscape Suggests Alternative Mechanisms of Glucocorticoid Receptor Action.

  • Oh KS
  • Immunity
  • 2017 Aug 15

Literature context:


Abstract:

Despite the widespread use of glucocorticoids (GCs), their anti-inflammatory effects are not understood mechanistically. Numerous investigations have examined the effects of glucocorticoid receptor (GR) activation prior to inflammatory challenges. However, clinical situations are emulated by a GC intervention initiated in the midst of rampant inflammatory responses. To characterize the effects of a late GC treatment, we profiled macrophage transcriptional and chromatinscapes with Dexamethasone (Dex) treatment before or after stimulation by lipopolysaccharide (LPS). The late activation of GR had a similar gene-expression profile as from GR pre-activation, while ameliorating the disruption of metabolic genes. Chromatin occupancy of GR was not predictive of Dex-regulated gene expression, contradicting the "trans-repression by tethering" model. Rather, GR activation resulted in genome-wide blockade of NF-κB interaction with chromatin and directly induced inhibitors of NF-κB and AP-1. Our investigation using GC treatments with clinically relevant timing highlights mechanisms underlying GR actions for modulating the "inflamed epigenome."

Funding information:
  • Intramural NIH HHS - ZIA AG000390-01()

A chemical screen in zebrafish embryonic cells establishes that Akt activation is required for neural crest development.

  • Ciarlo C
  • Elife
  • 2017 Aug 23

Literature context:


Abstract:

The neural crest is a dynamic progenitor cell population that arises at the border of neural and non-neural ectoderm. The inductive roles of FGF, Wnt, and BMP at the neural plate border are well established, but the signals required for subsequent neural crest development remain poorly characterized. Here, we conducted a screen in primary zebrafish embryo cultures for chemicals that disrupt neural crest development, as read out by crestin:EGFP expression. We found that the natural product caffeic acid phenethyl ester (CAPE) disrupts neural crest gene expression, migration, and melanocytic differentiation by reducing Sox10 activity. CAPE inhibits FGF-stimulated PI3K/Akt signaling, and neural crest defects in CAPE-treated embryos are suppressed by constitutively active Akt1. Inhibition of Akt activity by constitutively active PTEN similarly decreases crestin expression and Sox10 activity. Our study has identified Akt as a novel intracellular pathway required for neural crest differentiation.

Funding information:
  • NIGMS NIH HHS - GM069593(United States)

GATA Factor-Regulated Samd14 Enhancer Confers Red Blood Cell Regeneration and Survival in Severe Anemia.

  • Hewitt KJ
  • Dev. Cell
  • 2017 Aug 7

Literature context:


Abstract:

An enhancer with amalgamated E-box and GATA motifs (+9.5) controls expression of the regulator of hematopoiesis GATA-2. While similar GATA-2-occupied elements are common in the genome, occupancy does not predict function, and GATA-2-dependent genetic networks are incompletely defined. A "+9.5-like" element resides in an intron of Samd14 (Samd14-Enh) encoding a sterile alpha motif (SAM) domain protein. Deletion of Samd14-Enh in mice strongly decreased Samd14 expression in bone marrow and spleen. Although steady-state hematopoiesis was normal, Samd14-Enh-/- mice died in response to severe anemia. Samd14-Enh stimulated stem cell factor/c-Kit signaling, which promotes erythrocyte regeneration. Anemia activated Samd14-Enh by inducing enhancer components and enhancer chromatin accessibility. Thus, a GATA-2/anemia-regulated enhancer controls expression of an SAM domain protein that confers survival in anemia. We propose that Samd14-Enh and an ensemble of anemia-responsive enhancers are essential for erythrocyte regeneration in stress erythropoiesis, a vital process in pathologies, including β-thalassemia, myelodysplastic syndrome, and viral infection.

Funding information:
  • NIDDK NIH HHS - R01 DK050107()
  • NIDDK NIH HHS - R01 DK068634()

Neurodegenerative effects of azithromycin in differentiated PC12 cells.

  • Waetzig V
  • Eur. J. Pharmacol.
  • 2017 Aug 15

Literature context:


Abstract:

Azithromycin is a widely used macrolide antibiotic with sustained and high tissue penetration and intracellular accumulation. While short-term exposure to low-dose azithromycin is usually well tolerated, prolonged treatment can lead to unwanted neurological effects like paresthesia and hearing loss. However, the mechanism causing neurodegeneration is still unknown. Here, we show that even low therapeutically relevant azithromycin concentrations like 1µg/ml decreased cell viability by 15% and induced neurite loss of 47% after 96h in differentiated PC12 cells, which are a well-established model system for neuronal cells. When higher concentrations were used, the drug-induced effects occurred earlier and were more pronounced. Thereby, azithromycin altered tropomyosin-related kinase A (TrkA) signaling and attenuated protein kinase B (Akt) activity, which subsequently induced autophagy. Simultaneously, the antibiotic impaired lysosomal functions by blocking the autophagic flux, and this concurrence reduced cell viability. In good agreement with reversible effects observed in patients, PC12 cells could completely recover if azithromycin was removed after 24h. In addition, the detrimental effects of azithromycin were limited to differentiated cells, as confirmed in the human neuronal model cell line SH-SY5Y. Thus, azithromycin alters cell surface receptor signaling and autophagy in neuronal cells, but does not automatically induce irreversible damage when used in low concentrations and for a short time.

Heparan sulfate alterations in extracellular matrix structures and fibroblast growth factor-2 signaling impairment in the aged neurogenic niche.

  • Yamada T
  • J. Neurochem.
  • 2017 Aug 26

Literature context:


Abstract:

Adult neurogenesis in the subventricular zone of the lateral ventricle decreases with age. In the subventricular zone, the specialized extracellular matrix structures, known as fractones, contact neural stem cells and regulate neurogenesis. Fractones are composed of extracellular matrix components, such as heparan sulfate proteoglycans. We previously found that fractones capture and store fibroblast growth factor 2 (FGF-2) via heparan sulfate binding, and may deliver FGF-2 to neural stem cells in a timely manner. The heparan sulfate (HS) chains in the fractones of the aged subventricular zone are modified based on immunohistochemistry. However, how aging affects fractone composition and subsequent FGF-2 signaling and neurogenesis remains unknown. The formation of the FGF-fibroblast growth factor receptor-HS complex is necessary to activate FGF-2 signaling and induce the phosphorylation of extracellular signal-regulated kinase (Erk1/2). In this study, we observed a reduction in HS 6-O-sulfation, which is critical for FGF-2 signal transduction, and failure of the FGF-2-induced phosphorylation of Erk1/2 in the aged subventricular zone. In addition, we observed increased HS 6-O-endo-sulfatase, an enzyme that may be responsible for the HS modifications in aged fractones. In conclusion, the data revealed that heparan sulfate 6-O-sulfation is reduced and FGF-2-dependent Erk1/2 signaling is impaired in the aged subventricular zone. HS modifications in fractones might play a role in the reduced neurogenic activity in aging brains.

Stabilization of the c-Myc Protein by CAMKIIγ Promotes T Cell Lymphoma.

  • Gu Y
  • Cancer Cell
  • 2017 Jul 10

Literature context:


Abstract:

Although high c-Myc protein expression is observed alongside MYC amplification in some cancers, in most cases protein overexpression occurs in the absence of gene amplification, e.g., T cell lymphoma (TCL). Here, Ca2+/calmodulin-dependent protein kinase II γ (CAMKIIγ) was shown to stabilize the c-Myc protein by directly phosphorylating it at serine 62 (S62). Furthermore, CAMKIIγ was shown to be essential for tumor maintenance. Inhibition of CAMKIIγ with a specific inhibitor destabilized c-Myc and reduced tumor burden. Importantly, high CAMKIIγ levels in patient TCL specimens correlate with increased c-Myc and pS62-c-Myc levels. Together, the CAMKIIγ:c-Myc axis critically influences the development and maintenance of TCL and represents a potential therapeutic target for TCL.

Purinergic receptor P2Y6 contributes to 1-methyl-4-phenylpyridinium-induced oxidative stress and cell death in neuronal SH-SY5Y cells.

  • Qian Y
  • J. Neurosci. Res.
  • 2017 Jul 29

Literature context:


Abstract:

Oxidative stress and neural degeneration have been shown to be involved in the pathogenesis of Parkinson's disease (PD). The P2Y6 purinergic receptor (P2Y6R) has been shown to participate in the activation of microglia and the production of pro-inflammatory factors induced by lipopolysaccharide to cause neuronal loss. However, the function of P2Y6R during oxidative stress in neurons is unclear. In the present study, 1-methyl-4-phenylpyridinium (MPP+ ) treatment increased the level of UDP/P2Y6R on neuronal SH-SY5Y cells. Importantly, pharmacological inhibition of P2Y6R or knockdown of P2Y6R using a siRNA exerted an increased protective effect by preventing MPP+ -induced increases in the levels of reactive oxygen species (ROS), superoxide anion, inducible nitric oxide synthase (iNOS), and malondialdehyde (MDA) and down-regulation of superoxide dismutase 1 (SOD1) expression. UDP, an agonist of P2Y6R, enhanced the effects of MPP+ , which was also inhibited by apyrase or MRS2578. Additionally, P2Y6R knockdown also significantly reversed both the loss of cell viability and the increase in the levels of phosphorylated extracellular signal-regulated protein kinase (p-ERK1/2) and p38 (p-p38) caused by MPP+ stimulation. However, the inhibition of the ERK1/2 and p38 kinase signaling pathways had no effect on P2Y6R expression. Taken together, these results support the hypothesis that P2Y6R expressed on neuronal SH-SY5Y cell is associated with the progression of oxidative stress and cell death induced by MPP+ , suggesting that P2Y6R may play an important role in the pathogenesis of PD.

Reg2 Expression Is Required for Pancreatic Islet Compensation in Response to Aging and High-Fat Diet-Induced Obesity.

  • Li Q
  • Endocrinology
  • 2017 Jun 1

Literature context:


Abstract:

Maintaining pancreatic β-cell mass and function is essential for normal insulin production and glucose homeostasis. Regenerating islet-derived 2 (Reg2, Reg II, human ortholog Reg1B) gene is normally expressed in pancreatic acinar cells and is significantly induced in response to diabetes, pancreatitis, and high-fat diet (HFD) and during pancreatic regeneration. To evaluate the role of endogenous Reg2 production in normal β-cell function, we characterized Reg2 gene-deficient (Reg2-/-) mice under normal conditions and when subjected to several pathological challenges. At a young age, Reg2 gene deficiency caused no obvious change in normal islet morphology or glucose tolerance. There was no change in the severity of streptozotocin-induced diabetes or caerulein-induced acute pancreatitis in the Reg2-/- mice, indicating that the increased Reg2 expression under those conditions was not essential to protect the islet or acinar cells. However, 13- to 14-month-old Reg2-/- mice developed glucose intolerance associated with significantly decreased islet β-cell ratio and serum insulin level. Similarly, after young mice were fed an HFD for 19 weeks, diminished islet mass expansion and serum insulin level were observed in Reg2-/- vs wild-type mice. This was associated with a decline in the rate of individual β-cell proliferation measured by Ki67 labeling. In both conditions, the β-cells were smaller in gene-deficient vs wild-type mice. Our results indicate that normal expression of Reg2 gene is required for appropriate compensations in pancreatic islet proliferation and expansion in response to obesity and aging.

Characterization of Ovarian Responses to Equine Chorionic Gonadotropin of Aromatase-Deficient Mice With or Without 17β-Estradiol Supplementation.

  • Toda K
  • Endocrinology
  • 2017 Jun 5

Literature context:


Abstract:

Aromatase is an enzyme catalyzing the final step of 17β-estradiol (E2) biosynthesis. Aromatase-deficient (ArKO) mice displayed vital roles of E2 at various tissue sites, including ovary. Here, we report attenuated responses of ArKO ovary to equine chorionic gonadotropin (eCG), an alternative to FSH. Ovarian contents of cAMP and anti-Müllerian hormone (AMH), putative factors reducing sensitivity to gonadotropins, were significantly elevated in ArKO mice compared with those in wild type (WT) mice in the basal state. Accordingly, eCG-induced ovarian alterations in cAMP contents, phosphorylation levels of signaling molecules, and mRNA expression of eCG-targeted genes were blunted in ArKO mice compared with those in WT mice. Treatment of ArKO mice with E2 decreased ovarian cAMP and AMH contents to the WT levels but did not restore the sensitivity. Microarray analysis coupled with quantitative RT-PCR analysis identified 7 genes of which the mRNA expression levels in ArKO ovaries were significantly different from those in the WT ovaries in the basal state and were not normalized by E2 supplementation, indicating possible involvement of these gene products in the determination of ovarian sensitivity to eCG. Thus, present analyses revealed that estrogen deficiency attenuates sensitivity of the ovary to gonadotropin, which might be associated with alterations in the ovarian contents of multiple molecules including cAMP and AMH. Given the importance of the ovarian responses to gonadotropins in reproductive function, detailed knowledge about the underlying mechanisms of abnormalities in the ArKO ovary might help to develop potential targets for infertility treatments.

Funding information:
  • NICHD NIH HHS - R01 HD073179(United States)

Short-Chain Fatty Acid Acetate Stimulates Adipogenesis and Mitochondrial Biogenesis via GPR43 in Brown Adipocytes.

  • Hu J
  • Endocrinology
  • 2017 Jun 5

Literature context:


Abstract:

Short-chain fatty acids play crucial roles in a range of physiological functions. However, the effects of short-chain fatty acids on brown adipose tissue have not been fully investigated. We examined the role of acetate, a short-chain fatty acid formed by fermentation in the gut, in the regulation of brown adipocyte metabolism. Our results show that acetate up-regulates adipocyte protein 2, peroxisomal proliferator-activated receptor-γ coactivator-1α, and uncoupling protein-1 expression and affects the morphological changes of brown adipocytes during adipogenesis. Moreover, an increase in mitochondrial biogenesis was observed after acetate treatment. Acetate also elicited the activation of ERK and cAMP response element-binding protein, and these responses were sensitive to G(i/o)-type G protein inactivator, Gβγ-subunit inhibitor, phospholipase C inhibitor, and MAPK kinase inhibitor, indicating a role for the G(i/o)βγ/phospholipase C/protein kinase C/MAPK kinase signaling pathway in these responses. These effects of acetate were mimicked by treatment with 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide, a synthetic G protein-coupled receptor 43 (GPR43) agonist and were impaired in GPR43 knockdown cells. Taken together, our results indicate that acetate may have important physiological roles in brown adipocytes through the activation of GPR43.

Funding information:
  • NIA NIH HHS - R01AG033605(United States)
  • NIGMS NIH HHS - R35 GM118110(United States)

Long-Term Exposure of Pancreatic β-Cells to Palmitate Results in SREBP-1C-Dependent Decreases in GLP-1 Receptor Signaling via CREB and AKT and Insulin Secretory Response.

  • Natalicchio A
  • Endocrinology
  • 2017 Jun 5

Literature context:


Abstract:

The effects of prolonged exposure of pancreatic β-cells to high saturated fatty acids on glucagon-like peptide-1 (GLP-1) action were investigated. Murine islets, human pancreatic 1.1B4 cells, and rat INS-1E cells were exposed to palmitate for 24 hours. mRNA and protein expression/phosphorylation were measured by real-time RT-PCR and immunoblotting, respectively. Specific short interfering RNAs were used to knockdown expression of the GLP-1 receptor (Glp1r) and Srebf1. Insulin release was assessed with a specific ELISA. Exposure of murine islets, as well as of human and INS-1E β-cells, to palmitate reduced the ability of exendin-4 to augment insulin mRNA levels, protein content, and release. In addition, palmitate blocked exendin-4-stimulated cAMP-response element-binding protein and v-akt murine thymoma viral oncogene homolog phosphorylation, whereas phosphorylation of MAPK-ERK kinase-1/2 and ERK-1/2 was not altered. Similarly, RNA interference-mediated suppression of Glp1r expression prevented exendin-4-induced cAMP-response element-binding protein and v-akt murine thymoma viral oncogene homolog phosphorylation, but did not impair exendin-4 stimulation of MAPK-ERK kinase-1/2 and ERK-1/2. Both islets from mice fed a high fat diet and human and INS-1E β-cells exposed to palmitate showed reduced GLP-1 receptor and pancreatic duodenal homeobox-1 (PDX-1) and increased sterol regulatory element-binding protein (SREBP-1C) mRNA and protein levels. Furthermore, suppression of SREBP-1C protein expression prevented the reduction of PDX-1 and GLP-1 receptor levels and restored exendin-4 signaling and action. Finally, treatment of INS-1E cells with metformin for 24 h resulted in inhibition of SREBP-1C expression, increased PDX-1 and GLP-1 receptor levels, consequently, enhancement of exendin-4-induced insulin release. Palmitate impairs exendin-4 effects on β-cells by reducing PDX-1 and GLP-1 receptor expression and signaling in a SREBP-1C-dependent manner. Metformin counteracts the impairment of GLP-1 receptor signaling induced by palmitate.

Funding information:
  • NIMH NIH HHS - R01 MH066332(United States)

Follistatin Targets Distinct Pathways To Promote Brown Adipocyte Characteristics in Brown and White Adipose Tissues.

  • Singh R
  • Endocrinology
  • 2017 May 1

Literature context:


Abstract:

We previously demonstrated that Fst expression is highest in brown adipose tissue (BAT) and skeletal muscle, but is also present at substantial levels in epididymal and subcutaneous white adipose tissues (WATs). Fst promotes mouse brown preadipocyte differentiation and promotes browning during differentiation of mouse embryonic fibroblasts. Fst-transgenic (Fst-Tg) mice show substantial increases in circulating Fst levels and increased brown adipose mass. BAT of Fst-Tg mice had increased expression of brown adipose-associated markers including uncoupling protein 1 (UCP1), PRDM16, PGC-1α, and Glut4. WATs from Fst-Tg mice show upregulation of brown/beige adipose markers and significantly increased levels of phosphorylated p38 MAPK/ERK1/2 proteins compared with the wild-type (WT) mice. Pharmacological inhibition of pp38 MAPK/pERK1/2 pathway of recombinant mouse Fst (rFst) treated differentiating 3T3-L1 cells led to significant blockade of Fst-induced UCP1 protein expression. On the other hand, BAT from Fst-Tg mice or differentiating mouse BAT cells treated with rFst show dramatic increase in Myf5 protein levels as well as upregulation of Zic1 and Lhx8 gene expression. Myf5 levels were significantly downregulated in Fst knock-out embryos and small inhibitory RNA-mediated inhibition of Myf5 led to significant inhibition of UCP1, Lhx8, and Zic1 gene expression and significant blockade of Fst-induced induction of UCP1 protein expression in mouse BAT cells. Both interscapular BAT and WAT tissues from Fst-Tg mice display enhanced response to CL316,243 treatment and decreased expression of pSmad3 compared with the WT mice. Therefore, our results indicate that Fst promotes brown adipocyte characteristics in both WAT and BAT depots in vivo through distinct mechanisms.

Funding information:
  • NIA NIH HHS - SC1 AG049682()
  • NIMHD NIH HHS - S21 MD000103()
  • NIMHD NIH HHS - U54 MD007598()

Cardiac Tissue Injury and Remodeling Is Dependent Upon MR Regulation of Activation Pathways in Cardiac Tissue Macrophages.

  • Shen JZ
  • Endocrinology
  • 2017 May 31

Literature context:


Abstract:

Macrophage mineralocorticoid receptor (MR) signaling is an important mediator of cardiac tissue inflammation and fibrosis. The goal of the present study was to determine the cellular mechanisms of MR signaling in macrophages that promote cardiac tissue injury and remodeling. We sought to identify specific markers of MR signaling in isolated tissue macrophages (cardiac, aortic) vs splenic mononuclear cells from wild-type and myeloid MR-null mice given vehicle/salt or deoxycorticosterone (DOC)/salt for 8 weeks. Cardiac tissue fibrosis in response to 8 weeks of DOC/salt treatment was found in the hearts from wild-type but not myeloid MR-null mice. This was associated with an increased expression of the profibrotic markers TGF-β1 and matrix metalloproteinase-12 and type 1 inflammatory markers TNFα and chemokine (C-X-C motif) ligand-9 in cardiac macrophages. Differential expression of immunomodulatory M2-like markers (eg, arginase-1, macrophage scavenger receptor 1) was dependent on the tissue location of wild-type and MR-null macrophages. Finally, intact MR signaling is required for the phosphorylation of c-Jun NH2-terminal kinase in response to a proinflammatory stimulus in bone marrow monocytes/macrophages in culture. These data suggest that the activation of the c-Jun NH2-terminal kinase pathway in macrophages after a tissue injury and inflammatory stimuli in the DOC/salt model is MR dependent and regulates the transcription of downstream profibrotic factors, which may represent potential therapeutic targets in heart failure patients.

Funding information:
  • NCI NIH HHS - CA163640(United States)
  • NIA NIH HHS - P01 AG009975(United States)

The Sec14-like phosphatidylinositol transfer proteins Sec14l3/SEC14L2 act as GTPase proteins to mediate Wnt/Ca2+ signaling.

  • Gong B
  • Elife
  • 2017 May 2

Literature context:


Abstract:

The non-canonical Wnt/Ca2+ signaling pathway plays important roles in embryonic development, tissue formation and diseases. However, it is unclear how the Wnt ligand-stimulated, G protein-coupled receptor Frizzled activates phospholipases for calcium release. Here, we report that the zebrafish/human phosphatidylinositol transfer protein Sec14l3/SEC14L2 act as GTPase proteins to transduce Wnt signals from Frizzled to phospholipase C (PLC). Depletion of sec14l3 attenuates Wnt/Ca2+ responsive activity and causes convergent and extension (CE) defects in zebrafish embryos. Biochemical analyses in mammalian cells indicate that Sec14l3-GDP forms complex with Frizzled and Dishevelled; Wnt ligand binding of Frizzled induces translocation of Sec14l3 to the plasma membrane; and then Sec14l3-GTP binds to and activates phospholipase Cδ4a (Plcδ4a); subsequently, Plcδ4a initiates phosphatidylinositol-4,5-bisphosphate (PIP2) signaling, ultimately stimulating calcium release. Furthermore, Plcδ4a can act as a GTPase-activating protein to accelerate the hydrolysis of Sec14l3-bound GTP to GDP. Our data provide a new insight into GTPase protein-coupled Wnt/Ca2+ signaling transduction.

Inhibition of Hematopoietic Cell Kinase Activity Suppresses Myeloid Cell-Mediated Colon Cancer Progression.

  • Poh AR
  • Cancer Cell
  • 2017 Apr 10

Literature context:


Abstract:

Aberrant activation of the SRC family kinase hematopoietic cell kinase (HCK) triggers hematological malignancies as a tumor cell-intrinsic oncogene. Here we find that high HCK levels correlate with reduced survival of colorectal cancer patients. Likewise, increased Hck activity in mice promotes the growth of endogenous colonic malignancies and of human colorectal cancer cell xenografts. Furthermore, tumor-associated macrophages of the corresponding tumors show a pronounced alternatively activated endotype, which occurs independently of mature lymphocytes or of Stat6-dependent Th2 cytokine signaling. Accordingly, pharmacological inhibition or genetic reduction of Hck activity suppresses alternative activation of tumor-associated macrophages and the growth of colon cancer xenografts. Thus, Hck may serve as a promising therapeutic target for solid malignancies.

Funding information:
  • NIAID NIH HHS - R01 AI065495()
  • NIAID NIH HHS - R01 AI068150()

FGF21 Regulates Metabolism Through Adipose-Dependent and -Independent Mechanisms.

  • BonDurant LD
  • Cell Metab.
  • 2017 Apr 4

Literature context:


Abstract:

FGF21 is an endocrine hormone that regulates energy homeostasis and insulin sensitivity. The mechanism of FGF21 action and the tissues responsible for these effects have been controversial, with both adipose tissues and the central nervous system having been identified as the target site mediating FGF21-dependent increases in insulin sensitivity, energy expenditure, and weight loss. Here we show that, while FGF21 signaling to adipose tissue is required for the acute insulin-sensitizing effects of FGF21, FGF21 signaling to adipose tissue is not required for its chronic effects to increase energy expenditure and lower body weight. Also, in contrast to previous studies, we found that adiponectin is dispensable for the metabolic effects of FGF21 in increasing insulin sensitivity and energy expenditure. Instead, FGF21 acutely enhances insulin sensitivity through actions on brown adipose tissue. Our data reveal that the acute and chronic effects of FGF21 can be dissociated through adipose-dependent and -independent mechanisms.

Funding information:
  • NHLBI NIH HHS - R01 HL111190()
  • NIDDK NIH HHS - K01 DK111758()
  • NIDDK NIH HHS - R01 DK106104()
  • NIGMS NIH HHS - T32 GM067795()

Multidimensional Tracking of GPCR Signaling via Peroxidase-Catalyzed Proximity Labeling.

  • Paek J
  • Cell
  • 2017 Apr 6

Literature context:


Abstract:

G-protein-coupled receptors (GPCRs) play critical roles in regulating physiological processes ranging from neurotransmission to cardiovascular function. Current methods for tracking GPCR signaling suffer from low throughput, modification or overexpression of effector proteins, and low temporal resolution. Here, we show that peroxidase-catalyzed proximity labeling can be combined with isobaric tagging and mass spectrometry to enable quantitative, time-resolved measurement of GPCR agonist response in living cells. Using this technique, termed "GPCR-APEX," we track activation and internalization of the angiotensin II type 1 receptor and the β2 adrenoceptor. These receptors co-localize with a variety of G proteins even before receptor activation, and activated receptors are largely sequestered from G proteins upon internalization. Additionally, the two receptors show differing internalization kinetics, and we identify the membrane protein LMBRD2 as a potential regulator of β2 adrenoceptor signaling, underscoring the value of a dynamic view of receptor function.

Funding information:
  • NHGRI NIH HHS - U41 HG006673()
  • NHLBI NIH HHS - R01 HL016037()
  • NIDDK NIH HHS - K01 DK098285()
  • NIH HHS - DP5 OD021345()

A DNA-Based T Cell Receptor Reveals a Role for Receptor Clustering in Ligand Discrimination.

  • Taylor MJ
  • Cell
  • 2017 Mar 23

Literature context:


Abstract:

A T cell mounts an immune response by measuring the binding strength of its T cell receptor (TCR) for peptide-loaded MHCs (pMHC) on an antigen-presenting cell. How T cells convert the lifetime of the extracellular TCR-pMHC interaction into an intracellular signal remains unknown. Here, we developed a synthetic signaling system in which the extracellular domains of the TCR and pMHC were replaced with short hybridizing strands of DNA. Remarkably, T cells can discriminate between DNA ligands differing by a single base pair. Single-molecule imaging reveals that signaling is initiated when single ligand-bound receptors are converted into clusters, a time-dependent process requiring ligands with longer bound times. A computation model reveals that receptor clustering serves a kinetic proofreading function, enabling ligands with longer bound times to have disproportionally greater signaling outputs. These results suggest that spatial reorganization of receptors plays an important role in ligand discrimination in T cell signaling.

The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration.

  • Xiong G
  • Elife
  • 2017 Mar 23

Literature context:


Abstract:

Regeneration of skeletal muscle in adults is mediated by satellite stem cells. Accumulation of misfolded proteins triggers endoplasmic reticulum stress that leads to unfolded protein response (UPR). The UPR is relayed to the cell through the activation of PERK, IRE1/XBP1, and ATF6. Here, we demonstrate that levels of PERK and IRE1 are increased in satellite cells upon muscle injury. Inhibition of PERK, but not the IRE1 arm of the UPR in satellite cells inhibits myofiber regeneration in adult mice. PERK is essential for the survival and differentiation of activated satellite cells into the myogenic lineage. Deletion of PERK causes hyper-activation of p38 MAPK during myogenesis. Blocking p38 MAPK activity improves the survival and differentiation of PERK-deficient satellite cells in vitro and muscle formation in vivo. Collectively, our results suggest that the PERK arm of the UPR plays a pivotal role in the regulation of satellite cell homeostasis during regenerative myogenesis.

Funding information:
  • NIA NIH HHS - R01 AG029623()
  • NIAMS NIH HHS - R01 AR059810()
  • NIAMS NIH HHS - R01 AR068313()

Intra-prelimbic cortical inhibition of striatal-enriched tyrosine phosphatase suppresses cocaine seeking in rats.

  • Siemsen BM
  • Addict Biol
  • 2017 Mar 30

Literature context:


Abstract:

Cocaine self-administration in rats results in dysfunctional neuroadaptations in the prelimbic (PrL) cortex during early abstinence. Central to these adaptations is decreased phospho-extracellular signal-regulated kinase (p-ERK), which plays a key role in cocaine seeking. Normalizing ERK phosphorylation in the PrL cortex immediately after cocaine self-administration decreases subsequent cocaine seeking. The disturbance in ERK phosphorylation is accompanied by decreased phosphorylation of striatal-enriched protein tyrosine phosphatase (STEP), indicating increased STEP activity. STEP is a well-recognized ERK phosphatase but whether STEP activation during early abstinence mediates the decrease in p-ERK and is involved in relapse is unknown. Here, we show that a single intra-PrL cortical microinfusion of the selective STEP inhibitor, TC-2153, immediately after self-administration suppressed post-abstinence context-induced relapse under extinction conditions and cue-induced reinstatement, but not cocaine prime-induced drug seeking or sucrose seeking. Moreover, an intra-PrL cortical TC-2153 microinfusion immediately after self-administration prevented the cocaine-induced decrease in p-ERK within the PrL cortex during early abstinence. Interestingly, a systemic TC-2153 injection at the same timepoint failed to suppress post-abstinence context-induced relapse or cue-induced reinstatement, but did suppress cocaine prime-induced reinstatement. These data indicate that the STEP-induced ERK dephosphorylation in the PrL cortex during early abstinence is a critical neuroadaptation that promotes relapse to cocaine seeking and that systemic versus intra-PrL cortical inhibition of STEP during early abstinence differentially suppresses cocaine seeking.

Funding information:
  • NIDA NIH HHS - R01 DA033479()
  • NIDA NIH HHS - T32 DA007288()

EGFR Induces E2F1-Mediated Corticotroph Tumorigenesis.

  • Araki T
  • J Endocr Soc
  • 2017 Feb 1

Literature context:


Abstract:

The epidermal growth factor receptor (EGFR), expressed in adrenocorticotrophic hormone (ACTH)-secreting pituitary adenomas causing Cushing disease, regulates ACTH production and corticotroph proliferation. To elucidate the utility of EGFR as a therapeutic target for Cushing disease, we generated transgenic (Tg) mice with corticotroph-specific human EGFR expression (corti-EGFR-Tg) using a newly constructed corticotroph-specific promoter. Pituitary-specific EGFR expression was observed by 2.5 months, and aggressive ACTH-secreting pituitary adenomas with features of Crooke's cells developed by 8 months with 65% penetrance observed. Features consistent with the Cushing phenotype included elevated plasma ACTH and corticosterone levels, increased body weight, glucose intolerance, and enlarged adrenal cortex. Gefitinib, an EGFR tyrosine kinase inhibitor, suppressed tumor POMC expression and downstream EGFR tumor signaling, and ACTH and corticosterone levels were attenuated by 80% and 78%, respectively. Both E2F1 and phosphorylated Ser-337 E2F1 were increased in corti-EGFR-Tg mice and also colocalized with human POMC (hPOMC) in human pituitary corticotroph tumor samples. EGFR inhibition reversed E2F1 activity in vivo, whereas E2F1 inhibition suppressed POMC and ACTH in cultured human pituitary tumor cells. The corti-EGFR-Tg phenotype recapitulates ACTH-secreting pituitary adenomas and Cushing disease, validating the relevance of EGFR to corticotroph tumorigenesis. E2F1 is identified as a promising corticotroph-specific target for ACTH-dependent Cushing disease.

Funding information:
  • Canadian Institutes of Health Research - (Canada)

Multivalent Small-Molecule Pan-RAS Inhibitors.

  • Welsch ME
  • Cell
  • 2017 Feb 23

Literature context:


Abstract:

Design of small molecules that disrupt protein-protein interactions, including the interaction of RAS proteins and their effectors, may provide chemical probes and therapeutic agents. We describe here the synthesis and testing of potential small-molecule pan-RAS ligands, which were designed to interact with adjacent sites on the surface of oncogenic KRAS. One compound, termed 3144, was found to bind to RAS proteins using microscale thermophoresis, nuclear magnetic resonance spectroscopy, and isothermal titration calorimetry and to exhibit lethality in cells partially dependent on expression of RAS proteins. This compound was metabolically stable in liver microsomes and displayed anti-tumor activity in xenograft mouse cancer models. These findings suggest that pan-RAS inhibition may be an effective therapeutic strategy for some cancers and that structure-based design of small molecules targeting multiple adjacent sites to create multivalent inhibitors may be effective for some proteins.

Funding information:
  • NCI NIH HHS - R01 CA097061()
  • NCI NIH HHS - R01 CA161061()
  • NCRR NIH HHS - S10 RR025431()
  • NIGMS NIH HHS - P41 GM111244()
  • NIGMS NIH HHS - R01 GM085081()
  • NIGMS NIH HHS - T32 GM008281()
  • NIH HHS - S10 OD012018()

A Rapid Induction Mechanism for Lin28a in Trophic Responses.

  • Amen AM
  • Mol. Cell
  • 2017 Feb 2

Literature context:


Abstract:

Environmental cues provoke rapid transitions in gene expression to support growth and cellular plasticity through incompletely understood mechanisms. Lin28 RNA-binding proteins have evolutionarily conserved roles in post-transcriptional coordination of pro-growth gene expression, but signaling pathways allowing trophic stimuli to induce Lin28 have remained uncharacterized. We find that Lin28a protein exhibits rapid basal turnover in neurons and that mitogen-activated protein kinase (MAPK)-dependent phosphorylation of the RNA-silencing factor HIV TAR-RNA-binding protein (TRBP) promotes binding and stabilization of Lin28a, but not Lin28b, with an accompanying reduction in Lin28-regulated miRNAs, downstream of brain-derived neurotrophic factor (BDNF). Binding of Lin28a to TRBP in vitro is also enhanced by phospho-mimic TRBP. Further, phospho-TRBP recapitulates BDNF-induced neuronal dendritic spine growth in a Lin28a-dependent manner. Finally, we demonstrate MAPK-dependent TRBP and Lin28a induction, with physiological function in growth and survival, downstream of diverse growth factors in multiple primary cell types, supporting a broad role for this pathway in trophic responses.

Funding information:
  • NIMH NIH HHS - F31 MH103902()
  • NIMH NIH HHS - R01 MH098016()
  • NIMH NIH HHS - R01 MH109341()

YOD1/TRAF6 association balances p62-dependent IL-1 signaling to NF-κB.

  • Schimmack G
  • Elife
  • 2017 Feb 28

Literature context:


Abstract:

The ubiquitin ligase TRAF6 is a key regulator of canonical IκB kinase (IKK)/NF-κB signaling in response to interleukin-1 (IL-1) stimulation. Here, we identified the deubiquitinating enzyme YOD1 (OTUD2) as a novel interactor of TRAF6 in human cells. YOD1 binds to the C-terminal TRAF homology domain of TRAF6 that also serves as the interaction surface for the adaptor p62/Sequestosome-1, which is required for IL-1 signaling to NF-κB. We show that YOD1 competes with p62 for TRAF6 association and abolishes the sequestration of TRAF6 to cytosolic p62 aggregates by a non-catalytic mechanism. YOD1 associates with TRAF6 in unstimulated cells but is released upon IL-1β stimulation, thereby facilitating TRAF6 auto-ubiquitination as well as NEMO/IKKγ substrate ubiquitination. Further, IL-1 triggered IKK/NF-κB signaling and induction of target genes is decreased by YOD1 overexpression and augmented after YOD1 depletion. Hence, our data define that YOD1 antagonizes TRAF6/p62-dependent IL-1 signaling to NF-κB.

TREM2 Promotes Microglial Survival by Activating Wnt/β-Catenin Pathway.

  • Zheng H
  • J. Neurosci.
  • 2017 Feb 15

Literature context:


Abstract:

Triggering Receptor Expressed on Myeloid cells 2 (TREM2), which is expressed on myeloid cells including microglia in the CNS, has recently been identified as a risk factor for Alzheimer's disease (AD). TREM2 transmits intracellular signals through its transmembrane binding partner DNAX-activating protein 12 (DAP12). Homozygous mutations inactivating TREM2 or DAP12 lead to Nasu-Hakola disease; however, how AD risk-conferring variants increase AD risk is not clear. To elucidate the signaling pathways underlying reduced TREM2 expression or loss of function in microglia, we respectively knocked down and knocked out the expression of TREM2 in in vitro and in vivo models. We found that TREM2 deficiency reduced the viability and proliferation of primary microglia, reduced microgliosis in Trem2-/- mouse brains, induced cell cycle arrest at the G1/S checkpoint, and decreased the stability of β-catenin, a key component of the canonical Wnt signaling pathway responsible for maintaining many biological processes, including cell survival. TREM2 stabilized β-catenin by inhibiting its degradation via the Akt/GSK3β signaling pathway. More importantly, treatment with Wnt3a, LiCl, or TDZD-8, which activates the β-catenin-mediated Wnt signaling pathway, rescued microglia survival and microgliosis in Trem2-/- microglia and/or in Trem2-/- mouse brain. Together, our studies demonstrate a critical role of TREM2-mediated Wnt/β-catenin pathway in microglial viability and suggest that modulating this pathway therapeutically may help to combat the impaired microglial survival and microgliosis associated with AD.SIGNIFICANCE STATEMENT Mutations in the TREM2 (Triggering Receptor Expressed on Myeloid cells 2) gene are associated with increased risk for Alzheimer's disease (AD) with effective sizes comparable to that of the apolipoprotein E (APOE) ε4 allele, making it imperative to understand the molecular pathway(s) underlying TREM2 function in microglia. Our findings shed new light on the relationship between TREM2/DNAX-activating protein 12 (DAP12) signaling and Wnt/β-catenin signaling and provide clues as to how reduced TREM2 function might impair microglial survival in AD pathogenesis. We demonstrate that TREM2 promotes microglial survival by activating the Wnt/β-catenin signaling pathway and that it is possible to restore Wnt/β-catenin signaling when TREM2 activity is disrupted or reduced. Therefore, we demonstrate the potential for manipulating the TREM2/β-catenin signaling pathway for the treatment of AD.

Funding information:
  • NIA NIH HHS - P50 AG016574()
  • NIA NIH HHS - R01 AG027924()
  • NIA NIH HHS - R01 AG035355()
  • NIA NIH HHS - R01 AG046205()
  • NINDS NIH HHS - P01 NS074969()

Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Pro-inflammatory "FADDosome" Complex upon TRAIL Stimulation.

  • Henry CM
  • Mol. Cell
  • 2017 Feb 16

Literature context:


Abstract:

TRAIL is a potent inducer of apoptosis and has been studied almost exclusively in this context. However, TRAIL can also induce NFκB-dependent expression of multiple pro-inflammatory cytokines and chemokines. Surprisingly, whereas inhibition of caspase activity blocked TRAIL-induced apoptosis, but not cytokine production, knock down or deletion of caspase-8 suppressed both outcomes, suggesting that caspase-8 participates in TRAIL-induced inflammatory signaling in a scaffold role. Consistent with this, introduction of a catalytically inactive caspase-8 mutant into CASP-8 null cells restored TRAIL-induced cytokine production, but not cell death. Furthermore, affinity precipitation of the native TRAIL receptor complex revealed that pro-caspase-8 was required for recruitment of RIPK1, via FADD, to promote NFκB activation and pro-inflammatory cytokine production downstream. Thus, caspase-8 can serve in two distinct roles in response to TRAIL receptor engagement, as a scaffold for assembly of a Caspase-8-FADD-RIPK1 "FADDosome" complex, leading to NFκB-dependent inflammation, or as a protease that promotes apoptosis.

Funding information:
  • Worldwide Cancer Research - 14-0323()

Promoted Interaction of C/EBPα with Demethylated Cxcr3 Gene Promoter Contributes to Neuropathic Pain in Mice.

  • Jiang BC
  • J. Neurosci.
  • 2017 Jan 18

Literature context:


Abstract:

DNA methylation has been implicated in the pathogenesis of chronic pain. However, the specific genes regulated by DNA methylation under neuropathic pain condition remain largely unknown. Here we investigated how chemokine receptor CXCR3 is regulated by DNA methylation and how it contributes to neuropathic pain induced by spinal nerve ligation (SNL) in mice. SNL increased Cxcr3 mRNA and protein expression in the neurons of the spinal cord. Meanwhile, the CpG (5'-cytosine-phosphate-guanine-3') island in the Cxcr3 gene promoter region was demethylated, and the expression of DNA methyltransferase 3b (DNMT3b) was decreased. SNL also increased the binding of CCAAT (cytidine-cytidine-adenosine-adenosine-thymidine)/enhancer binding protein α (C/EBPα) with Cxcr3 promoter and decreased the binding of DNMT3b with Cxcr3 promoter in the spinal cord. C/EBPα expression was increased in spinal neurons after SNL, and inhibition of C/EBPα by intrathecal small interfering RNA attenuated SNL-induced pain hypersensitivity and reduced Cxcr3 expression. Furthermore, SNL-induced mechanical allodynia and heat hyperalgesia were markedly reduced in Cxcr3-/- mice. Spinal inhibition of Cxcr3 by shRNA or CXCR3 antagonist also attenuated established neuropathic pain. Moreover, CXCL10, the ligand of CXCR3, was increased in spinal neurons and astrocytes after SNL. Superfusing spinal cord slices with CXCL10 enhanced spontaneous EPSCs and potentiated NMDA-induced and AMPA-induced currents of lamina II neurons. Finally, intrathecal injection of CXCL10 induced CXCR3-dependent pain hypersensitivity in naive mice. Collectively, our results demonstrated that CXCR3, increased by DNA demethylation and the enhanced interaction with C/EBPα, can be activated by CXCL10 to facilitate excitatory synaptic transmission and contribute to the maintenance of neuropathic pain. SIGNIFICANCE STATEMENT: Peripheral nerve injury induces changes of gene expression in the spinal cord that may contribute to the pathogenesis of neuropathic pain. CXCR3 is a chemokine receptor. Whether it is involved in neuropathic pain and how it is regulated after nerve injury remain largely unknown. Our study demonstrates that spinal nerve ligation downregulates the expression of DNMT3b, which may cause demethylation of Cxcr3 gene promoter and facilitate the binding of CCAAT/enhancer binding protein α with Cxcr3 promoter and further increase CXCR3 expression in spinal neurons. The upregulated CXCR3 may contribute to neuropathic pain by facilitating central sensitization. Our study reveals an epigenetic mechanism underlying CXCR3 expression and also suggests that targeting the expression or activation of CXCR3 signaling may offer new therapeutics for neuropathic pain.

Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors.

  • Mulcahy Levy JM
  • Elife
  • 2017 Jan 17

Literature context:


Abstract:

Kinase inhibitors are effective cancer therapies, but tumors frequently develop resistance. Current strategies to circumvent resistance target the same or parallel pathways. We report here that targeting a completely different process, autophagy, can overcome multiple BRAF inhibitor resistance mechanisms in brain tumors. BRAFV600Emutations occur in many pediatric brain tumors. We previously reported that these tumors are autophagy-dependent and a patient was successfully treated with the autophagy inhibitor chloroquine after failure of the BRAFV600E inhibitor vemurafenib, suggesting autophagy inhibition overcame the kinase inhibitor resistance. We tested this hypothesis in vemurafenib-resistant brain tumors. Genetic and pharmacological autophagy inhibition overcame molecularly distinct resistance mechanisms, inhibited tumor cell growth, and increased cell death. Patients with resistance had favorable clinical responses when chloroquine was added to vemurafenib. This provides a fundamentally different strategy to circumvent multiple mechanisms of kinase inhibitor resistance that could be rapidly tested in clinical trials in patients with BRAFV600E brain tumors.

Funding information:
  • NCI NIH HHS - K08 CA193982()
  • NCI NIH HHS - R01 CA150925()
  • NCI NIH HHS - R01 CA190170()

A Potential Role for Endoplasmic Reticulum Stress in Progesterone Deficiency in Obese Women.

  • Takahashi N
  • Endocrinology
  • 2017 Jan 1

Literature context:


Abstract:

Obesity in reproductive-aged women is associated with a shorter luteal phase and lower progesterone levels. Lipid accumulation in follicles of obese women compromises endoplasmic reticulum (ER) function, activating ER stress in granulosa cells. We hypothesized that ER stress activation in granulosa-lutein cells (GLCs) would modulate progesterone production and contribute to obesity-associated progesterone deficiency. Pretreatment with an ER stress inducer, tunicamycin or thapsigargin, inhibited human chorionic gonadotropin (hCG)-stimulated progesterone production in cultured human GLCs. Pretreatment of human GLCs with tunicamycin inhibited hCG-stimulated expression of steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) messenger RNAs (mRNAs) without affecting expression of cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), as determined by real-time quantitative polymerase chain reaction. Pretreatment with tunicamycin also inhibited hCG-stimulated expression of StAR protein and 3β-HSD enzyme activity in cultured human GLCs, as determined by Western blot analysis and an enzyme immunoassay, respectively, but did not affect hCG-induced intracellular 3',5'-cyclic adenosine monophosphate accumulation. Furthermore, tunicamycin attenuated hCG-induced protein kinase A and extracellular signal-regulated kinase activation, as determined by Western blot analysis. In vivo administration of tunicamycin to pregnant mare serum gonadotropin-treated immature mice prior to hCG treatment inhibited the hCG-stimulated increase in serum progesterone levels and hCG-induced expression of StAR and 3β-HSD mRNA in the ovary without affecting serum estradiol levels or the number of corpora lutea. Our findings indicate that ER stress in the follicles of obese women contributes to progesterone deficiency by inhibiting hCG-induced progesterone production in granulosa cells.

Funding information:
  • NIDDK NIH HHS - DK027627(United States)

Angiopoietin receptor Tie2 is required for vein specification and maintenance via regulating COUP-TFII.

  • Chu M
  • Elife
  • 2016 Dec 22

Literature context:


Abstract:

Mechanisms underlying the vein development remain largely unknown. Tie2 signaling mediates endothelial cell (EC) survival and vascular maturation and its activating mutations are linked to venous malformations. Here we show that vein formation are disrupted in mouse skin and mesentery when Tie2 signals are diminished by targeted deletion of Tek either ubiquitously or specifically in embryonic ECs. Postnatal Tie2 attenuation resulted in the degeneration of newly formed veins followed by the formation of haemangioma-like vascular tufts in retina and venous tortuosity. Mechanistically, Tie2 insufficiency compromised venous EC identity, as indicated by a significant decrease of COUP-TFII protein level, a key regulator in venogenesis. Consistently, angiopoietin-1 stimulation increased COUP-TFII in cultured ECs, while Tie2 knockdown or blockade of Tie2 downstream PI3K/Akt pathway reduced COUP-TFII which could be reverted by the proteasome inhibition. Together, our results imply that Tie2 is essential for venous specification and maintenance via Akt mediated stabilization of COUP-TFII.

Funding information:
  • NINDS NIH HHS - R01 NS062736(United States)
  • NINDS NIH HHS - R01 NS065020(United States)

Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening.

  • Verissimo CS
  • Elife
  • 2016 Nov 15

Literature context:


Abstract:

Colorectal cancer (CRC) organoids can be derived from almost all CRC patients and therefore capture the genetic diversity of this disease. We assembled a panel of CRC organoids carrying either wild-type or mutant RAS, as well as normal organoids and tumor organoids with a CRISPR-introduced oncogenic KRAS mutation. Using this panel, we evaluated RAS pathway inhibitors and drug combinations that are currently in clinical trial for RAS mutant cancers. Presence of mutant RAS correlated strongly with resistance to these targeted therapies. This was observed in tumorigenic as well as in normal organoids. Moreover, dual inhibition of the EGFR-MEK-ERK pathway in RAS mutant organoids induced a transient cell-cycle arrest rather than cell death. In vivo drug response of xenotransplanted RAS mutant organoids confirmed this growth arrest upon pan-HER/MEK combination therapy. Altogether, our studies demonstrate the potential of patient-derived CRC organoid libraries in evaluating inhibitors and drug combinations in a preclinical setting.

Funding information:
  • NIMH NIH HHS - MH-095972(United States)

Consolidation of Goal-Directed Action Depends on MAPK/ERK Signaling in Rodent Prelimbic Cortex.

  • Hart G
  • J. Neurosci.
  • 2016 Nov 23

Literature context:


Abstract:

The prelimbic prefrontal cortex (PL) has consistently been found to be necessary for the acquisition of goal-directed actions in rodents. Nevertheless, the specific cellular processes underlying this learning remain unknown. We assessed changes in learning-related expression of mitogen-activated protein kinase/extracellular signal-related kinase (MAPK/ERK1/2) phosphorylation (pERK) in layers 2-3 and 5-6 of the anterior and posterior PL and in the population of neurons projecting to posterior dorsomedial striatum (pDMS), also implicated in goal-directed learning. Rats were given either a single session of training to press a lever for a pellet reward or yoked reward deliveries without instrumental training and assessed 5 or 60 min after training for pERK expression. Relative to yoked training, instrumental training produced an increase in pERK expression in all regions of the PL both at 5 and 60 min, and this was accompanied by an increase in nuclear pERK expression in the posterior PL in rats given instrumental training. pDMS-projecting neurons showed a transient increase in pERK expression in posterior layer 5-6 projection neurons after 5 min, and a delayed increase in anterior layer 2-3 neurons after 60 min, suggesting that ERK expression in the PL is necessary for the consolidation of goal-directed learning. Consistent with this claim, we found that rats trained on two lever press actions for distinct outcomes and then infused with the MEK inhibitor PD98059 into the PL immediately after training failed to acquire specific action-outcome associations, suggesting that persistent pERK signaling in the PL is necessary for goal-directed learning. SIGNIFICANCE STATEMENT: The prelimbic cortex is implicated in goal-directed learning in rodents; however, it is unclear whether it is involved in the consolidation of this learning, and what cellular processes are involved. We used pERK as a marker of activity-related synaptic plasticity to assess learning-induced changes in distinct layers and neuronal populations of the prelimbic prefrontal cortex (PL). Training produced long-lasting upregulation of pERK throughout the PL and specifically within neurons that project to the pDMS, another region critical for goal-directed learning. Next, we demonstrated that pERK signaling in the PL was necessary for the consolidation of goal-directed learning. Together, these results indicate that instrumental training induces ERK signaling in distinct layers and populations in the PL and this signaling underlies the consolidation of goal-directed learning.

Funding information:
  • NCRR NIH HHS - C06 RR018928(United States)

Epigenetic Activation of WNT5A Drives Glioblastoma Stem Cell Differentiation and Invasive Growth.

  • Hu B
  • Cell
  • 2016 Nov 17

Literature context:


Abstract:

Glioblastoma stem cells (GSCs) are implicated in tumor neovascularization, invasiveness, and therapeutic resistance. To illuminate mechanisms governing these hallmark features, we developed a de novo glioblastoma multiforme (GBM) model derived from immortalized human neural stem/progenitor cells (hNSCs) to enable precise system-level comparisons of pre-malignant and oncogene-induced malignant states of NSCs. Integrated transcriptomic and epigenomic analyses uncovered a PAX6/DLX5 transcriptional program driving WNT5A-mediated GSC differentiation into endothelial-like cells (GdECs). GdECs recruit existing endothelial cells to promote peritumoral satellite lesions, which serve as a niche supporting the growth of invasive glioma cells away from the primary tumor. Clinical data reveal higher WNT5A and GdECs expression in peritumoral and recurrent GBMs relative to matched intratumoral and primary GBMs, respectively, supporting WNT5A-mediated GSC differentiation and invasive growth in disease recurrence. Thus, the PAX6/DLX5-WNT5A axis governs the diffuse spread of glioma cells throughout the brain parenchyma, contributing to the lethality of GBM.

Funding information:
  • NINDS NIH HHS - R56 NS094589(United States)

SIAH and EGFR, Two RAS Pathway Biomarkers, are Highly Prognostic in Locally Advanced and Metastatic Breast Cancer.

  • van Reesema LLS
  • EBioMedicine
  • 2016 Sep 29

Literature context:


Abstract:

BACKGROUND: Metastatic breast cancer exhibits diverse and rapidly evolving intra- and inter-tumor heterogeneity. Patients with similar clinical presentations often display distinct tumor responses to standard of care (SOC) therapies. Genome landscape studies indicate that EGFR/HER2/RAS "pathway" activation is highly prevalent in malignant breast cancers. The identification of therapy-responsive and prognostic biomarkers is paramount important to stratify patients and guide therapies in clinical oncology and personalized medicine. METHODS: In this study, we analyzed matched pairs of tumor specimens collected from 182 patients who received neoadjuvant systemic therapies (NST). Statistical analyses were conducted to determine whether EGFR/HER2/RAS pathway biomarkers and clinicopathological predictors, alone and in combination, are prognostic in breast cancer. FINDINGS: SIAH and EGFR outperform ER, PR, HER2 and Ki67 as two logical, sensitive and prognostic biomarkers in metastatic breast cancer. We found that increased SIAH and EGFR expression correlated with advanced pathological stage and aggressive molecular subtypes. Both SIAH expression post-NST and NST-induced changes in EGFR expression in invasive mammary tumors are associated with tumor regression and increased survival, whereas ER, PR, and HER2 were not. These results suggest that SIAH and EGFR are two prognostic biomarkers in breast cancer with lymph node metastases. INTERPRETATION: The discovery of incorporating tumor heterogeneity-independent and growth-sensitive RAS pathway biomarkers, SIAH and EGFR, whose altered expression can be used to estimate therapeutic efficacy, detect emergence of resistant clones, forecast tumor regression, differentiate among partial responders, and predict patient survival in the neoadjuvant setting, has a clear clinical implication in personalizing breast cancer therapy. FUNDING: This work was supported by the Dorothy G. Hoefer Foundation for Breast Cancer Research (A.H. Tang); Center for Innovative Technology (CIT)-Commonwealth Research Commercialization Fund (CRCF) (MF14S-009-LS to A.H. Tang), and National Cancer Institute (CA140550 to A.H. Tang).

Funding information:
  • NIGMS NIH HHS - R01 GM055040(United States)

Simvastatin induces differentiation of rabbit articular chondrocytes via the ERK-1/2 and p38 kinase pathways.

  • Han Y
  • Exp. Cell Res.
  • 2016 Aug 15

Literature context:


Abstract:

Statins are competitive inhibitors of hydroxy-methyl-glutaryl Coenzyme A (HMG-CoA) reductase, a key enzyme involved in the conversion of HMG-CoA to the cholesterol precursor mevalonate. Some statins, such as simvastatin (simvastatin), have been shown to have anti-cancer and anti-inflammatory effects, reducing cartilage degradation in osteoarthritic rabbits in vivo. However, the regulatory mechanisms undergirding simvastatin mediated chondrocyte differentiation have not been well elucidated. Thus, we investigated the action and mechanism of simvastatin on differentiation of rabbit articular chondrocytes through western blot analyses, RT-PCR, and immunohistochemical (IHC) and immunofluorescence (IF) staining. Simvastatin treatment was found to induce type II collagen expression and sulfated-proteoglycan synthesis in a dose- and time-dependent manner. Indeed, RT-PCR revealed increased expression of type II collagen on treatment with simvastatin. Both IHC and IF staining indicated differentiation of chondrocytes. Simvastatin treatment reduced activation of ERK-1/2 and stimulated activation of p38 kinase. Inhibition of ERK-1/2 with PD98059 enhanced simvastatin induced differentiation, whereas inhibition of p38 kinase with SB203580 inhibited simvastatin induced differentiation. Simvastatin treatment also inhibits loss of type II collagen in serial monolayer culture. Collectively, our results indicate that ERK-1/2 and p38 kinase regulate simvastatin-induced differentiation of chondrocytes in opposing manners. Thus, these findings suggest that simvastatin may be a potential therapeutic drug for osteoarthritis.

Palmitoyl Serotonin Inhibits L-dopa-induced Abnormal Involuntary Movements in the Mouse Parkinson Model.

  • Park HY
  • Exp Neurobiol
  • 2016 Aug 30

Literature context:


Abstract:

L-3,4-dihydroxyphenylalanine (L-DOPA) is the most common treatment for patients with Parkinson's disease (PD). However, long term use of L-DOPA for PD therapy lead to abnormal involuntary movements (AIMs) known as dyskinesia. Fatty acid amide hydrolase (FAAH) is enriched protein in basal ganglia, and inhibition of the protein reduces dyskinetic behavior of mice. Palmitoyl serotonin (PA-5HT) is a hybrid molecule patterned after arachidonoyl serotonin, antagonist of FAAH. However, the effect of PA-5HT on L-DOPA-induced dyskinesia (LID) in PD have not yet been elucidated. To investigate whether PA-5HT relieve LID in PD and decrease hyperactivation of dopamine D1 receptors, we used the 6-hydroxydopomine (6-OHDA)-lesioned mouse model of PD and treated the L-DOPA (20 mg/kg) for 10 days with PA-5HT (0.3 mg/kg/day). The number of wall contacts with the forelimb in the cylinder test was significantly decreased by 6-OHDA lesion in mice and the pharmacotherapeutic effect of L-DOPA was also revealed in PA-5HT-treated mice. Moreover, in AIMs test, PA-5HT-treated mice showed significant reduction of locomotive, axial, limb, and orofacial AIMs score compared to the vehicle-treated mice. LID-induced hyper-phosphorylation of ERK1/2 and overexpression of FosB/ΔFosB was markedly decreased in 6-OHDA-lesioned striatum of PA-5HT-treated mice, indicating that PA-5HT decreased the dopamine D1 receptor-hyperactivation induced by chronic treatment of L-DOPA in dopamine-denervated striatum. These results suggest that PA-5HT effectively attenuates the development of LID and enhance of ERK1/2 phosphorylation and FosB/ΔFosB expression in the hemi-parkinsonian mouse model. PA-5HT may have beneficial effect on the LID in PD.

Funding information:
  • NEI NIH HHS - R01 EY018660(United States)

Increase of transcription factor EB (TFEB) and lysosomes in rat DRG neurons and their transportation to the central nerve terminal in dorsal horn after nerve injury.

  • Jung J
  • Neuroscience
  • 2016 Jan 28

Literature context:


Abstract:

In the spinal dorsal horn (DH), nerve injury activates microglia and induces neuropathic pain. Several studies clarified an involvement of adenosine triphosphate (ATP) in the microglial activation. However, the origin of ATP together with the release mechanism is unclear. Recent in vitro study revealed that an ATP marker, quinacrine, in lysosomes was released from neurite terminal of dorsal root ganglion (DRG) neurons to extracellular space via lysosomal exocytosis. Here, we demonstrate a possibility that the lysosomal ingredient including ATP released from DRG neurons by lysosomal-exocytosis is an additional source of the glial activation in DH after nerve injury. After rat L5 spinal nerve ligation (SNL), mRNA for transcription factor EB (TFEB), a transcription factor controlling lysosomal activation and exocytosis, was induced in the DRG. Simultaneously both lysosomal protein, LAMP1- and vesicular nuclear transporter (VNUT)-positive vesicles were increased in L5 DRG neurons and ipsilateral DH. The quinacrine staining in DH was increased and co-localized with LAMP1 immunoreactivity after nerve injury. In DH, LAMP1-positive vesicles were also co-localized with a peripheral nerve marker, Isolectin B4 (IB4) lectin. Injection of the adenovirus encoding mCherry-LAMP1 into DRG showed that mCherry-positive lysosomes are transported to the central nerve terminal in DH. These findings suggest that activation of lysosome synthesis including ATP packaging in DRG, the central transportation of the lysosome, and subsequent its exocytosis from the central nerve terminal of DRG neurons in response to nerve injury could be a partial mechanism for activation of microglia in DH. This lysosome-mediated microglia activation mechanism may provide another clue to control nociception and pain.

Funding information:
  • NIMH NIH HHS - 1R01 MH084803(United States)

Oleate Abrogates Palmitate-Induced Lipotoxicity and Proinflammatory Response in Human Bone Marrow-Derived Mesenchymal Stem Cells and Osteoblastic Cells.

  • Gillet C
  • Endocrinology
  • 2015 Nov 17

Literature context:


Abstract:

Osteoporosis is a metabolic bone disease associated with unequilibrated bone remodeling resulting from decreased bone formation and/or increased bone resorption, leading to progressive bone loss. In osteoporotic patients, low bone mass is associated with an increase of bone marrow fat resulting from accumulation of adipocytes within the bone marrow. Marrow adipocytes are active secretory cells, releasing cytokines, adipokines and free fatty acids (FA) that influence the bone marrow microenvironment and alter the biology of neighboring cells. Therefore, we examined the effect of palmitate (Palm) and oleate (Ole), 2 highly prevalent FA in human organism and diet, on the function and survival of human mesenchymal stem cells (MSC) and MSC-derived osteoblastic cells. The saturated FA Palm exerted a cytotoxic action via initiation of endoplasmic reticulum stress and activation of the nuclear factor κB (NF-κB) and ERK pathways. In addition, Palm induced a proinflammatory response, as determined by the up-regulation of Toll-like receptor 4 expression as well as the increase of IL-6 and IL-8 expression and secretion. Moreover, we showed that MSC-derived osteoblastic cells were more sensitive to lipotoxicity than undifferentiated MSC. The monounsaturated FA Ole fully neutralized Palm-induced lipotoxicity by impairing activation of the pathways triggered by the saturated FA. Moreover, Ole promoted Palm detoxification by fostering its esterification into triglycerides and storage in lipid droplets. Altogether, our data showed that physiological concentrations of Palm and Ole differently modulated cell death and function in bone cells. We therefore propose that FA could influence skeletal health.

Funding information:
  • NIDDK NIH HHS - R01 DK085916(United States)
  • NIGMS NIH HHS - T32 GM007104(United States)

Type 2 Iodothyronine Deiodinase Activity Is Required for Rapid Stimulation of PI3K by Thyroxine in Human Umbilical Vein Endothelial Cells.

  • Aoki T
  • Endocrinology
  • 2015 Nov 17

Literature context:


Abstract:

Thyroid hormones (THs) exert a number of physiological effects on the cardiovascular system. Some of the nongenomic actions of T3 are achieved by cross coupling the TH receptor (TR) with the phosphatidylinositol 3-kinase (PI3K)/protein kinase Akt (Akt) pathway. We observed that both T3 and T4 rapidly stimulated Akt phosphorylation and Ras-related C3 botulinum toxin substrate 1 (Rac1) activation, which resulted in cell migration, in a PI3K-dependent manner in human umbilical vein endothelial cells (HUVECs). We identified the expression of type 2 iodothyronine deiodinase (D2), which converts T4 to T3, and TRα1 in HUVECs. D2 activity was significantly stimulated by (Bu)2cAMP in HUVECs. The blockade of D2 activity through transfection of small interfering RNA (siRNA) specific to D2 as well as by addition of iopanoic acid, a potent D2 inhibitor, abolished Akt phosphorylation, Rac activation, and cell migration induced by T4 but not by T3. The inhibition of TRα1 expression by the transfection of siRNA for TRα1 canceled Akt phosphorylation, Rac activation, and cell migration induced by T3 and T4. These findings suggest that conversion of T4 to T3 by D2 is required for TRα1/PI3K-mediated nongenomic actions of T4 in HUVECs, including stimulation of Akt phosphorylation and Rac activation, which result in cell migration.

Funding information:
  • NCI NIH HHS - U54 CA151881(United States)

Sympathetic Nerve Activity Maintains an Anti-Inflammatory State in Adipose Tissue in Male Mice by Inhibiting TNF-α Gene Expression in Macrophages.

  • Tang L
  • Endocrinology
  • 2015 Oct 19

Literature context:


Abstract:

Adipose tissue macrophages (ATMs) play an important role in the inflammatory response in obese animals. How ATMs are regulated in lean animals has remained elusive, however. We now show that the sympathetic nervous system (SNS) is necessary to maintain the abundance of the mRNA for the proinflammatory cytokine TNF-α at a low level in ATMs of lean mice. Intracerebroventricular injection of agouti-related neuropeptide increased the amount of TNF-α mRNA in epididymal (epi) white adipose tissue (WAT), but not in interscapular brown adipose tissue (BAT), through inhibition of sympathetic nerve activity in epiWAT. The surgical denervation and β-adrenergic antagonist propranolol up-regulated TNF-α mRNA in both epiWAT and BAT in vivo. Signaling by the β2-adrenergic receptor (AR) and protein kinase A down-regulated TNF-α mRNA in epiWAT explants and suppressed lipopolysaccharide-induced up-regulation of TNF-α mRNA in the stromal vascular fraction of this tissue. β-AR-deficient (β-less) mice manifested an increased plasma TNF-α concentration and increased TNF-α mRNA abundance in epiWAT and BAT. TNF-α mRNA abundance was greater in ATMs (CD11b(+) cells of the stromal vascular fraction) from epiWAT or BAT of wild-type mice than in corresponding CD11b(-) cells, and β2-AR mRNA abundance was greater in ATMs than in CD11b(-) cells of epiWAT. Our results show that the SNS and β2-AR-protein kinase A pathway maintain an anti-inflammatory state in ATMs of lean mice in vivo, and that the brain melanocortin pathway plays a role in maintaining this state in WAT of lean mice via the SNS.

Funding information:
  • Canadian Institutes of Health Research - 115076-1(Canada)

The Selective Estrogen Receptor Modulator Raloxifene Regulates Arginine-Vasopressin Gene Expression in Human Female Neuroblastoma Cells Through G Protein-Coupled Estrogen Receptor and ERK Signaling.

  • Grassi D
  • Endocrinology
  • 2015 Oct 19

Literature context:


Abstract:

The selective estrogen receptor modulator raloxifene reduces blood pressure in hypertensive postmenopausal women. In the present study we have explored whether raloxifene regulates gene expression of arginine vasopressin (AVP), which is involved in the pathogenesis of hypertension. The effect of raloxifene was assessed in human female SH-SY5Y neuroblastoma cells, which have been recently identified as a suitable cellular model to study the estrogenic regulation of AVP. Raloxifene, within a concentration ranging from 10(-10) M to 10(-6) M, decreased the mRNA levels of AVP in SH-SY5Y cells with maximal effect at 10(-7) M. This effect of raloxifene was imitated by an agonist (±)-1-[(3aR*,4S*,9bS*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone of G protein-coupled estrogen receptor-1 (GPER) and blocked by an antagonist (3aS*,4R*,9bR*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline of GPER and by GPER silencing. Raloxifene induced a time-dependent increase in the level of phosphorylated ERK1 and ERK2, by a mechanism blocked by the GPER antagonist. The treatment of SH-SY5Y cells with either a MAPK/ERK kinase 1/2-specific inhibitor (1,4-diamino-2, 3-dicyano-1,4-bis(2-aminophenylthio)butadine) or a protein kinase C inhibitor (sotrastaurin) blocked the effects of raloxifene on the phosphorylation of ERK1/2 and the regulation of AVP mRNA levels. These results reveal a mechanism mediating the regulation of AVP expression by raloxifene, involving the activation of GPER, which in turn activates protein kinase C, MAPK/ERK kinase, and ERK. The regulation of AVP by raloxifene and GPER may have implications for the treatment of blood hypertension(.).

Funding information:
  • NIDA NIH HHS - P30 DA035756(United States)
  • NIMH NIH HHS - R01 MH091258(United States)

Regulation of synaptic MAPK/ERK phosphorylation in the rat striatum and medial prefrontal cortex by dopamine and muscarinic acetylcholine receptors.

  • Xue B
  • J. Neurosci. Res.
  • 2015 Oct 20

Literature context:


Abstract:

Dopamine and acetylcholine are two principal transmitters in the striatum and are usually balanced to modulate local neural activity and to maintain striatal homeostasis. This study investigates the role of dopamine and muscarinic acetylcholine receptors in the regulation of a central signaling protein, i.e., the mitogen-activated protein kinase (MAPK). We focus on the synaptic pool of MAPKs because of the fact that these kinases reside in peripheral synaptic structures in addition to their somatic locations. We show that a systemic injection of dopamine D1 receptor (D1R) agonist SKF81297 enhances phosphorylation of extracellular signal-regulated kinases (ERKs), a prototypic subclass of MAPKs, in the adult rat striatum. Similar results were observed in another dopamine-responsive region, the medial prefrontal cortex (mPFC). The dopamine D2 receptor agonist quinpirole had no such effects. Pretreatment with a positive allosteric modulator (PAM) of muscarinic acetylcholine M4 receptors (M4Rs), VU0152100, attenuated the D1R agonist-stimulated ERK phosphorylation in the two regions, whereas the PAM itself did not alter basal ERK phosphorylation. All drug treatments had no effect on phosphorylation of c-Jun N-terminal kinases (JNKs), another MAPK subclass, in the striatum and mPFC. These results demonstrate that dopamine and acetylcholine are integrated to control synaptic ERK but not JNK activation in striatal and mPFC neurons in vivo. Activation of M4Rs exerts an inhibitory effect on the D1R-mediated upregulation of synaptic ERK phosphorylation.

TNF-α Suppressed FSH-Induced LH Receptor Expression Through Transcriptional Regulation in Rat Granulosa Cells.

  • Nakao K
  • Endocrinology
  • 2015 Sep 22

Literature context:


Abstract:

Several inflammatory cytokines regulate ovarian function. TNF-α is produced in granulosa cells under physiological conditions and has a reciprocal action on follicle development. In contrast, in pelvic inflammatory diseases, TNF-α is excessively produced in the pelvic cavity and has an adverse effect on reproductive functions. The objective of this study was to elucidate the mechanism of action of TNF-α on the expression of LH receptor (LHR) in immature rat granulosa cells. TNF-α suppressed FSH-induced LHR mRNA and protein expression and was not associated with cAMP accumulation. By using a luciferase assay, the construct containing base pairs -1389 to -1 of the rat Lhcgr promoter revealed that TNF-α decreased FSH-induced promoter activity. In response to TNF-α, nuclear factor (NF)-κB p65 was translocated to the nucleus, and the suppressive effect of TNF-α on LHR mRNA expression was abrogated by an NF-κB inhibitor. In a chromatin immunoprecipitation assay, TNF-α induced the association of NF-κB p65 with the rat Lhcgr transcriptional promoter region. NF-κB p65 and histone deacetylase (HDAC) interact to mediate expression of several genes at a transcriptional level. HDAC activity is thought to induce tight connections within local chromatin structures and repress gene transcription. Furthermore, the TNF-α-induced suppression of LHR mRNA expression was blocked by an HDAC inhibitor. Taken together, these results suggest that the interaction of NF-κB p65 with HDAC in the promoter region of rat Lhcgr might be responsible for TNF-α action on the regulation of LHR.

Funding information:
  • NINDS NIH HHS - R01 NS078214(United States)

Brown Adipose Tissue Transplantation Reverses Obesity in Ob/Ob Mice.

  • Liu X
  • Endocrinology
  • 2015 Jul 20

Literature context:


Abstract:

Increasing evidence indicates that brown adipose tissue (BAT) transplantation enhances whole-body energy metabolism in a mouse model of diet-induced obesity. However, it remains unclear whether BAT also has such beneficial effects on genetically obese mice. To address this issue, we transplanted BAT from C57/BL6 mice into the dorsal subcutaneous region of age- and sex-matched leptin deficient Ob/Ob mice. Interestingly, BAT transplantation led to a significant reduction of body weight gain with increased oxygen consumption and decreased total body fat mass, resulting in improvement of insulin resistance and liver steatosis. In addition, BAT transplantation increased the level of circulating adiponectin, whereas it reduced the levels of circulating free T3 and T4, which regulate thyroid hormone sensitivity in peripheral tissues. BAT transplantation also increased β3-adrenergic receptor and fatty acid oxidation related gene expression in subcutaneous and epididymal (EP) white adipose tissue. Accordingly, BAT transplantation increased whole-body thermogenesis. Taken together our results demonstrate that BAT transplantation may reduce obesity and its related diseases by activating endogenous BAT.

Funding information:
  • NIBIB NIH HHS - R01EB8009(United States)
  • NIDDK NIH HHS - R01 DK035254(United States)

Estrogen Receptor-β Up-Regulates IGF1R Expression and Activity to Inhibit Apoptosis and Increase Growth of Medulloblastoma.

  • Cookman CJ
  • Endocrinology
  • 2015 Jul 20

Literature context:


Abstract:

Medulloblastoma (Med) is the most common malignant brain tumor in children. The role of ESR2 [estrogen receptor (ER)-β] in promoting Med growth was comprehensively examined in three in vivo models and human cell lines. In a novel Med ERβ-null knockout model developed by crossing Esr2(-/-) mice with cerebellar granule cell precursor specific Ptch1 conditional knockout mice, the tumor growth rate was significantly decreased in males and females. The absence of Esr2 resulted in increased apoptosis, decreased B-cell lymphoma 2 (BCL2), and IGF-1 receptor (IGF1R) expression, and decreased levels of active MAPKs (ERK1/2) and protein kinase B (AKT). Treatment of Med in Ptch1(+/-) Trp53(-/-) mice with the antiestrogen chemotherapeutic drug Faslodex significantly increased symptom-free survival, which was associated with increased apoptosis and decreased BCL2 and IGF1R expression and signaling. Similar effects were also observed in nude mice bearing D283Med xenografts. In vitro studies in human D283Med cells metabolically stressed by glutamine withdrawal found that 17β-estradiol and the ERβ selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile dose dependently protected Med cells from caspase-3-dependent cell death. Those effects were associated with increased phosphorylation of IGF1R, long-term increases in ERK1/2 and AKT signaling, and increased expression of IGF-1, IGF1R, and BCL2. Results of pharmacological experiments revealed that the cytoprotective actions of estradiol were dependent on ERβ and IGF1R receptor tyrosine kinase activity and independent of ERα and G protein-coupled estrogen receptor 1 (G protein coupled receptor 30). The presented results demonstrate that estrogen promotes Med growth through ERβ-mediated increases in IGF1R expression and activity, which induce cytoprotective mechanisms that decrease apoptosis.

Funding information:
  • NIDCD NIH HHS - DC 00716(United States)

Adiponectin-mediated antilipotoxic effects in regenerating pancreatic islets.

  • Ye R
  • Endocrinology
  • 2015 Jun 18

Literature context:


Abstract:

Pathways that stimulate β-cell regeneration remain of great clinical interest, yet effective therapeutic avenues that promote survival or reconstitution of β-cell mass remain elusive. Using a mouse model with inducible β-cell apoptosis followed by adiponectin-mediated regeneration, we aimed to identify key molecules boosting β-cell viability. In the regenerating pancreatic islets, we examined changes within the transcriptome and observed an extensive up-regulation of genes encoding proteins involved in lipid transport and metabolism. The most prominent targets were further confirmed by quantitative PCR and immunofluorescence. Among the upstream regulators predicted by pathway analysis of the transcriptome, we detected enhanced levels of 2 key transcription factors, Hepatocyte Nuclear Factor 4α and Peroxisome Proliferator-Activated Receptorα. Our data suggest that improving pancreatic islet lipid metabolism as an important antilipotoxic phenomenon to boost β-cell regeneration. This is primarily mediated by the adipokine adiponectin that exerts its action on both the beta-cell directly as well as on the adipocyte. Adiponectin induces lipid metabolism gene expression in regenerating islets through Hepatocyte Nuclear Factor 4α and Peroxisome Proliferator-Activated Receptorα. Adiponectin also modulates leptin levels via preserving adipose tissue mass in the insulinopenic state.

Funding information:
  • Wellcome Trust - 101253/Z/13/Z(United Kingdom)

Protein kinase A directly phosphorylates metabotropic glutamate receptor 5 to modulate its function.

  • Uematsu K
  • J. Neurochem.
  • 2015 Mar 13

Literature context:


Abstract:

Metabotropic glutamate receptor 5 (mGluR5) regulates excitatory post-synaptic signaling in the central nervous system (CNS) and is implicated in various CNS disorders. Protein kinase A (PKA) signaling is known to play a critical role in neuropsychiatric disorders such as Parkinson's disease, schizophrenia, and addiction. Dopamine signaling is known to modulate the properties of mGluR5 in a cAMP- and PKA-dependent manner, suggesting that mGluR5 may be a direct target for PKA. Our study identifies mGluR5 at Ser870 as a direct substrate for PKA phosphorylation and demonstrates that this phosphorylation plays a critical role in the PKA-mediated modulation of mGluR5 functions such as extracellular signal-regulated kinase phosphorylation and intracellular Ca(2+) oscillations. The identification of the molecular mechanism by which PKA signaling modulates mGluR5-mediated cellular responses contributes to the understanding of the interaction between dopaminergic and glutamatergic neuronal signaling. We identified serine residue 870 (S870) in metabotropic glutamate receptor 5 (mGluR5) as a direct substrate for protein kinase A (PKA). The phosphorylation of this site regulates the ability of mGluR5 to induce extracellular signal-regulated kinase (ERK) phosphorylation and intracellular Ca(2+) oscillations. This study provides a direct molecular mechanism by which PKA signaling interacts with glutamate neurotransmission.

Regulation of neuronal gene expression and survival by basal NMDA receptor activity: a role for histone deacetylase 4.

  • Chen Y
  • J. Neurosci.
  • 2014 Nov 12

Literature context:


Abstract:

Neuronal gene expression is modulated by activity via calcium-permeable receptors such as NMDA receptors (NMDARs). While gene expression changes downstream of evoked NMDAR activity have been well studied, much less is known about gene expression changes that occur under conditions of basal neuronal activity. In mouse dissociated hippocampal neuronal cultures, we found that a broad NMDAR antagonist, AP5, induced robust gene expression changes under basal activity, but subtype-specific antagonists did not. While some of the gene expression changes are also known to be downstream of stimulated NMDAR activity, others appear specific to basal NMDAR activity. The genes altered by AP5 treatment of basal cultures were enriched for pathways related to class IIa histone deacetylases (HDACs), apoptosis, and synapse-related signaling. Specifically, AP5 altered the expression of all three class IIa HDACs that are highly expressed in the brain, HDAC4, HDAC5, and HDAC9, and also induced nuclear accumulation of HDAC4. HDAC4 knockdown abolished a subset of the gene expression changes induced by AP5, and led to neuronal death under long-term tetrodotoxin or AP5 treatment in rat hippocampal organotypic slice cultures. These data suggest that basal, but not evoked, NMDAR activity regulates gene expression in part through HDAC4, and, that HDAC4 has neuroprotective functions under conditions of low NMDAR activity.

Funding information:
  • NIA NIH HHS - AG012609(United States)

Substance P exacerbates dopaminergic neurodegeneration through neurokinin-1 receptor-independent activation of microglial NADPH oxidase.

  • Wang Q
  • J. Neurosci.
  • 2014 Sep 10

Literature context:


Abstract:

Although dysregulated substance P (SP) has been implicated in the pathophysiology of Parkinson's disease (PD), how SP affects the survival of dopaminergic neurons remains unclear. Here, we found that mice lacking endogenous SP (TAC1(-/-)), but not those deficient in the SP receptor (neurokinin-1 receptor, NK1R), were more resistant to lipopolysaccharide (LPS)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral dopaminergic neurodegeneration than wild-type controls, suggesting a NK1R-independent toxic action of SP. In vitro dose-response studies revealed that exogenous SP enhanced LPS- and 1-methyl-4-phenylpyridinium (MPP(+))-induced dopaminergic neurodegeneration in a bimodal manner, peaking at submicromolar and subpicomolar concentrations, but was substantially less effective at intermediate concentrations. Mechanistically, the actions of submicromolar levels of SP were NK1R-dependent, whereas subpicomolar SP-elicited actions required microglial NADPH oxidase (NOX2), the key superoxide-producing enzyme, but not NK1R. Subpicomolar concentrations of SP activated NOX2 by binding to the catalytic subunit gp91(phox) and inducing membrane translocation of the cytosolic subunits p47(phox) and p67(phox). The importance of NOX2 was further corroborated by showing that inhibition or disruption of NOX2 blocked subpicomolar SP-exacerbated neurotoxicity. Together, our findings revealed a critical role of microglial NOX2 in mediating the neuroinflammatory and dopaminergic neurodegenerative effects of SP, which may provide new insights into the pathogenesis of PD.

Funding information:
  • NINDS NIH HHS - 5R01NS039444(United States)

Inhibition of adenylyl cyclase type 5 prevents L-DOPA-induced dyskinesia in an animal model of Parkinson's disease.

  • Park HY
  • J. Neurosci.
  • 2014 Aug 27

Literature context:


Abstract:

The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) is widely used as a therapeutic choice for the treatment of patients with Parkinson's disease. However, the long-term use of L-DOPA leads to the development of debilitating involuntary movements, called L-DOPA-induced dyskinesia (LID). The cAMP/protein kinase A (PKA) signaling in the striatum is known to play a role in LID. However, from among the nine known adenylyl cyclases (ACs) present in the striatum, the AC that mediates LID remains unknown. To address this issue, we prepared an animal model with unilateral 6-hydroxydopamine lesions in the substantia nigra in wild-type and AC5-knock-out (KO) mice, and examined behavioral responses to short-term or long-term treatment with L-DOPA. Compared with the behavioral responses of wild-type mice, LID was profoundly reduced in AC5-KO mice. The behavioral protection of long-term treatment with L-DOPA in AC5-KO mice was preceded by a decrease in the phosphorylation levels of PKA substrates ERK (extracellular signal-regulated kinase) 1/2, MSK1 (mitogen- and stress-activated protein kinase 1), and histone H3, levels of which were all increased in the lesioned striatum of wild-type mice. Consistently, FosB/ΔFosB expression, which was induced by long-term L-DOPA treatment in the lesioned striatum, was also decreased in AC5-KO mice. Moreover, suppression of AC5 in the dorsal striatum with lentivirus-shRNA-AC5 was sufficient to attenuate LID, suggesting that the AC5-regulated signaling cascade in the striatum mediates LID. These results identify the AC5/cAMP system in the dorsal striatum as a therapeutic target for the treatment of LID in patients with Parkinson's disease.

Tat 101-mediated enhancement of brain pericyte migration involves platelet-derived growth factor subunit B homodimer: implications for human immunodeficiency virus-associated neurocognitive disorders.

  • Niu F
  • J. Neurosci.
  • 2014 Aug 27

Literature context:


Abstract:

In the era of antiretroviral therapy, although the human immunodeficiency virus (HIV) replication can be successfully controlled, complications of the CNS continue to affect infected individuals. Viral Tat protein is not only neurotoxic but has also been shown to disrupt the integrity of the blood-brain barrier (BBB). Although the role of brain microvascular endothelial cells and astrocytes in Tat-mediated impairment has been well documented, pericytes, which are important constituents of the BBB and play a key role in maintaining the integrity of the barrier, remain poorly studied in the context of HIV-associated neurocognitive disorders (HAND). In the present study, we demonstrated that exposure of human brain microvascular pericytes and C3H/10T1/2 cells to HIV-1 Tat101 resulted in increased expression of platelet-derived growth factor subunit B homodimer (PDGF-BB) and increased migration of the treated cells. Furthermore, we also demonstrated that this effect of Tat was mediated via activation of mitogen-activated protein kinases and nuclear factor-κB pathways. Secreted PDGF-BB resulted in autocrine activation of the PDGF-BB/PDGF β receptor signaling pathway, culminating ultimately into increased pericyte migration. Ex vivo relevance of these findings was further corroborated in isolated microvessels of HIV Tg26 mice that demonstrated significantly increased expression of PDGF-BB in isolated brain microvessels with a concomitant loss of pericytes. Intriguingly, loss of pericyte coverage was also detected in sections of frontal cortex from humans with HIV-encephalitis compared with the uninfected controls. These findings thus implicate a novel role of PDGF-BB in the migration of pericytes, resulting in loss of pericyte coverage from the endothelium with a subsequent breach of the BBB.

Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model.

  • Sidhu H
  • J. Neurosci.
  • 2014 Jul 23

Literature context:


Abstract:

Fmr1 knock-out (ko) mice display key features of fragile X syndrome (FXS), including delayed dendritic spine maturation and FXS-associated behaviors, such as poor socialization, obsessive-compulsive behavior, and hyperactivity. Here we provide conclusive evidence that matrix metalloproteinase-9 (MMP-9) is necessary to the development of FXS-associated defects in Fmr1 ko mice. Genetic disruption of Mmp-9 rescued key aspects of Fmr1 deficiency, including dendritic spine abnormalities, abnormal mGluR5-dependent LTD, as well as aberrant behaviors in open field and social novelty tests. Remarkably, MMP-9 deficiency also corrected non-neural features of Fmr1 deficiency-specifically macroorchidism-indicating that MMP-9 dysregulation contributes to FXS-associated abnormalities outside the CNS. Further, MMP-9 deficiency suppressed elevations of Akt, mammalian target of rapamycin, and eukaryotic translation initiation factor 4E phosphorylation seen in Fmr1 ko mice, which are also associated with other autistic spectrum disorders. These findings establish that MMP-9 is critical to the mechanisms responsible for neural and non-neural aspects of the FXS phenotype.

Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring.

  • Borengasser SJ
  • Endocrinology
  • 2013 Nov 21

Literature context:


Abstract:

The risk of obesity (OB) in adulthood is strongly influenced by maternal body composition. Here we examined the hypothesis that maternal OB influences white adipose tissue (WAT) transcriptome and increases propensity for adipogenesis in the offspring, prior to the development of OB, using an established model of long-term metabolic programming. Employing an overfeeding-based rat model, in which exposure to OB is limited to preconception and gestation alone, we conducted global transcriptomic profiling in WAT, and gene/protein expression analysis of lipogenic and adipogenic pathways and examined adipogenic differentiation of WAT stromal-vascular cells ex vivo. Using reduced representation bisulfite sequencing we also evaluated genome-scale changes in DNA methylation in offspring WAT. Maternal OB led to extensive changes in expression of genes (± 1.8-fold, P ≤ .05), revealing a distinct up-regulation of lipogenic pathways in WAT. mRNA expression of a battery of sterol regulatory element-binding protein-1-regulated genes was increased in OB-dam offspring, which were confirmed by immunoblotting. In conjunction with lipogenic gene expression, OB-dam offspring showed increased glucose transporter-4 mRNA/protein expression and greater AKT phosphorylation following acute insulin challenge, suggesting sensitization of insulin signaling in WAT. Offspring of OB dams also exhibited increased in vivo expression of adipogenic regulators (peroxisome proliferator-activated receptor-γ, CCAAT enhancer binding protein α [C/EBP-α] and C/EBP-β), associated with greater ex vivo differentiation of WAT stromal-vascular cells. These transcriptomic changes were associated with alterations in DNA methylation of CpG sites and CGI shores, proximal to developmentally important genes, including key pro-adipogenic factors (Zfp423 and C/EBP-β). Our findings strongly suggest that the maternal OB in utero alters adipocyte commitment and differentiation via epigenetic mechanisms.

Funding information:
  • NICHD NIH HHS - HD058056(United States)

Identification of perineal sensory neurons activated by innocuous heat.

  • Kiasalari Z
  • J. Comp. Neurol.
  • 2010 Jan 10

Literature context:


Abstract:

C-fiber sensory neurons comprise nociceptors and smaller populations of cells detecting innocuous thermal and light tactile stimuli. Markers identify subpopulations of these cells, aiding our understanding of their physiological roles. The transient receptor potential vanilloid 1 (TRPV1) cation channel is characteristic of polymodal C-fiber nociceptors and is sensitive to noxious heat, irritant vanilloids, and protons. By using immunohistochemistry, in situ hybridization, and retrograde tracing, we anatomically characterize a small subpopulation of C-fiber cells that express high levels of TRPV1 (HE TRPV1 cells). These cells do not express molecular markers normally associated with C-fiber nociceptors. Furthermore, they express a unique complement of neurotrophic factor receptors, namely, the trkC receptor for neurotrophin 3, as well as receptors for neurturin and glial cell line-derived neurotrophic factor. HE TRPV1 cells are distributed in sensory ganglia throughout the neuraxis, with higher numbers noted in the sixth lumbar ganglion. In this ganglion and others of the lumbar and sacral regions, 75% or more of such HE TRPV1 cells express estrogen receptor alpha, suggestive of their regulation by estrogen and a role in afferent sensation related to reproduction. Afferents from these cells provide innervation to the hairy skin of the perineal region and can be activated by thermal stimuli from 38 degrees C, with a maximal response at 42 degrees C, as indicated by induction of extracellular signal-regulated kinase phosphorylation. We hypothesize that apart from participating in normal thermal sensation relevant to thermoregulation and reproductive functions, HE TRPV1 cells may mediate burning pain in chronic pain syndromes with perineal localization.

Frontal cortex subdivision patterning is coordinately regulated by Fgf8, Fgf17, and Emx2.

  • Cholfin JA
  • J. Comp. Neurol.
  • 2008 Jul 10

Literature context:


Abstract:

The frontal cortex (FC) plays a major role in cognition, movement and behavior. However, little is known about the genetic mechanisms that govern its development. We recently described a panel of gene expression markers that delineate neonatal FC subdivisions and identified FC regionalization defects in Fgf17-/- mutant mice (Cholfin and Rubenstein [2007] Proc. Natl. Acad. Sci. U. S. A. [in press]). In the present study, we applied this FC gene expression panel to examine regionalization phenotypes in Fgf8(neo/neo), Emx2-/-, and Emx2-/-;Fgf17-/- newborn mice. We report that Fgf8, Fgf17 and Emx2 play distinct roles in the molecular regionalization of FC subdivisions. The changes in regionalization are presaged by differential effects of rostral patterning center Fgf8 and Fgf17 signaling on the rostral cortical neuroepithelium, revealed by altered expression of Spry1, Spry2, and "rostral" transcription factors Er81, Erm, Pea3, and Sp8. We used Emx2-/-;Fgf17-/- double mutants to provide direct evidence that Emx2 and Fgf17 antagonistically regulate the expression of Erm, Pea3, and Er81 in the rostral cortical neuroepithelium and FC regionalization. We have integrated our results to propose a model for how fibroblast growth factors regulate FC patterning through regulation of regional transcription factor expression within the FC anlage.

Organization of pERK-immunoreactive cells in trigeminal spinal nucleus caudalis and upper cervical cord following capsaicin injection into oral and craniofacial regions in rats.

  • Noma N
  • J. Comp. Neurol.
  • 2008 Mar 20

Literature context:


Abstract:

To define the somatotopic arrangement of neurons in the trigeminal spinal subnucleus caudalis and upper cervical cord activated by acute noxious stimulation of various orofacial sites, pERK expression was analyzed in these neurons. After capsaicin injection into the tongue, lower gum, upper and lower lips, or mental region, pERK-like immunoreactive (pERK-LI) cells were distributed mainly in the dorsal half of the trigeminal spinal nucleus interporalis (Vi) and caudalis (Vc) transition zone (Vi/Vc zone), middle Vc, and Vc and upper cervical cord transition zone (Vc/C2 zone). pERK-LI cells were distributed throughout the dorsal to ventral portion of the Vi/Vc zone, middle Vc, and Vc/C2 zone following capsaicin injection into the anterior hard palate, upper gum, buccal mucosa, or vibrissal pad and in the ventral portion of the Vi/Vc zone, middle Vc, and Vc/C2 zone following snout, ophthalmic, or ocular injection of capsaicin. The rostrocaudal distribution area of pERK-LI cells was more extensive from the Vi/Vc zone to the Vc/C2 zone after intraoral injection than that after facial injection, and the rostrocaudal distribution of pERK-LI cells from the Vi/Vc zone to the Vc/C2 zone had a somatotopic arrangement, with the snout being represented most rostrally and ophthalmic, ocular, or mental regions represented most caudally. These findings suggest that the pERK-LI cells expressed from the Vi/Vc zone to the Vc/C2 zone following injection of capsaicin in facial and intraoral structures may be differentially involved in pain perception in facial and intraoral sites.

Funding information:
  • European Research Council - 283871(International)