X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

PE anti-mouse CD11c antibody

RRID:AB_313777

Antibody ID

AB_313777

Target Antigen

CD11c See NCBI gene mouse

Proper Citation

(BioLegend Cat# 117308, RRID:AB_313777)

Clonality

monoclonal antibody

Comments

Applications: FC

Clone ID

Clone N418

Host Organism

armenian hamster

Vendor

BioLegend Go To Vendor

Cat Num

117308

Publications that use this research resource

Palmitic Acid Hydroxystearic Acids Activate GPR40, Which Is Involved in Their Beneficial Effects on Glucose Homeostasis.

  • Syed I
  • Cell Metab.
  • 2018 Feb 6

Literature context: iolegend BioLegend Cat# 117308, RRID:AB_313777 CD206+ (APC) Biolegend BioLegen


Abstract:

Palmitic acid hydroxystearic acids (PAHSAs) are endogenous lipids with anti-diabetic and anti-inflammatory effects. PAHSA levels are reduced in serum and adipose tissue of insulin-resistant people and high-fat diet (HFD)-fed mice. Here, we investigated whether chronic PAHSA treatment enhances insulin sensitivity and which receptors mediate PAHSA effects. Chronic PAHSA administration in chow- and HFD-fed mice raises serum and tissue PAHSA levels ∼1.4- to 3-fold. This improves insulin sensitivity and glucose tolerance without altering body weight. PAHSA administration in chow-fed, but not HFD-fed, mice augments insulin and glucagon-like peptide (GLP-1) secretion. PAHSAs are selective agonists for GPR40, increasing Ca+2 flux, but not intracellular cyclic AMP. Blocking GPR40 reverses improvements in glucose tolerance and insulin sensitivity in PAHSA-treated chow- and HFD-fed mice and directly inhibits PAHSA augmentation of glucose-stimulated insulin secretion in human islets. In contrast, GLP-1 receptor blockade in PAHSA-treated chow-fed mice reduces PAHSA effects on glucose tolerance, but not on insulin sensitivity. Thus, PAHSAs activate GPR40, which is involved in their beneficial metabolic effects.

Funding information:
  • NIAID NIH HHS - U19 AI067773(United States)
  • NIDDK NIH HHS - P30 DK034854()
  • NIDDK NIH HHS - P30 DK057521()
  • NIDDK NIH HHS - R01 DK043051()
  • NIDDK NIH HHS - R01 DK106210()
  • NIDDK NIH HHS - T32 DK007516()
  • NINDS NIH HHS - P30 NS072030()

E3 Ligase VHL Promotes Group 2 Innate Lymphoid Cell Maturation and Function via Glycolysis Inhibition and Induction of Interleukin-33 Receptor.

  • Li Q
  • Immunity
  • 2018 Feb 20

Literature context: ) Biolegend Cat# 117308; RRID:AB_313777 Brilliant Violet 421 anti-mouse


Abstract:

Group 2 innate lymphoid cells (ILC2s) are a specialized subset of lymphoid effector cells that are critically involved in allergic responses; however, the mechanisms of their regulation remain unclear. We report that conditional deletion of the E3 ubiquitin ligase VHL in innate lymphoid progenitors minimally affected early-stage bone marrow ILC2s but caused a selective and intrinsic decrease in mature ILC2 numbers in peripheral non-lymphoid tissues, resulting in reduced type 2 immune responses. VHL deficiency caused the accumulation of hypoxia-inducible factor 1α (HIF1α) and attenuated interleukin-33 (IL-33) receptor ST2 expression, which was rectified by HIF1α ablation or inhibition. HIF1α-driven expression of the glycolytic enzyme pyruvate kinase M2 downmodulated ST2 expression via epigenetic modification and inhibited IL-33-induced ILC2 development. Our study indicates that the VHL-HIF-glycolysis axis is essential for the late-stage maturation and function of ILC2s via targeting IL-33-ST2 pathway.

Funding information:
  • NCRR NIH HHS - S10 RR027366()
  • NIAID NIH HHS - R01 AI123398()
  • Worldwide Cancer Research - 10-0788(United Kingdom)

CRIg, a tissue-resident macrophage specific immune checkpoint molecule, promotes immunological tolerance in NOD mice, via a dual role in effector and regulatory T cells.

  • Yuan X
  • Elife
  • 2017 Nov 24

Literature context: n hamster monoclonal) BioLegend RRID:AB_313777 clone: N418


Abstract:

How tissue-resident macrophages (TRM) impact adaptive immune responses remains poorly understood. We report novel mechanisms by which TRMs regulate T cell activities at tissue sites. These mechanisms are mediated by the complement receptor of immunoglobulin family (CRIg). Using animal models for autoimmune type 1 diabetes (T1D), we found that CRIg+ TRMs formed a protective barrier surrounding pancreatic islets. Genetic ablation of CRIg exacerbated islet inflammation and local T cell activation. CRIg exhibited a dual function of attenuating early T cell activation and promoting the differentiation of Foxp3+ regulatory (Treg) cells. More importantly, CRIg stabilized the expression of Foxp3 in Treg cells, by enhancing their responsiveness to interleukin-2. The expression of CRIg in TRMs was postnatally regulated by gut microbial signals and metabolites. Thus, environmental cues instruct TRMs to express CRIg, which functions as an immune checkpoint molecule to regulate adaptive immunity and promote immune tolerance.

Funding information:
  • NIGMS NIH HHS - T32 GM07270(United States)

Crucial role for T cell-intrinsic IL-18R-MyD88 signaling in cognate immune response to intracellular parasite infection.

  • Oliveira AC
  • Elife
  • 2017 Sep 12

Literature context: ne N418 (BioLegend Cat# 117308, RRID:AB_313777)


Abstract:

MyD88 is the main adaptor molecule for TLR and IL-1R family members. Here, we demonstrated that T-cell intrinsic MyD88 signaling is required for proliferation, protection from apoptosis and expression of activation/memory genes during infection with the intracellular parasite Trypanosoma cruzi, as evidenced by transcriptome and cytometry analyses in mixed bone-marrow (BM) chimeras. The lack of direct IL-18R signaling in T cells, but not of IL-1R, phenocopied the absence of the MyD88 pathway, indicating that IL-18R is a critical MyD88-upstream pathway involved in the establishment of the Th1 response against an in vivo infection, a presently controvert subject. Accordingly, Il18r1-/- mice display lower levels of Th1 cells and are highly susceptible to infection, but can be rescued from mortality by the adoptive transfer of WT CD4+ T cells. Our findings establish the T-cell intrinsic IL-18R/MyD88 pathway as a crucial element for induction of cognate Th1 responses against an important human pathogen.

Funding information:
  • NIGMS NIH HHS - T32 GM007288(United States)