X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mouse Anti-Histone H2A, ubiquityl Monoclonal antibody, Unconjugated, Clone e6c5

RRID:AB_309899

Antibody ID

AB_309899

Target Antigen

Histone H2A, ubiquityl human, mouse, other, rat, simian, xenopus, human, rat, mouse, monkey

Proper Citation

(Millipore Cat# 05-678, RRID:AB_309899)

Clonality

monoclonal antibody

Comments

seller recommendations: Immunocytochemistry; Immunoprecipitation; Other; Western Blot; Western Blotting,Chromatin Immunoprecipitation

Clone ID

Clone E6C5

Host Organism

mouse

Vendor

Millipore

Cat Num

05-678

Publications that use this research resource

PARP1-dependent recruitment of the FBXL10-RNF68-RNF2 ubiquitin ligase to sites of DNA damage controls H2A.Z loading.

  • Rona G
  • Elife
  • 2018 Jul 9

Literature context:


Abstract:

The mammalian FBXL10-RNF68-RNF2 ubiquitin ligase complex (FRRUC) mono-ubiquitylates H2A at Lys119 to repress transcription in unstressed cells. We found that the FRRUC is rapidly and transiently recruited to sites of DNA damage in a PARP1- and TIMELESS-dependent manner to promote mono-ubiquitylation of H2A at Lys119, a local decrease of H2A levels, and an increase of H2A.Z incorporation. Both the FRRUC and H2A.Z promote transcriptional repression, double strand break signaling, and homologous recombination repair (HRR). All these events require both the presence and activity of the FRRUC. Moreover, the FRRUC and its activity are required for the proper recruitment of BMI1-RNF2 and MEL18-RNF2, two other ubiquitin ligases that mono-ubiquitylate Lys119 in H2A upon genotoxic stress. Notably, whereas H2A.Z is not required for H2A mono-ubiquitylation, impairment of the latter results in the inhibition of H2A.Z incorporation. We propose that the recruitment of the FRRUC represents an early and critical regulatory step in HRR.

Funding information:
  • American Cancer Society - ACS 130304-RSG-16-241-01-DMC()
  • National Institutes of Health - R01- GM057691()
  • National Institutes of Health - R01-CA076584()
  • National Institutes of Health - R01-GM057587()
  • National Institutes of Health - R21-CA187612()
  • NIEHS NIH HHS - ES07784(United States)
  • NIGMS NIH HHS - R01 GM057587()
  • The Rosztoczy Foundation - Fellowship()

PCGF6-PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes.

  • Endoh M
  • Elife
  • 2017 Mar 17

Literature context:


Abstract:

The ring finger protein PCGF6 (polycomb group ring finger 6) interacts with RING1A/B and E2F6 associated factors to form a non-canonical PRC1 (polycomb repressive complex 1) known as PCGF6-PRC1. Here, we demonstrate that PCGF6-PRC1 plays a role in repressing a subset of PRC1 target genes by recruiting RING1B and mediating downstream mono-ubiquitination of histone H2A. PCGF6-PRC1 bound loci are highly enriched for promoters of germ cell-related genes in mouse embryonic stem cells (ESCs). Conditional ablation of Pcgf6 in ESCs leads to robust de-repression of such germ cell-related genes, in turn affecting cell growth and viability. We also find a role for PCGF6 in pre- and peri-implantation mouse embryonic development. We further show that a heterodimer of the transcription factors MAX and MGA recruits PCGF6 to target loci. PCGF6 thus links sequence specific target recognition by the MAX/MGA complex to PRC1-dependent transcriptional silencing of germ cell-specific genes in pluripotent stem cells.

Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination.

  • Bhogaraju S
  • Cell
  • 2016 Dec 1

Literature context:


Abstract:

Conventional ubiquitination involves the ATP-dependent formation of amide bonds between the ubiquitin C terminus and primary amines in substrate proteins. Recently, SdeA, an effector protein of pathogenic Legionella pneumophila, was shown to mediate NAD-dependent and ATP-independent ubiquitin transfer to host proteins. Here, we identify a phosphodiesterase domain in SdeA that efficiently catalyzes phosphoribosylation of ubiquitin on a specific arginine via an ADP-ribose-ubiquitin intermediate. SdeA also catalyzes a chemically and structurally distinct type of substrate ubiquitination by conjugating phosphoribosylated ubiquitin to serine residues of protein substrates via a phosphodiester bond. Furthermore, phosphoribosylation of ubiquitin prevents activation of E1 and E2 enzymes of the conventional ubiquitination cascade, thereby impairing numerous cellular processes including mitophagy, TNF signaling, and proteasomal degradation. We propose that phosphoribosylation of ubiquitin potently modulates ubiquitin functions in mammalian cells.

Funding information:
  • NINDS NIH HHS - R01 NS048425(United States)
  • NINDS NIH HHS - R37 NS028478(United States)