X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

APC anti-mouse CD62L antibody

RRID:AB_313099

Antibody ID

AB_313099

Target Antigen

CD62L See NCBI gene mouse

Proper Citation

(BioLegend Cat# 104412, RRID:AB_313099)

Clonality

monoclonal antibody

Comments

Applications: FC

Clone ID

Clone MEL-14

Host Organism

rat

Vendor

BioLegend Go To Vendor

Cat Num

104412

Amphiregulin-Producing Pathogenic Memory T Helper 2 Cells Instruct Eosinophils to Secrete Osteopontin and Facilitate Airway Fibrosis.

  • Morimoto Y
  • Immunity
  • 2018 Jun 4

Literature context:


Abstract:

Memory T cells provide long-lasting protective immunity, and distinct subpopulations of memory T cells drive chronic inflammatory diseases such as asthma. Asthma is a chronic allergic inflammatory disease with airway remodeling including fibrotic changes. The immunological mechanisms that induce airway fibrotic changes remain unknown. We found that interleukin-33 (IL-33) enhanced amphiregulin production by the IL-33 receptor, ST2hi memory T helper 2 (Th2) cells. Amphiregulin-epidermal growth factor receptor (EGFR)-mediated signaling directly reprogramed eosinophils to an inflammatory state with enhanced production of osteopontin, a key profibrotic immunomodulatory protein. IL-5-producing memory Th2 cells and amphiregulin-producing memory Th2 cells appeared to cooperate to establish lung fibrosis. The analysis of polyps from patients with eosinophilic chronic rhinosinusitis revealed fibrosis with accumulation of amphiregulin-producing CRTH2hiCD161hiCD45RO+CD4+ Th2 cells and osteopontin-producing eosinophils. Thus, the IL-33-amphiregulin-osteopontin axis directs fibrotic responses in eosinophilic airway inflammation and is a potential target for the treatment of fibrosis induced by chronic allergic disorders.

Funding information:
  • NIDDK NIH HHS - R01 DK098002(United States)

CD150high Bone Marrow Tregs Maintain Hematopoietic Stem Cell Quiescence and Immune Privilege via Adenosine.

  • Hirata Y
  • Cell Stem Cell
  • 2018 Mar 1

Literature context:


Abstract:

A crucial player in immune regulation, FoxP3+ regulatory T cells (Tregs) are drawing attention for their heterogeneity and noncanonical functions. Here, we describe a Treg subpopulation that controls hematopoietic stem cell (HSC) quiescence and engraftment. These Tregs highly expressed an HSC marker, CD150, and localized within the HSC niche in the bone marrow (BM). Specific reduction of BM Tregs achieved by conditional deletion of CXCR4 in Tregs increased HSC numbers in the BM. Adenosine generated via the CD39 cell surface ectoenzyme on niche Tregs protected HSCs from oxidative stress and maintained HSC quiescence. In transplantation settings, niche Tregs prevented allogeneic (allo-) HSC rejection through adenosine and facilitated allo-HSC engraftment. Furthermore, transfer of niche Tregs promoted allo-HSC engraftment to a much greater extent than transfer of other Tregs. These results identify a unique niche-associated Treg subset and adenosine as regulators of HSC quiescence, abundance, and engraftment, further highlighting their therapeutic utility.

Funding information:
  • NIDDK NIH HHS - R01 DK051665(United States)