X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mouse Anti-Histone H2A.X, phospho (Ser139) Monoclonal antibody, Unconjugated, Clone jbw301

RRID:AB_309864

Antibody ID

AB_309864

Target Antigen

Histone H2A.X pSer139 vertebrates

Proper Citation

(Millipore Cat# 05-636, RRID:AB_309864)

Clonality

monoclonal antibody

Comments

Applications: Immunocytochemistry, Immunofluorescence, Western Blot

Clone ID

JBW301

Host Organism

mouse

Histone Methylation by SETD1A Protects Nascent DNA through the Nucleosome Chaperone Activity of FANCD2.

  • Higgs MR
  • Mol. Cell
  • 2018 Jul 5

Literature context:


Abstract:

Components of the Fanconi anemia and homologous recombination pathways play a vital role in protecting newly replicated DNA from uncontrolled nucleolytic degradation, safeguarding genome stability. Here we report that histone methylation by the lysine methyltransferase SETD1A is crucial for protecting stalled replication forks from deleterious resection. Depletion of SETD1A sensitizes cells to replication stress and leads to uncontrolled DNA2-dependent resection of damaged replication forks. The ability of SETD1A to prevent degradation of these structures is mediated by its ability to catalyze methylation on Lys4 of histone H3 (H3K4) at replication forks, which enhances FANCD2-dependent histone chaperone activity. Suppressing H3K4 methylation or expression of a chaperone-defective FANCD2 mutant leads to loss of RAD51 nucleofilament stability and severe nucleolytic degradation of replication forks. Our work identifies epigenetic modification and histone mobility as critical regulatory mechanisms in maintaining genome stability by restraining nucleases from irreparably damaging stalled replication forks.

Funding information:
  • NCRR NIH HHS - RR024574(United States)

PARP1-dependent recruitment of the FBXL10-RNF68-RNF2 ubiquitin ligase to sites of DNA damage controls H2A.Z loading.

  • Rona G
  • Elife
  • 2018 Jul 9

Literature context:


Abstract:

The mammalian FBXL10-RNF68-RNF2 ubiquitin ligase complex (FRRUC) mono-ubiquitylates H2A at Lys119 to repress transcription in unstressed cells. We found that the FRRUC is rapidly and transiently recruited to sites of DNA damage in a PARP1- and TIMELESS-dependent manner to promote mono-ubiquitylation of H2A at Lys119, a local decrease of H2A levels, and an increase of H2A.Z incorporation. Both the FRRUC and H2A.Z promote transcriptional repression, double strand break signaling, and homologous recombination repair (HRR). All these events require both the presence and activity of the FRRUC. Moreover, the FRRUC and its activity are required for the proper recruitment of BMI1-RNF2 and MEL18-RNF2, two other ubiquitin ligases that mono-ubiquitylate Lys119 in H2A upon genotoxic stress. Notably, whereas H2A.Z is not required for H2A mono-ubiquitylation, impairment of the latter results in the inhibition of H2A.Z incorporation. We propose that the recruitment of the FRRUC represents an early and critical regulatory step in HRR.

Funding information:
  • American Cancer Society - ACS 130304-RSG-16-241-01-DMC()
  • National Institutes of Health - R01- GM057691()
  • National Institutes of Health - R01-CA076584()
  • National Institutes of Health - R01-GM057587()
  • National Institutes of Health - R21-CA187612()
  • NIEHS NIH HHS - ES07784(United States)
  • NIGMS NIH HHS - R01 GM057587()
  • The Rosztoczy Foundation - Fellowship()

Apoptotic Cell-Derived Extracellular Vesicles Promote Malignancy of Glioblastoma Via Intercellular Transfer of Splicing Factors.

  • Pavlyukov MS
  • Cancer Cell
  • 2018 Jul 9

Literature context:


Abstract:

Aggressive cancers such as glioblastoma (GBM) contain intermingled apoptotic cells adjacent to proliferating tumor cells. Nonetheless, intercellular signaling between apoptotic and surviving cancer cells remain elusive. In this study, we demonstrate that apoptotic GBM cells paradoxically promote proliferation and therapy resistance of surviving tumor cells by secreting apoptotic extracellular vesicles (apoEVs) enriched with various components of spliceosomes. apoEVs alter RNA splicing in recipient cells, thereby promoting their therapy resistance and aggressive migratory phenotype. Mechanistically, we identified RBM11 as a representative splicing factor that is upregulated in tumors after therapy and shed in extracellular vesicles upon induction of apoptosis. Once internalized in recipient cells, exogenous RBM11 switches splicing of MDM4 and Cyclin D1 toward the expression of more oncogenic isoforms.

Funding information:
  • Cancer Research UK - (United Kingdom)
  • NCI NIH HHS - R01 CA183991()
  • NCI NIH HHS - R01 CA201402()
  • NINDS NIH HHS - R01 NS083767()

PTBP1-Mediated Alternative Splicing Regulates the Inflammatory Secretome and the Pro-tumorigenic Effects of Senescent Cells.

  • Georgilis A
  • Cancer Cell
  • 2018 Jul 9

Literature context:


Abstract:

Oncogene-induced senescence is a potent tumor-suppressive response. Paradoxically, senescence also induces an inflammatory secretome that promotes carcinogenesis and age-related pathologies. Consequently, the senescence-associated secretory phenotype (SASP) is a potential therapeutic target. Here, we describe an RNAi screen for SASP regulators. We identified 50 druggable targets whose knockdown suppresses the inflammatory secretome and differentially affects other SASP components. Among the screen candidates was PTBP1. PTBP1 regulates the alternative splicing of genes involved in intracellular trafficking, such as EXOC7, to control the SASP. Inhibition of PTBP1 prevents the pro-tumorigenic effects of the SASP and impairs immune surveillance without increasing the risk of tumorigenesis. In conclusion, our study identifies SASP inhibition as a powerful and safe therapy against inflammation-driven cancer.

Funding information:
  • Wellcome Trust - U117588499(88499)(United Kingdom)

An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion.

  • Baumgartner C
  • Cell Stem Cell
  • 2018 Jun 1

Literature context:


Abstract:

Hematopoietic stem cells (HSCs) sustain hematopoiesis throughout life. HSCs exit dormancy to restore hemostasis in response to stressful events, such as acute blood loss, and must return to a quiescent state to prevent their exhaustion and resulting bone marrow failure. HSC activation is driven in part through the phosphatidylinositol 3-kinase (PI3K)/AKT/mTORC1 signaling pathway, but less is known about the cell-intrinsic pathways that control HSC dormancy. Here, we delineate an ERK-dependent, rate-limiting feedback mechanism that controls HSC fitness and their re-entry into quiescence. We show that the MEK/ERK and PI3K pathways are synchronously activated in HSCs during emergency hematopoiesis and that feedback phosphorylation of MEK1 by activated ERK counterbalances AKT/mTORC1 activation. Genetic or chemical ablation of this feedback loop tilts the balance between HSC dormancy and activation, increasing differentiated cell output and accelerating HSC exhaustion. These results suggest that MEK inhibitors developed for cancer therapy may find additional utility in controlling HSC activation.

Funding information:
  • NIA NIH HHS - K08 AG024816-05(United States)

Heterochromatin-Encoded Satellite RNAs Induce Breast Cancer.

  • Zhu Q
  • Mol. Cell
  • 2018 Jun 7

Literature context:


Abstract:

Heterochromatic repetitive satellite RNAs are extensively transcribed in a variety of human cancers, including BRCA1 mutant breast cancer. Aberrant expression of satellite RNAs in cultured cells induces the DNA damage response, activates cell cycle checkpoints, and causes defects in chromosome segregation. However, the mechanism by which satellite RNA expression leads to genomic instability is not well understood. Here we provide evidence that increased levels of satellite RNAs in mammary glands induce tumor formation in mice. Using mass spectrometry, we further show that genomic instability induced by satellite RNAs occurs through interactions with BRCA1-associated protein networks required for the stabilization of DNA replication forks. Additionally, de-stabilized replication forks likely promote the formation of RNA-DNA hybrids in cells expressing satellite RNAs. These studies lay the foundation for developing novel therapeutic strategies that block the effects of non-coding satellite RNAs in cancer cells.

Funding information:
  • NCI NIH HHS - R01 CA080100()
  • NIAID NIH HHS - R01 AI015066(United States)

Targeting p38α Increases DNA Damage, Chromosome Instability, and the Anti-tumoral Response to Taxanes in Breast Cancer Cells.

  • Cánovas B
  • Cancer Cell
  • 2018 Jun 11

Literature context:


Abstract:

Breast cancer is the second leading cause of cancer-related death among women. Here we report a role for the protein kinase p38α in coordinating the DNA damage response and limiting chromosome instability during breast tumor progression, and identify the DNA repair regulator CtIP as a p38α substrate. Accordingly, decreased p38α signaling results in impaired ATR activation and homologous recombination repair, with concomitant increases in replication stress, DNA damage, and chromosome instability, leading to cancer cell death and tumor regression. Moreover, we show that pharmacological inhibition of p38α potentiates the effects of taxanes by boosting chromosome instability in murine models and patient-derived xenografts, suggesting the potential interest of combining p38α inhibitors with chemotherapeutic drugs that induce chromosome instability.

Funding information:
  • NIGMS NIH HHS - R01 GM068812(United States)

Polε Instability Drives Replication Stress, Abnormal Development, and Tumorigenesis.

  • Bellelli R
  • Mol. Cell
  • 2018 May 17

Literature context:


Abstract:

DNA polymerase ε (POLE) is a four-subunit complex and the major leading strand polymerase in eukaryotes. Budding yeast orthologs of POLE3 and POLE4 promote Polε processivity in vitro but are dispensable for viability in vivo. Here, we report that POLE4 deficiency in mice destabilizes the entire Polε complex, leading to embryonic lethality in inbred strains and extensive developmental abnormalities, leukopenia, and tumor predisposition in outbred strains. Comparable phenotypes of growth retardation and immunodeficiency are also observed in human patients harboring destabilizing mutations in POLE1. In both Pole4-/- mouse and POLE1 mutant human cells, Polε hypomorphy is associated with replication stress and p53 activation, which we attribute to inefficient replication origin firing. Strikingly, removing p53 is sufficient to rescue embryonic lethality and all developmental abnormalities in Pole4 null mice. However, Pole4-/-p53+/- mice exhibit accelerated tumorigenesis, revealing an important role for controlled CMG and origin activation in normal development and tumor prevention.

Funding information:
  • NIAID NIH HHS - U01 AI070499(United States)

An Acquired Vulnerability of Drug-Resistant Melanoma with Therapeutic Potential.

  • Wang L
  • Cell
  • 2018 May 31

Literature context:


Abstract:

BRAF(V600E) mutant melanomas treated with inhibitors of the BRAF and MEK kinases almost invariably develop resistance that is frequently caused by reactivation of the mitogen activated protein kinase (MAPK) pathway. To identify novel treatment options for such patients, we searched for acquired vulnerabilities of MAPK inhibitor-resistant melanomas. We find that resistance to BRAF+MEK inhibitors is associated with increased levels of reactive oxygen species (ROS). Subsequent treatment with the histone deacetylase inhibitor vorinostat suppresses SLC7A11, leading to a lethal increase in the already-elevated levels of ROS in drug-resistant cells. This causes selective apoptotic death of only the drug-resistant tumor cells. Consistently, treatment of BRAF inhibitor-resistant melanoma with vorinostat in mice results in dramatic tumor regression. In a study in patients with advanced BRAF+MEK inhibitor-resistant melanoma, we find that vorinostat can selectively ablate drug-resistant tumor cells, providing clinical proof of concept for the novel therapy identified here.

Funding information:
  • NINDS NIH HHS - R01 NS026799(United States)

Detection of DNA Double Strand Breaks by γH2AX Does Not Result in 53bp1 Recruitment in Mouse Retinal Tissues.

  • Müller B
  • Front Neurosci
  • 2018 May 17

Literature context:


Abstract:

Gene editing is an attractive potential treatment of inherited retinopathies. However, it often relies on endogenous DNA repair. Retinal DNA repair is incompletely characterized in humans and animal models. We investigated recruitment of the double stranded break (DSB) repair complex of γH2AX and 53bp1 in both developing and mature mouse neuroretinas. We evaluated the immunofluorescent retinal expression of these proteins during development (P07-P30) in normal and retinal degeneration models, as well as in potassium bromate induced DSB repair in normal adult (3 months) retinal explants. The two murine retinopathy models used had different mutations in Pde6b: the severe rd1 and the milder rd10 models. Compared to normal adult retina, we found increased numbers of γH2AX positive foci in all retinal neurons of the developing retina in both model and control retinas, as well as in wild type untreated retinal explant cultures. In contrast, the 53bp1 staining of the retina differed both in amount and character between cell types at all ages and in all model systems. There was strong pan nuclear staining in ganglion, amacrine, and horizontal cells, and cone photoreceptors, which was attenuated. Rod photoreceptors did not stain unequivocally. In all samples, 53bp1 stained foci only rarely occurred. Co-localization of 53bp1 and γH2AX staining was a very rare event (< 1% of γH2AX foci in the ONL and < 3% in the INL), suggesting the potential for alternate DSB sensing and repair proteins in the murine retina. At a minimum, murine retinal DSB repair does not appear to follow canonical pathways, and our findings suggests further investigation is warranted.

Funding information:
  • NCI NIH HHS - R01 CA090992-05(United States)

Distinct roles of ATM and ATR in the regulation of ARP8 phosphorylation to prevent chromosome translocations.

  • Sun J
  • Elife
  • 2018 May 8

Literature context:


Abstract:

Chromosomal translocations are hallmarks of various types of cancers and leukemias. However, the molecular mechanisms of chromosome translocations remain largely unknown. The ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, facilitates DNA repair to prevent chromosome abnormalities. Previously, we showed that ATM deficiency led to the 11q23 chromosome translocation, the most frequent chromosome abnormalities in secondary leukemia. Here, we show that ARP8, a subunit of the INO80 chromatin remodeling complex, is phosphorylated after etoposide treatment. The etoposide-induced phosphorylation of ARP8 is regulated by ATM and ATR, and attenuates its interaction with INO80. The ATM-regulated phosphorylation of ARP8 reduces the excessive loading of INO80 and RAD51 onto the breakpoint cluster region. These findings suggest that the phosphorylation of ARP8, regulated by ATM, plays an important role in maintaining the fidelity of DNA repair to prevent the etoposide-induced 11q23 abnormalities.

Funding information:
  • Japan Society for the Promotion of Science - JP15H02821()
  • Japan Society for the Promotion of Science - JP16H01312()
  • Japan Society for the Promotion of Science - JP26430114()
  • KWF Kankerbestrijding - The Oncode Institute()
  • Ministry of Education, Culture, Sports, Science, and Technology - Program of the Joint Usage/Research Center of Kyoto University()
  • Ministry of Education, Culture, Sports, Science, and Technology - the Program of the network-type joint Usage/Research Center for ()
  • Nederlandse Organisatie voor Wetenschappelijk Onderzoek - The gravitation program CancerGenomiCs.nl()
  • NIAID NIH HHS - R37 AI042528(United States)

PRDM9 Methyltransferase Activity Is Essential for Meiotic DNA Double-Strand Break Formation at Its Binding Sites.

  • Diagouraga B
  • Mol. Cell
  • 2018 Mar 1

Literature context:


Abstract:

The programmed formation of hundreds of DNA double-strand breaks (DSBs) is essential for proper meiosis and fertility. In mice and humans, the location of these breaks is determined by the meiosis-specific protein PRDM9, through the DNA-binding specificity of its zinc-finger domain. PRDM9 also has methyltransferase activity. Here, we show that this activity is required for H3K4me3 and H3K36me3 deposition and for DSB formation at PRDM9-binding sites. By analyzing mice that express two PRDM9 variants with distinct DNA-binding specificities, we show that each variant generates its own set of H3K4me3 marks independently from the other variant. Altogether, we reveal several basic principles of PRDM9-dependent DSB site determination, in which an excess of sites are designated through PRDM9 binding and subsequent histone methylation, from which a subset is selected for DSB formation.

Funding information:
  • NICHD NIH HHS - 2R24HD050846-06(United States)

BRD4 Inhibition Is Synthetic Lethal with PARP Inhibitors through the Induction of Homologous Recombination Deficiency.

  • Sun C
  • Cancer Cell
  • 2018 Mar 12

Literature context:


Abstract:

Poly(ADP-ribose) polymerase inhibitors (PARPi) are selectively active in cells with homologous recombination (HR) deficiency (HRD) caused by mutations in BRCA1, BRCA2, and other pathway members. We sought small molecules that induce HRD in HR-competent cells to induce synthetic lethality with PARPi and extend the utility of PARPi. We demonstrated that inhibition of bromodomain containing 4 (BRD4) induced HRD and sensitized cells across multiple tumor lineages to PARPi regardless of BRCA1/2, TP53, RAS, or BRAF mutation status through depletion of the DNA double-stand break resection protein CtIP (C-terminal binding protein interacting protein). Importantly, BRD4 inhibitor (BRD4i) treatment reversed multiple mechanisms of resistance to PARPi. Furthermore, PARPi and BRD4i are synergistic in multiple in vivo models.

Funding information:
  • NCI NIH HHS - CA986366(United States)
  • NCI NIH HHS - P50 CA083639()

The Ubiquitin E3/E4 Ligase UBE4A Adjusts Protein Ubiquitylation and Accumulation at Sites of DNA Damage, Facilitating Double-Strand Break Repair.

  • Baranes-Bachar K
  • Mol. Cell
  • 2018 Mar 1

Literature context:


Abstract:

Double-strand breaks (DSBs) are critical DNA lesions that robustly activate the elaborate DNA damage response (DDR) network. We identified a critical player in DDR fine-tuning: the E3/E4 ubiquitin ligase UBE4A. UBE4A's recruitment to sites of DNA damage is dependent on primary E3 ligases in the DDR and promotes enhancement and sustainment of K48- and K63-linked ubiquitin chains at these sites. This step is required for timely recruitment of the RAP80 and BRCA1 proteins and proper organization of RAP80- and BRCA1-associated protein complexes at DSB sites. This pathway is essential for optimal end resection at DSBs, and its abrogation leads to upregulation of the highly mutagenic alternative end-joining repair at the expense of error-free homologous recombination repair. Our data uncover a critical regulatory level in the DSB response and underscore the importance of fine-tuning the complex DDR network for accurate and balanced execution of DSB repair.

Funding information:
  • NIGMS NIH HHS - T32 GM007315(United States)

SLFN11 Blocks Stressed Replication Forks Independently of ATR.

  • Murai J
  • Mol. Cell
  • 2018 Feb 1

Literature context:


Abstract:

SLFN11 sensitizes cancer cells to a broad range of DNA-targeted therapies. Here we show that, in response to replication stress induced by camptothecin, SLFN11 tightly binds chromatin at stressed replication foci via RPA1 together with the replication helicase subunit MCM3. Unlike ATR, SLFN11 neither interferes with the loading of CDC45 and PCNA nor inhibits the initiation of DNA replication but selectively blocks fork progression while inducing chromatin opening across replication initiation sites. The ATPase domain of SLFN11 is required for chromatin opening, replication block, and cell death but not for the tight binding of SLFN11 to chromatin. Replication stress by the CHK1 inhibitor Prexasertib also recruits SLFN11 to nascent replicating DNA together with CDC45 and PCNA. We conclude that SLFN11 is recruited to stressed replication forks carrying extended RPA filaments where it blocks replication by changing chromatin structure across replication sites.

Funding information:
  • NCI NIH HHS - CA132630(United States)

The TIA1 RNA-Binding Protein Family Regulates EIF2AK2-Mediated Stress Response and Cell Cycle Progression.

  • Meyer C
  • Mol. Cell
  • 2018 Feb 15

Literature context:


Abstract:

TIA1 and TIAL1 encode a family of U-rich element mRNA-binding proteins ubiquitously expressed and conserved in metazoans. Using PAR-CLIP, we determined that both proteins bind target sites with identical specificity in 3' UTRs and introns proximal to 5' as well as 3' splice sites. Double knockout (DKO) of TIA1 and TIAL1 increased target mRNA abundance proportional to the number of binding sites and also caused accumulation of aberrantly spliced mRNAs, most of which are subject to nonsense-mediated decay. Loss of PRKRA by mis-splicing triggered the activation of the double-stranded RNA (dsRNA)-activated protein kinase EIF2AK2/PKR and stress granule formation. Ectopic expression of PRKRA cDNA or knockout of EIF2AK2 in DKO cells rescued this phenotype. Perturbation of maturation and/or stability of additional targets further compromised cell cycle progression. Our study reveals the essential contributions of the TIA1 protein family to the fidelity of mRNA maturation, translation, and RNA-stress-sensing pathways in human cells.

Funding information:
  • Howard Hughes Medical Institute - R01 GM104962()
  • NIDDK NIH HHS - R01 DK068429(United States)

Perturbation of PALB2 function by the T413S mutation found in small cell lung cancer.

  • Bleuyard JY
  • Wellcome Open Res
  • 2018 Feb 2

Literature context:


Abstract:

Background: Germline mutations in the PALB2 gene are associated with the genetic disorder Fanconi anaemia and increased predisposition to cancer. Disease-associated variants are mainly protein-truncating mutations, whereas a few missense substitutions are reported to perturb its interaction with breast cancer susceptibility proteins BRCA1 and BRCA2, which play essential roles in homology-directed repair (HDR). More recently, PALB2 was shown to associate with active genes independently of BRCA1, and through this mechanism, safeguards these regions from DNA replicative stresses. However, it is unknown whether PALB2 tumour suppressor function requires its chromatin association. Methods: Mining the public database of cancer mutations, we identified four potentially deleterious cancer-associated missense mutations within the PALB2 chromatin association motif (ChAM). To assess the impact of these mutations on PALB2 function, we generated cell lines expressing PALB2 variants harbouring corresponding ChAM mutations, and evaluated PALB2 chromatin association properties and the cellular resistance to camptothecin (CPT). Additionally, we examined the accumulation of γH2A.X and the RAD51 recombinase as readouts of DNA damage signalling and HDR, respectively. Results: We demonstrate that a small-cell lung cancer (SCLC)-associated T413S mutation in PALB2 impairs its chromatin association and confers reduced resistance to CPT, the only FDA-approved drug for relapsed SCLC. Unexpectedly, we found a less efficient γH2A.X nuclear foci formation in PALB2 T413S expressing cells, whereas a near-normal level of RAD51 nuclear foci was visible. Conclusions: These findings support the importance of PALB2 chromatin association in the suppression of tumours, including SCLC, an unusually aggressive type of cancer with poor prognosis. PALB2 T413S has little impact on RAD51 recruitment, likely due to its intact interaction with BRCA1 and BRCA2. However, this mutant shows inefficient DNA stress signalling. This finding sheds new light on the function of PALB2, playing a role in efficient DNA stress signalling through constitutive chromatin association.

Funding information:
  • Canadian Institutes of Health Research - IAP-99000(Canada)

The Augmented R-Loop Is a Unifying Mechanism for Myelodysplastic Syndromes Induced by High-Risk Splicing Factor Mutations.

  • Chen L
  • Mol. Cell
  • 2018 Feb 1

Literature context:


Abstract:

Mutations in several general pre-mRNA splicing factors have been linked to myelodysplastic syndromes (MDSs) and solid tumors. These mutations have generally been assumed to cause disease by the resultant splicing defects, but different mutations appear to induce distinct splicing defects, raising the possibility that an alternative common mechanism is involved. Here we report a chain of events triggered by multiple splicing factor mutations, especially high-risk alleles in SRSF2 and U2AF1, including elevated R-loops, replication stress, and activation of the ataxia telangiectasia and Rad3-related protein (ATR)-Chk1 pathway. We further demonstrate that enhanced R-loops, opposite to the expectation from gained RNA binding with mutant SRSF2, result from impaired transcription pause release because the mutant protein loses its ability to extract the RNA polymerase II (Pol II) C-terminal domain (CTD) kinase-the positive transcription elongation factor complex (P-TEFb)-from the 7SK complex. Enhanced R-loops are linked to compromised proliferation of bone-marrow-derived blood progenitors, which can be partially rescued by RNase H overexpression, suggesting a direct contribution of augmented R-loops to the MDS phenotype.

Funding information:
  • NIGMS NIH HHS - GM65115(United States)

Replication Stress Shapes a Protective Chromatin Environment across Fragile Genomic Regions.

  • Kim J
  • Mol. Cell
  • 2018 Jan 4

Literature context:


Abstract:

Recent integrative epigenome analyses highlight the importance of functionally distinct chromatin states for accurate cell function. How these states are established and maintained is a matter of intense investigation. Here, we present evidence for DNA damage as an unexpected means to shape a protective chromatin environment at regions of recurrent replication stress (RS). Upon aberrant fork stalling, DNA damage signaling and concomitant H2AX phosphorylation coordinate the FACT-dependent deposition of macroH2A1.2, a histone variant that promotes DNA repair by homologous recombination (HR). MacroH2A1.2, in turn, facilitates the accumulation of the tumor suppressor and HR effector BRCA1 at replication forks to protect from RS-induced DNA damage. Consequently, replicating primary cells steadily accrue macroH2A1.2 at fragile regions, whereas macroH2A1.2 loss in these cells triggers DNA damage signaling-dependent senescence, a hallmark of RS. Altogether, our findings demonstrate that recurrent DNA damage contributes to the chromatin landscape to ensure the epigenomic integrity of dividing cells.

Funding information:
  • Intramural NIH HHS - ZIA BC011282-01()
  • NIGMS NIH HHS - R01 GM073046(United States)

Nuclear localization of EIF4G3 suggests a role for the XY body in translational regulation during spermatogenesis in mice.

  • Hu J
  • Biol. Reprod.
  • 2018 Jan 1

Literature context:


Abstract:

Eukaryotic translation initiation factor 4G (EIF4G) is an important scaffold protein in the translation initiation complex. In mice, mutation of the Eif4g3 gene causes male infertility, with arrest of meiosis at the end of meiotic prophase. This study documents features of the developmental expression and subcellular localization of EIF4G3 that might contribute to its highly specific role in meiosis and spermatogenesis. Quite unexpectedly, EIF4G3 is located in the nucleus of spermatocytes, where it is highly enriched in the XY body, the chromatin domain formed by the transcriptionally inactive sex chromosomes. Moreover, many other, but not all, translation-related proteins are also localized in the XY body. These unanticipated observations implicate roles for the XY body in controlling mRNA metabolism and/or "poising" protein translation complexes before the meiotic division phase in spermatocytes.

Funding information:
  • Medical Research Council - MC_UU_12012/5(United Kingdom)

SMC1α Substitutes for Many Meiotic Functions of SMC1β but Cannot Protect Telomeres from Damage.

  • Biswas U
  • Curr. Biol.
  • 2018 Jan 22

Literature context:


Abstract:

The cohesin complex is built upon the SMC1/SMC3 heterodimer, and mammalian meiocytes feature two variants of SMC1 named SMC1α and SMC1β. It is unclear why these two SMC1 variants have evolved. To determine unique versus redundant functions of SMC1β, we asked which of the known functions of SMC1β can be fulfilled by SMC1α. Smc1α was expressed under control of the Smc1β promoter in either wild-type or SMC1β-deficient mice. No effect was seen in the former. However, several major phenotypes of SMC1β-deficient spermatocytes were rescued by SMC1α. We observed extended development before apoptosis and restoration of axial element and synaptonemal complex lengths, chromosome synapsis, sex body formation, processing of DNA double-strand breaks, and formation of MLH1 recombination foci. This supports the concept that the quantity rather than the specific quality of cohesin complexes is decisive for meiotic chromosome architecture. It also suggests plasticity in complex composition, because to replace SMC1β in many functions, SMC1α has to more extensively associate with other cohesins. The cells did not complete meiosis but died to the latest at the pachytene-to-diplotene transition. Telomere aberrations known from Smc1β-/- mice persisted, and DNA damage response and repair proteins accumulated there regardless of expression of SMC1α. Thus, whereas SMC1α can substitute for SMC1β in many functions, the protection of telomere integrity requires SMC1β.

Funding information:
  • NIEHS NIH HHS - P42ES004705(United States)

mTORC1 Inactivation Promotes Colitis-Induced Colorectal Cancer but Protects from APC Loss-Dependent Tumorigenesis.

  • Brandt M
  • Cell Metab.
  • 2018 Jan 9

Literature context:


Abstract:

Dietary habits that can induce inflammatory bowel disease (IBD) are major colorectal cancer (CRC) risk factors, but mechanisms linking nutrients, IBD, and CRC are unknown. Using human data and mouse models, we show that mTORC1 inactivation-induced chromosomal instability impairs intestinal crypt proliferation and regeneration, CDK4/6 dependently. This triggers interleukin (IL)-6-associated reparative inflammation, inducing crypt hyper-proliferation, wound healing, and CRC. Blocking IL-6 signaling or reactivating mTORC1 reduces inflammation-induced CRC, so mTORC1 activation suppresses tumorigenesis in IBD. Conversely, mTORC1 inactivation is beneficial in APC loss-dependent CRC. Thus, IL-6 blockers or protein-rich-diet-linked mTORC1 activation may prevent IBD-associated CRC. However, abolishing mTORC1 can mitigate CRC in predisposed patients with APC mutations. Our work reveals mTORC1 oncogenic and tumor-suppressive roles in intestinal epithelium and avenues to optimized and personalized therapeutic regimens for CRC.

Funding information:
  • NIGMS NIH HHS - T32 GM007067(United States)

Early histone H4 acetylation during chromatin remodeling in equine spermatogenesis.

  • Ketchum CC
  • Biol. Reprod.
  • 2018 Jan 1

Literature context:


Abstract:

Chromatin remodeling during spermatogenesis culminates in the exchange of nucleosomes for transition proteins and protamines as an important part of spermatid development to give rise to healthy sperm. Comparative immunofluorescence analyses of equine and murine testis histological sections were used to characterize nucleoprotein exchange in the stallion. Histone H4 hyperacetylation is considered a key event of histone removal during the nucleoprotein transition to a protamine-based sperm chromatin structure. In the stallion, but not the mouse, H4 was already highly acetylated in lysine residues K5, K8, and K12 in round spermatids almost immediately after meiotic division. Time courses of transition protein 1 (TP1), protamine 1, H2A histone family member Z (H2AFZ), and testis-specific histone H2B variant (TH2B) expression in stallion spermatogenesis were similar to the mouse where protamine 1 and TP1 were only expressed in elongating spermatids much later in spermatid development. The additional acetylation of H4 in K16 position (H4K16ac) was detected during a brief phase of spermatid elongation in both species, concomitant with the phosphorylation of the noncanonical histone variant H2AFX resulting from DNA strand break-mediated DNA relaxation. The results suggest that H4K16 acetylation, which is dependent on DNA damage signaling, may be more important for nucleosome replacement in spermiogenesis than indicated by data obtained in rodents and highlight the value of the stallion as an alternative animal model for investigating human spermatogenesis. A revised classification system of the equine spermatogenic cycle for simplified comparison with the mouse is proposed to this end.

Funding information:
  • NCI NIH HHS - R01CA095559(United States)

A homozygous FANCM mutation underlies a familial case of non-syndromic primary ovarian insufficiency.

  • Fouquet B
  • Elife
  • 2017 Dec 12

Literature context:


Abstract:

Primary Ovarian Insufficiency (POI) affects ~1% of women under forty. Exome sequencing of two Finnish sisters with non-syndromic POI revealed a homozygous mutation in FANCM, leading to a truncated protein (p.Gln1701*). FANCM is a DNA-damage response gene whose heterozygous mutations predispose to breast cancer. Compared to the mother's cells, the patients' lymphocytes displayed higher levels of basal and mitomycin C (MMC)-induced chromosomal abnormalities. Their lymphoblasts were hypersensitive to MMC and MMC-induced monoubiquitination of FANCD2 was impaired. Genetic complementation of patient's cells with wild-type FANCM improved their resistance to MMC re-establishing FANCD2 monoubiquitination. FANCM was more strongly expressed in human fetal germ cells than in somatic cells. FANCM protein was preferentially expressed along the chromosomes in pachytene cells, which undergo meiotic recombination. This mutation may provoke meiotic defects leading to a depleted follicular stock, as in Fancm-/- mice. Our findings document the first Mendelian phenotype due to a biallelic FANCM mutation.

Funding information:
  • NIGMS NIH HHS - GM025232(United States)

Huwe1 Regulates the Establishment and Maintenance of Spermatogonia by Suppressing DNA Damage Response.

  • Fok KL
  • Endocrinology
  • 2017 Nov 1

Literature context:


Abstract:

Spermatogenesis is sustained by a heterogeneous population of spermatogonia that includes the spermatogonial stem cells. However, the mechanisms underlying their establishment from gonocyte embryonic precursors and their maintenance thereafter remain largely unknown. In this study, we report that inactivation of the ubiquitin ligase Huwe1 in male germ cells in mice led to the degeneration of spermatogonia in neonates and resulted in a Sertoli cell-only phenotype in the adult. Huwe1 knockout gonocytes showed a decrease in mitotic re-entry, which inhibited their transition to spermatogonia. Inactivation of Huwe1 in primary spermatogonial culture or the C18-4 cell line resulted in cell degeneration. Degeneration of Huwe1 knockout spermatogonia was associated with an increased level of histone H2AX and an elevated DNA damage response that led to apparent mitotic catastrophe but not apoptosis or senescence. Blocking this increase in H2AX prevented the degeneration of Huwe1-depleted cells. Taken together, these results reveal a previously undefined role of Huwe1 in orchestrating the physiological DNA damage response in the male germline that contributes to the establishment and maintenance of spermatogonia.

Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle.

  • Chao HX
  • Cell Syst
  • 2017 Nov 22

Literature context:


Abstract:

Although molecular mechanisms that prompt cell-cycle arrest in response to DNA damage have been elucidated, the systems-level properties of DNA damage checkpoints are not understood. Here, using time-lapse microscopy and simulations that model the cell cycle as a series of Poisson processes, we characterize DNA damage checkpoints in individual, asynchronously proliferating cells. We demonstrate that, within early G1 and G2, checkpoints are stringent: DNA damage triggers an abrupt, all-or-none cell-cycle arrest. The duration of this arrest correlates with the severity of DNA damage. After the cell passes commitment points within G1 and G2, checkpoint stringency is relaxed. By contrast, all of S phase is comparatively insensitive to DNA damage. This checkpoint is graded: instead of halting the cell cycle, increasing DNA damage leads to slower S phase progression. In sum, we show that a cell's response to DNA damage depends on its exact cell-cycle position and that checkpoints are phase-dependent, stringent or relaxed, and graded or all-or-none.

Funding information:
  • NICHD NIH HHS - DP2 HD091800()
  • NIGMS NIH HHS - K99 GM102372()
  • NIGMS NIH HHS - R00 GM102372()
  • NIGMS NIH HHS - R01 GM083024()
  • NIGMS NIH HHS - R01 GM102413()
  • NIGMS NIH HHS - T32 GM067553()

Inhibition of TRF1 Telomere Protein Impairs Tumor Initiation and Progression in Glioblastoma Mouse Models and Patient-Derived Xenografts.

  • Bejarano L
  • Cancer Cell
  • 2017 Nov 13

Literature context:


Abstract:

Glioblastoma multiforme (GBM) is a deadly and common brain tumor. Poor prognosis is linked to high proliferation and cell heterogeneity, including glioma stem cells (GSCs). Telomere genes are frequently mutated. The telomere binding protein TRF1 is essential for telomere protection, and for adult and pluripotent stem cells. Here, we find TRF1 upregulation in mouse and human GBM. Brain-specific Trf1 genetic deletion in GBM mouse models inhibited GBM initiation and progression, increasing survival. Trf1 deletion increased telomeric DNA damage and reduced proliferation and stemness. TRF1 chemical inhibitors mimicked these effects in human GBM cells and also blocked tumor sphere formation and tumor growth in xenografts from patient-derived primary GSCs. Thus, targeting telomeres throughout TRF1 inhibition is an effective therapeutic strategy for GBM.

The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline.

  • Bailey AS
  • Elife
  • 2017 Oct 31

Literature context:


Abstract:

The switch from mitosis to meiosis is the key event marking onset of differentiation in the germline stem cell lineage. In Drosophila, the translational repressor Bgcn is required for spermatogonia to stop mitosis and transition to meiotic prophase and the spermatocyte state. Here we show that the mammalian Bgcn homolog YTHDC2 facilitates a clean switch from mitosis to meiosis in mouse germ cells, revealing a conserved role for YTHDC2 in this critical cell fate transition. YTHDC2-deficient male germ cells enter meiosis but have a mixed identity, maintaining expression of Cyclin A2 and failing to properly express many meiotic markers. Instead of continuing through meiotic prophase, the cells attempt an abnormal mitotic-like division and die. YTHDC2 binds multiple transcripts including Ccna2 and other mitotic transcripts, binds specific piRNA precursors, and interacts with RNA granule components, suggesting that proper progression of germ cells through meiosis is licensed by YTHDC2 through post-transcriptional regulation.

Genome Organization Drives Chromosome Fragility.

  • Canela A
  • Cell
  • 2017 Jul 27

Literature context:


Abstract:

In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT.

SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs.

  • Nozawa RS
  • Cell
  • 2017 Jun 15

Literature context:


Abstract:

Higher eukaryotic chromosomes are organized into topologically constrained functional domains; however, the molecular mechanisms required to sustain these complex interphase chromatin structures are unknown. A stable matrix underpinning nuclear organization was hypothesized, but the idea was abandoned as more dynamic models of chromatin behavior became prevalent. Here, we report that scaffold attachment factor A (SAF-A), originally identified as a structural nuclear protein, interacts with chromatin-associated RNAs (caRNAs) via its RGG domain to regulate human interphase chromatin structures in a transcription-dependent manner. Mechanistically, this is dependent on SAF-A's AAA+ ATPase domain, which mediates cycles of protein oligomerization with caRNAs, in response to ATP binding and hydrolysis. SAF-A oligomerization decompacts large-scale chromatin structure while SAF-A loss or monomerization promotes aberrant chromosome folding and accumulation of genome damage. Our results show that SAF-A and caRNAs form a dynamic, transcriptionally responsive chromatin mesh that organizes large-scale chromosome structures and protects the genome from instability.

TERRA RNA Antagonizes ATRX and Protects Telomeres.

  • Chu HP
  • Cell
  • 2017 Jun 29

Literature context:


Abstract:

Through an integration of genomic and proteomic approaches to advance understanding of long noncoding RNAs, we investigate the function of the telomeric transcript, TERRA. By identifying thousands of TERRA target sites in the mouse genome, we demonstrate that TERRA can bind both in cis to telomeres and in trans to genic targets. We then define a large network of interacting proteins, including epigenetic factors, telomeric proteins, and the RNA helicase, ATRX. TERRA and ATRX share hundreds of target genes and are functionally antagonistic at these loci: whereas TERRA activates, ATRX represses gene expression. At telomeres, TERRA competes with telomeric DNA for ATRX binding, suppresses ATRX localization, and ensures telomeric stability. Depleting TERRA increases telomerase activity and induces telomeric pathologies, including formation of telomere-induced DNA damage foci and loss or duplication of telomeric sequences. We conclude that TERRA functions as an epigenomic modulator in trans and as an essential regulator of telomeres in cis.

Funding information:
  • NIGMS NIH HHS - R01 GM058839()

A Class of Environmental and Endogenous Toxins Induces BRCA2 Haploinsufficiency and Genome Instability.

  • Tan SLW
  • Cell
  • 2017 Jun 1

Literature context:


Abstract:

Mutations truncating a single copy of the tumor suppressor, BRCA2, cause cancer susceptibility. In cells bearing such heterozygous mutations, we find that a cellular metabolite and ubiquitous environmental toxin, formaldehyde, stalls and destabilizes DNA replication forks, engendering structural chromosomal aberrations. Formaldehyde selectively depletes BRCA2 via proteasomal degradation, a mechanism of toxicity that affects very few additional cellular proteins. Heterozygous BRCA2 truncations, by lowering pre-existing BRCA2 expression, sensitize to BRCA2 haploinsufficiency induced by transient exposure to natural concentrations of formaldehyde. Acetaldehyde, an alcohol catabolite detoxified by ALDH2, precipitates similar effects. Ribonuclease H1 ameliorates replication fork instability and chromosomal aberrations provoked by aldehyde-induced BRCA2 haploinsufficiency, suggesting that BRCA2 inactivation triggers spontaneous mutagenesis during DNA replication via aberrant RNA-DNA hybrids (R-loops). These findings suggest a model wherein carcinogenesis in BRCA2 mutation carriers can be incited by compounds found pervasively in the environment and generated endogenously in certain tissues with implications for public health.

CHD4 Has Oncogenic Functions in Initiating and Maintaining Epigenetic Suppression of Multiple Tumor Suppressor Genes.

  • Xia L
  • Cancer Cell
  • 2017 May 8

Literature context:


Abstract:

An oncogenic role for CHD4, a NuRD component, is defined for initiating and supporting tumor suppressor gene (TSG) silencing in human colorectal cancer. CHD4 recruits repressive chromatin proteins to sites of DNA damage repair, including DNA methyltransferases where it imposes de novo DNA methylation. At TSGs, CHD4 retention helps maintain DNA hypermethylation-associated transcriptional silencing. CHD4 is recruited by the excision repair protein OGG1 for oxidative damage to interact with the damage-induced base 8-hydroxydeoxyguanosine (8-OHdG), while ZMYND8 recruits it to double-strand breaks. CHD4 knockdown activates silenced TSGs, revealing their role for blunting colorectal cancer cell proliferation, invasion, and metastases. High CHD4 and 8-OHdG levels plus low expression of TSGs strongly correlates with early disease recurrence and decreased overall survival.

RPL10L Is Required for Male Meiotic Division by Compensating for RPL10 during Meiotic Sex Chromosome Inactivation in Mice.

  • Jiang L
  • Curr. Biol.
  • 2017 May 22

Literature context:


Abstract:

The mammalian sex chromosomes have undergone profound changes during their evolution from an ancestral pair of autosomes [1-4]. Specifically, the X chromosome has acquired a paradoxical sex-biased function by redistributing gene contents [5, 6] and has generated a disproportionately high number of retrogenes that are located on autosomes and exhibit male-biased expression patterns [6]. Several selection-based models have been proposed to explain this phenomenon, including a model of sexual antagonism driving X inactivation (SAXI) [6-8] and a compensatory mechanism based on meiotic sex chromosome inactivation (MSCI) [6, 8-11]. However, experimental evidence correlating the function of X-chromosome-derived autosomal retrogenes with evolutionary forces remains limited [12-17]. Here, we show that the deficiency of Rpl10l, a murine autosomal retrogene of Rpl10 with testis-specific expression, disturbs ribosome biogenesis in late-prophase spermatocytes and prohibits the transition from prophase into metaphase of the first meiotic division, resulting in male infertility. Rpl10l expression compensates for the lack of Rpl10, which exhibits a broad expression pattern but is subject to MSCI during spermatogenesis. Importantly, ectopic expression of RPL10L prevents the death of cultured RPL10-deficient somatic cells, and Rpl10l-promoter-driven transgenic expression of Rpl10 in spermatocytes restores spermatogenesis and fertility in Rpl10l-deficient mice. Our results demonstrate that Rpl10l plays an essential role during the meiotic stage of spermatogenesis by compensating for MSCI-mediated transcriptional silencing of Rpl10. These data provide direct evidence for the compensatory hypothesis and add novel insight into the evolution of X-chromosome-derived autosomal retrogenes and their role in male fertility.

Mutational phospho-mimicry reveals a regulatory role for the XRCC4 and XLF C-terminal tails in modulating DNA bridging during classical non-homologous end joining.

  • Normanno D
  • Elife
  • 2017 May 13

Literature context:


Abstract:

XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filaments that bridge DNA. These XRCC4/XLF complexes rapidly load and connect broken DNA, thereby stimulating intermolecular ligation. XRCC4 and XLF both include disordered C-terminal tails that are functionally dispensable in isolation but are phosphorylated in response to DNA damage by DNA-PK and/or ATM. Here we concomitantly modify the tails of XRCC4 and XLF by substituting fourteen previously identified phosphorylation sites with either alanine or aspartate residues. These phospho-blocking and -mimicking mutations impact both the stability and DNA bridging capacity of XRCC4/XLF complexes, but without affecting their ability to stimulate LIG4 activity. Implicit in this finding is that phosphorylation may regulate DNA bridging by XRCC4/XLF filaments.

Funding information:
  • NIAID NIH HHS - R01 AI048758()

Ubiquitin Modification by the E3 Ligase/ADP-Ribosyltransferase Dtx3L/Parp9.

  • Yang CS
  • Mol. Cell
  • 2017 May 18

Literature context:


Abstract:

ADP-ribosylation of proteins is emerging as an important regulatory mechanism. Depending on the family member, ADP-ribosyltransferases either conjugate a single ADP-ribose to a target or generate ADP-ribose chains. Here we characterize Parp9, a mono-ADP-ribosyltransferase reported to be enzymatically inactive. Parp9 undergoes heterodimerization with Dtx3L, a histone E3 ligase involved in DNA damage repair. We show that the Dtx3L/Parp9 heterodimer mediates NAD+-dependent mono-ADP-ribosylation of ubiquitin, exclusively in the context of ubiquitin processing by E1 and E2 enzymes. Dtx3L/Parp9 ADP-ribosylates the carboxyl group of Ub Gly76. Because Gly76 is normally used for Ub conjugation to substrates, ADP-ribosylation of the Ub carboxyl terminus precludes ubiquitylation. Parp9 ADP-ribosylation activity therefore restrains the E3 function of Dtx3L. Mutation of the NAD+ binding site in Parp9 increases the DNA repair activity of the heterodimer. Moreover, poly(ADP-ribose) binding to the Parp9 macrodomains increases E3 activity. Dtx3L heterodimerization with Parp9 enables NAD+ and poly(ADP-ribose) regulation of E3 activity.

Funding information:
  • NCI NIH HHS - R01 CA214872()

Polyglutamine-Expanded Huntingtin Exacerbates Age-Related Disruption of Nuclear Integrity and Nucleocytoplasmic Transport.

  • Gasset-Rosa F
  • Neuron
  • 2017 Apr 5

Literature context:


Abstract:

Onset of neurodegenerative disorders, including Huntington's disease, is strongly influenced by aging. Hallmarks of aged cells include compromised nuclear envelope integrity, impaired nucleocytoplasmic transport, and accumulation of DNA double-strand breaks. We show that mutant huntingtin markedly accelerates all of these cellular phenotypes in a dose- and age-dependent manner in cortex and striatum of mice. Huntingtin-linked polyglutamine initially accumulates in nuclei, leading to disruption of nuclear envelope architecture, partial sequestration of factors essential for nucleocytoplasmic transport (Gle1 and RanGAP1), and intranuclear accumulation of mRNA. In aged mice, accumulation of RanGAP1 together with polyglutamine is shifted to perinuclear and cytoplasmic areas. Consistent with findings in mice, marked alterations in nuclear envelope morphology, abnormal localization of RanGAP1, and nuclear accumulation of mRNA were found in cortex of Huntington's disease patients. Overall, our findings identify polyglutamine-dependent inhibition of nucleocytoplasmic transport and alteration of nuclear integrity as a central component of Huntington's disease.

Funding information:
  • NIA NIH HHS - P50 AG005131()
  • NIA NIH HHS - P50 AG005134()
  • NINDS NIH HHS - R01 NS087227()

The RNF168 paralog RNF169 defines a new class of ubiquitylated histone reader involved in the response to DNA damage.

  • Kitevski-LeBlanc J
  • Elife
  • 2017 Apr 13

Literature context:


Abstract:

Site-specific histone ubiquitylation plays a central role in orchestrating the response to DNA double-strand breaks (DSBs). DSBs elicit a cascade of events controlled by the ubiquitin ligase RNF168, which promotes the accumulation of repair factors such as 53BP1 and BRCA1 on the chromatin flanking the break site. RNF168 also promotes its own accumulation, and that of its paralog RNF169, but how they recognize ubiquitylated chromatin is unknown. Using methyl-TROSY solution NMR spectroscopy and molecular dynamics simulations, we present an atomic resolution model of human RNF169 binding to a ubiquitylated nucleosome, and validate it by electron cryomicroscopy. We establish that RNF169 binds to ubiquitylated H2A-Lys13/Lys15 in a manner that involves its canonical ubiquitin-binding helix and a pair of arginine-rich motifs that interact with the nucleosome acidic patch. This three-pronged interaction mechanism is distinct from that by which 53BP1 binds to ubiquitylated H2A-Lys15 highlighting the diversity in site-specific recognition of ubiquitylated nucleosomes.

BTBD18 Regulates a Subset of piRNA-Generating Loci through Transcription Elongation in Mice.

  • Zhou L
  • Dev. Cell
  • 2017 Mar 13

Literature context:


Abstract:

PIWI-interacting RNAs (piRNAs) are small non-coding RNAs essential for animal germ cell development. Despite intense investigation of post-transcriptional processing, chromatin regulators for piRNA biogenesis in mammals remain largely unexplored. Here we document that BTBD18 is a pachytene nuclear protein in mouse testes that occupies a subset of pachytene piRNA-producing loci. Ablation of Btbd18 in mice disrupts piRNA biogenesis, prevents spermiogenesis, and results in male sterility. Transcriptome profiling, chromatin accessibility, and RNA polymerase II occupancy demonstrate that BTBD18 facilitates expression of pachytene piRNA precursors by promoting transcription elongation. Thus, our study identifies BTBD18 as a specific controller for transcription activation through RNA polymerase II elongation at a subset of genomic piRNA loci.

The Chromatin-Associated Phf12 Protein Maintains Nucleolar Integrity and Prevents Premature Cellular Senescence.

  • Graveline R
  • Mol. Cell. Biol.
  • 2017 Mar 1

Literature context:


Abstract:

Pf1, also known as Phf12 (plant homeodomain [PHD] zinc finger protein 12), is a member of the PHD zinc finger family of proteins. Pf1 associates with a chromatin-interacting protein complex comprised of MRG15, Sin3B, and histone deacetylase 1 (HDAC1) that functions as a transcriptional modulator. The biological function of Pf1 remains largely elusive. We undertook the generation of Pf1 knockout mice to elucidate its physiological role. We demonstrate that Pf1 is required for mid- to late gestation viability. Pf1 inactivation impairs the proliferative potential of mouse embryonic fibroblasts (MEFs) and is associated with a significant decrease in bromodeoxyuridine incorporation; an increase in senescence-associated β-galactosidase (SA-β-Gal) activity, a marker of cellular senescence; and elevated levels of phosphorylated H2AX (γ-H2A.X), a marker associated with DNA double-strand breaks. Analysis of transcripts differentially expressed in wild-type and Pf1-deficient cells revealed the impact of Pf1 in multiple regulatory arms of the ribosome biogenesis pathways. Strikingly, assessment of the morphology of the nucleoli exposed an abnormal nucleolar structure in Pf1-deficient cells. Finally, proteomic analysis of the Pf1-interacting complexes highlighted proteins involved in ribosome biogenesis. Taken together, our data reveal an unsuspected function for the Pf1-associated chromatin complex in the ribosomal biogenesis and senescence pathways.

A type I IFN-dependent DNA damage response regulates the genetic program and inflammasome activation in macrophages.

  • Morales AJ
  • Elife
  • 2017 Mar 31

Literature context:


Abstract:

Macrophages produce genotoxic agents, such as reactive oxygen and nitrogen species, that kill invading pathogens. Here we show that these agents activate the DNA damage response (DDR) kinases ATM and DNA-PKcs through the generation of double stranded breaks (DSBs) in murine macrophage genomic DNA. In contrast to other cell types, initiation of this DDR depends on signaling from the type I interferon receptor. Once activated, ATM and DNA-PKcs regulate a genetic program with diverse immune functions and promote inflammasome activation and the production of IL-1β and IL-18. Indeed, following infection with Listeria monocytogenes, DNA-PKcs-deficient murine macrophages produce reduced levels of IL-18 and are unable to optimally stimulate IFN-γ production by NK cells. Thus, genomic DNA DSBs act as signaling intermediates in murine macrophages, regulating innate immune responses through the initiation of a type I IFN-dependent DDR.

Funding information:
  • NIAID NIH HHS - R01 AI047829()
  • NIAID NIH HHS - R01 AI074953()
  • NIAID NIH HHS - R01 AI113118()
  • NIAID NIH HHS - T32 AI007163()
  • NIEHS NIH HHS - Z01 ES021157()

Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1.

  • Nguyen HD
  • Mol. Cell
  • 2017 Mar 2

Literature context:


Abstract:

R loop, a transcription intermediate containing RNA:DNA hybrids and displaced single-stranded DNA (ssDNA), has emerged as a major source of genomic instability. RNaseH1, which cleaves the RNA in RNA:DNA hybrids, plays an important role in R loop suppression. Here we show that replication protein A (RPA), an ssDNA-binding protein, interacts with RNaseH1 and colocalizes with both RNaseH1 and R loops in cells. In vitro, purified RPA directly enhances the association of RNaseH1 with RNA:DNA hybrids and stimulates the activity of RNaseH1 on R loops. An RPA binding-defective RNaseH1 mutant is not efficiently stimulated by RPA in vitro, fails to accumulate at R loops in cells, and loses the ability to suppress R loops and associated genomic instability. Thus, in addition to sensing DNA damage and replication stress, RPA is a sensor of R loops and a regulator of RNaseH1, extending the versatile role of RPA in suppression of genomic instability.

Funding information:
  • NCI NIH HHS - R01 CA197779()
  • NCRR NIH HHS - P41 RR001081()
  • NIGMS NIH HHS - R01 GM076388()

NBS1 Phosphorylation Status Dictates Repair Choice of Dysfunctional Telomeres.

  • Rai R
  • Mol. Cell
  • 2017 Mar 2

Literature context:


Abstract:

Telomeres employ TRF2 to protect chromosome ends from activating the DNA damage sensor MRE11-RAD50-NBS1 (MRN), thereby repressing ATM-dependent DNA damage checkpoint responses. How TRF2 prevents MRN activation at dysfunctional telomeres is unclear. Here, we show that the phosphorylation status of NBS1 determines the repair pathway choice of dysfunctional telomeres. The crystal structure of the TRF2-NBS1 complex at 3.0 Å resolution shows that the NBS1 429YQLSP433 motif interacts specifically with the TRF2TRFH domain. Phosphorylation of NBS1 serine 432 by CDK2 in S/G2 dissociates NBS1 from TRF2, promoting TRF2-Apollo/SNM1B complex formation and the protection of leading-strand telomeres. Classical-NHEJ-mediated repair of telomeres lacking TRF2 requires phosphorylated NBS1S432 to activate ATM, while interaction of de-phosphorylated NBS1S432 with TRF2 promotes alternative-NHEJ repair of telomeres lacking POT1-TPP1. Our work advances understanding of how the TRF2TRFH domain orchestrates telomere end protection and reveals how the phosphorylation status of the NBS1S432 dictates repair pathway choice of dysfunctional telomeres.

Funding information:
  • NCI NIH HHS - P30 CA016359()
  • NIA NIH HHS - R01 AG028888()

p53 Modulates the Fate of Cardiac Progenitor Cells Ex Vivo and in the Diabetic Heart In Vivo.

  • Kannappan R
  • EBioMedicine
  • 2017 Feb 6

Literature context:


Abstract:

p53 is an important modulator of stem cell fate, but its role in cardiac progenitor cells (CPCs) is unknown. Here, we tested the effects of a single extra-copy of p53 on the function of CPCs in the presence of oxidative stress mediated by doxorubicin in vitro and type-1 diabetes in vivo. CPCs were obtained from super-p53 transgenic mice (p53-tg), in which the additional allele is regulated in a manner similar to the endogenous protein. Old CPCs with increased p53 dosage showed a superior ability to sustain oxidative stress, repair DNA damage and restore cell division. With doxorubicin, a larger fraction of CPCs carrying an extra-copy of the p53 allele recruited γH2A.X reestablishing DNA integrity. Enhanced p53 expression resulted in a superior tolerance to oxidative stress in vivo by providing CPCs with defense mechanisms necessary to survive in the milieu of the diabetic heart; they engrafted in regions of tissue injury and in three days acquired the cardiomyocyte phenotype. The biological advantage provided by the increased dosage of p53 in CPCs suggests that this genetic strategy may be translated to humans to increase cellular engraftment and growth, critical determinants of successful cell therapy for the failing heart.

Funding information:
  • NIA NIH HHS - R01 AG026107()
  • NIA NIH HHS - R01 AG037490()

Large-Scale Analysis of CRISPR/Cas9 Cell-Cycle Knockouts Reveals the Diversity of p53-Dependent Responses to Cell-Cycle Defects.

  • McKinley KL
  • Dev. Cell
  • 2017 Feb 27

Literature context:


Abstract:

Defining the genes that are essential for cellular proliferation is critical for understanding organismal development and identifying high-value targets for disease therapies. However, the requirements for cell-cycle progression in human cells remain incompletely understood. To elucidate the consequences of acute and chronic elimination of cell-cycle proteins, we generated and characterized inducible CRISPR/Cas9 knockout human cell lines targeting 209 genes involved in diverse cell-cycle processes. We performed single-cell microscopic analyses to systematically establish the effects of the knockouts on subcellular architecture. To define variations in cell-cycle requirements between cultured cell lines, we generated knockouts across cell lines of diverse origins. We demonstrate that p53 modulates the phenotype of specific cell-cycle defects through distinct mechanisms, depending on the defect. This work provides a resource to broadly facilitate robust and long-term depletion of cell-cycle proteins and reveals insights into the requirements for cell-cycle progression.

Funding information:
  • NIGMS NIH HHS - R01 GM088313()
  • NIGMS NIH HHS - R01 GM108718()

TODRA, a lncRNA at the RAD51 Locus, Is Oppositely Regulated to RAD51, and Enhances RAD51-Dependent DSB (Double Strand Break) Repair.

  • Gazy I
  • PLoS ONE
  • 2016 May 2

Literature context:


Abstract:

Expression of RAD51, a crucial player in homologous recombination (HR) and DNA double-strand break (DSB) repair, is dysregulated in human tumors, and can contribute to genomic instability and tumor progression. To further understand RAD51 regulation we functionally characterized a long non-coding (lnc) RNA, dubbed TODRA (Transcribed in the Opposite Direction of RAD51), transcribed 69bp upstream to RAD51, in the opposite direction. We demonstrate that TODRA is an expressed transcript and that the RAD51 promoter region is bidirectional, supporting TODRA expression (7-fold higher than RAD51 in this assay, p = 0.003). TODRA overexpression in HeLa cells induced expression of TPIP, a member of the TPTE family which includes PTEN. Similar to PTEN, we found that TPIP co-activates E2F1 induction of RAD51. Analysis of E2F1's effect on the bidirectional promoter showed that E2F1 binding to the same site that promotes RAD51 expression, results in downregulation of TODRA. Moreover, TODRA overexpression induces HR in a RAD51-dependent DSB repair assay, and increases formation of DNA damage-induced RAD51-positive foci. Importantly, gene expression in breast tumors supports our finding that E2F1 oppositely regulates RAD51 and TODRA: increased RAD51 expression, which is associated with an aggressive tumor phenotype (e.g. negative correlation with positive ER (r = -0.22, p = 0.02) and positive PR status (r = -0.27, p<0.001); positive correlation with ki67 status (r = 0.36, p = 0.005) and HER2 amplification (r = 0.41, p = 0.001)), correlates as expected with lower TODRA and higher E2F1 expression. However, although E2F1 induction resulted in TPIP downregulation in cell lines, we find that TPIP expression in tumors is not reduced despite higher E2F1 expression, perhaps contributing to increased RAD51 expression. Our results identify TPIP as a novel E2F1 co-activator, suggest a similar role for other TPTEs, and indicate that the TODRA lncRNA affects RAD51 dysregulation and RAD51-dependent DSB repair in malignancy. Importantly, gene expression in breast tumors supports our finding that E2F1 oppositely regulates RAD51 and TODRA: increased RAD51 expression, which is associated with an aggressive tumor phenotype (e.g. negative correlation with positive ER (r = -0.22, p = 0.02) and positive PR status (r = -0.27, p<0.001); positive correlation with ki67 status (r = 0.36, p = 0.005) and HER2 amplification (r = 0.41, p = 0.001)), correlates as expected with lower TODRA and higher E2F1 expression. However, although E2F1 induction resulted in TPIP downregulation in cell lines, we find that TPIP expression in tumors is not reduced despite higher E2F1 expression, perhaps contributing to increased RAD51 expression. Our results identify TPIP as a novel E2F1 co-activator, suggest a similar role for other TPTEs, and indicate that the TODRA lncRNA affects RAD51 dysregulation and RAD51-dependent DSB repair in malignancy.

Inhibitory Effect of the Noncamptothecin Topoisomerase I Inhibitor LMP-400 on Female Mice Models and Human Pheochromocytoma Cells.

  • Schovanek J
  • Endocrinology
  • 2015 Nov 17

Literature context:


Abstract:

Metastatic pheochromocytoma continues to be an incurable disease, and treatment with conventional cytotoxic chemotherapy offers limited efficacy. In the present study, we evaluated a novel topoisomerase I inhibitor, LMP-400, as a potential treatment for this devastating disease. We found a high expression of topoisomerase I in human metastatic pheochromocytoma, providing a basis for the evaluation of a topoisomerase 1 inhibitor as a therapeutic strategy. LMP-400 inhibited the cell growth of established mouse pheochromocytoma cell lines and primary human tumor tissue cultures. In a study performed in athymic female mice, LMP-400 demonstrated a significant inhibitory effect on tumor growth with two drug administration regimens. Furthermore, low doses of LMP-400 decreased the protein levels of hypoxia-inducible factor 1 (HIF-1α), one of a family of factors studied as potential metastatic drivers in these tumors. The HIF-1α decrease resulted in changes in the mRNA levels of HIF-1 transcriptional targets. In vitro, LMP-400 showed an increase in the growth-inhibitory effects in combination with other chemotherapeutic drugs that are currently used for the treatment of pheochromocytoma. We conclude that LMP-400 has promising antitumor activity in preclinical models of metastatic pheochromocytoma and its use should be considered in future clinical trials.

Funding information:
  • NCRR NIH HHS - P20 RR021937(United States)

Inactivation of AKT induces cellular senescence in uterine leiomyoma.

  • Xu X
  • Endocrinology
  • 2014 Apr 24

Literature context:


Abstract:

Uterine leiomyomas (fibroids) are a major public health problem. Current medical treatments with GnRH analogs do not provide long-term benefit. Thus, permanent shrinkage or inhibition of fibroid growth via medical means remains a challenge. The AKT pathway is a major growth and survival pathway for fibroids. We propose that AKT inhibition results in a transient regulation of specific mechanisms that ultimately drive cells into cellular senescence or cell death. In this study, we investigated specific mechanisms of AKT inhibition that resulted in senescence. We observed that administration of MK-2206, an allosteric AKT inhibitor, increased levels of reactive oxygen species, up-regulated the microRNA miR-182 and several senescence-associated genes (including p16, p53, p21, and β-galactosidase), and drove leiomyoma cells into stress-induced premature senescence (SIPS). Moreover, induction of SIPS was mediated by HMGA2, which colocalized to senescence-associated heterochromatin foci. This study provides a conceivable molecular mechanism of SIPS by AKT inhibition in fibroids.

Funding information:
  • NINDS NIH HHS - R01 NS073875(United States)

RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells.

  • Chia J
  • Mol. Syst. Biol.
  • 2012 Dec 5

Literature context:


Abstract:

The Golgi apparatus has many important physiological functions, including sorting of secretory cargo and biosynthesis of complex glycans. These functions depend on the intricate and compartmentalized organization of the Golgi apparatus. To investigate the mechanisms that regulate Golgi architecture, we developed a quantitative morphological assay using three different Golgi compartment markers and quantitative image analysis, and performed a kinome- and phosphatome-wide RNAi screen in HeLa cells. Depletion of 159 signaling genes, nearly 20% of genes assayed, induced strong and varied perturbations in Golgi morphology. Using bioinformatics data, a large regulatory network could be constructed. Specific subnetworks are involved in phosphoinositides regulation, acto-myosin dynamics and mitogen activated protein kinase signaling. Most gene depletion also affected Golgi functions, in particular glycan biosynthesis, suggesting that signaling cascades can control glycosylation directly at the Golgi level. Our results provide a genetic overview of the signaling pathways that control the Golgi apparatus in human cells.

Funding information:
  • Biotechnology and Biological Sciences Research Council - (United Kingdom)
  • NHGRI NIH HHS - 1R01HGO2273-01(United States)