X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

β-Actin Antibody (C4)

RRID:AB_2714189

IDH2 Deficiency in Microglia Decreases the Pro-inflammatory Response via the ERK and NF-κB Pathways.

  • Chae U
  • Inflammation
  • 2018 Jul 9

Literature context:


Abstract:

In various neuronal diseases, the activation of microglia contributes to the production of excessive neurotoxic factors, such as pro-inflammatory mediators. In particular, the overproduction of pro-inflammatory cytokines and nitric oxide (NO) has critical effects on the development of neurodegenerative diseases and gliomas in the brain. Recent studies have suggested that isocitrate dehydrogenase 2 (IDH2) plays a key role in inducing gliomas and neurodegeneration. IDH2 dysfunction has been linked to various cancers and neurodegenerative diseases associated with uncontrolled inflammatory responses, such as the excessive generation of pro-inflammatory cytokines. In this study, we demonstrate that IDH2 contributes to the regulation of pro-inflammatory mediators in microglia. The downregulation of IDH2 decreased the lipopolysaccharide (LPS)-induced pro-inflammatory response in BV-2 and primary microglial cells. Furthermore, IDH2 deficiency downregulated pro-inflammatory mediators via modulation of the ERK and NF-κB pathways. These results indicate that IDH2 is a potential target for the regulation of pro-inflammatory responses in LPS-activated microglial cells. Our findings also provide a basis for the development of new therapies for pro-inflammatory responses in dysfunction-associated neuronal diseases.

Funding information:
  • National Research Foundation of Korea - NRF-2015R1A4A1042271()
  • National Research Foundation of Korea - NRF-2017R1A2B4008176()
  • National Research Foundation of Korea - NRF-2017R1A5A2015391()
  • NHLBI NIH HHS - HL079071(United States)

FGF23 Regulates Wnt/β-Catenin Signaling-Mediated Osteoarthritis in Mice Overexpressing High-Molecular-Weight FGF2.

  • Meo Burt P
  • Endocrinology
  • 2018 Jun 1

Literature context:


Abstract:

Although humans with X-linked hypophosphatemia (XLH) and the Hyp mouse, a murine homolog of XLH, are known to develop degenerative joint disease, the exact mechanism that drives the osteoarthritis (OA) phenotype remains unclear. Mice that overexpress high-molecular-weight fibroblast growth factor (FGF) 2 isoforms (HMWTg mice) phenocopy both XLH and Hyp, including OA with increased FGF23 production in bone and serum. Because HMWTg cartilage also has increased FGF23 and there is cross-talk between FGF23-Wnt/β-catenin signaling, the purpose of this study was to determine if OA observed in HMWTg mice is due to FGF23-mediated canonical Wnt signaling in chondrocytes, given that both pathways are implicated in OA pathogenesis. HMWTg OA joints had decreased Dkk1, Sost, and Lrp6 expression with increased Wnt5a, Wnt7b, Lrp5, Axin2, phospho-GSK3β, Lef1, and nuclear β-catenin, as indicated by immunohistochemistry or quantitative PCR analysis. Chondrocytes from HMWTg mice had enhanced alcian blue and alkaline phosphatase staining as well as increased FGF23, Adamts5, Il-1β, Wnt7b, Wnt16, and Wisp1 gene expression and phospho-GSK3β protein expression as indicated by Western blot, compared with chondrocytes of vector control and chondrocytes from mice overexpressing the low-molecular-weight isoform, which were protected from OA. Canonical Wnt inhibitor treatment rescued some of those parameters in HMWTg chondrocytes, seemingly delaying the initially accelerated chondrogenic differentiation. FGF23 neutralizing antibody treatment was able to partly ameliorate OA abnormalities in subchondral bone and reduce degradative/hypertrophic chondrogenic marker expression in HMWTg joints in vivo. These results demonstrate that osteoarthropathy of HMWTg is at least partially due to FGF23-modulated Wnt/β-catenin signaling in chondrocytes.

Funding information:
  • NIDDK NIH HHS - DK087960(United States)

UBE2M Is a Stress-Inducible Dual E2 for Neddylation and Ubiquitylation that Promotes Targeted Degradation of UBE2F.

  • Zhou W
  • Mol. Cell
  • 2018 Jun 21

Literature context:


Abstract:

UBE2M and UBE2F are two family members of neddylation E2 conjugating enzyme that, together with E3s, activate CRLs (Cullin-RING Ligases) by catalyzing cullin neddylation. However, whether and how two E2s cross-talk with each other are largely unknown. Here, we report that UBE2M is a stress-inducible gene subjected to cis-transactivation by HIF-1 and AP1, and MLN4924, a small molecule inhibitor of E1 NEDD8-activating enzyme (NAE), upregulates UBE2M via blocking degradation of HIF-1α and c-JUN. UBE2M is a dual E2 for targeted ubiquitylation and degradation of UBE2F, acting as a neddylation E2 to activate CUL3-Keap1 E3 under physiological conditions but as a ubiquitylation E2 for Parkin-DJ-1 E3 under stressed conditions. UBE2M-induced UBE2F degradation leads to CRL5 inactivation and subsequent NOXA accumulation to suppress the growth of lung cancer cells. Collectively, our study establishes a negative regulatory axis between two neddylation E2s with UBE2M ubiquitylating UBE2F, and two CRLs with CRL3 inactivating CRL5.

Funding information:
  • NCI NIH HHS - R01 CA156744()
  • NCI NIH HHS - R01 CA171277()
  • NCI NIH HHS - R01-CA078461(United States)

Differential toxicity of TDP-43 isoforms depends on their sub-mitochondrial localization in neuronal cells.

  • Salvatori I
  • J. Neurochem.
  • 2018 May 20

Literature context:


Abstract:

TAR DNA binding protein 43 (TDP-43) is an RNA binding protein and a major component of protein aggregates found in Amyotrophic Lateral Sclerosis and several other neurodegenerative diseases. TDP-43 exists as a full length protein and as two shorter forms of 25 and 35 kDa. Full length mutant TDP-43s found in ALS patients re-localize from the nucleus to the cytoplasm and in part to mitochondria, where they exert a toxic role associated with neurodegeneration. However, induction of mitochondrial damage by TDP-43 fragments is yet to be clarified. In this work, we show that the mitochondrial 35 kDa truncated form of TDP-43 is restricted to the intermembrane space while the full length forms also localise in the mitochondrial matrix in cultured neuronal NSC-34 cells. Interestingly, the full length forms clearly affect mitochondrial metabolism and morphology, possibly via their ability to inhibit the expression of Complex I subunits encoded by the mitochondrial-transcribed mRNAs, while the 35 kDa form does not. In the light of the known differential contribution of the full length and short isoforms to generate toxic aggregates, we propose that the presence of full length TDP-43s in the matrix is a primary cause of mitochondrial damage. This in turn may cause oxidative stress inducing toxic oligomers formation, in which short TDP-43 forms play a major role. This article is protected by copyright. All rights reserved.

Funding information:
  • NHLBI NIH HHS - HL108186(United States)

Cell-Autonomous Regulation of Dendrite Self-Avoidance by the Wnt Secretory Factor MIG-14/Wntless.

  • Liao CP
  • Neuron
  • 2018 Apr 18

Literature context:


Abstract:

Self-avoidance allows sister dendrites from the same neuron to form non-redundant coverage of the sensory territory and is important for neural circuitry functions. Here, we report an unexpected, cell-autonomous role of the Wnt-secretory factor MIG-14/Wntless in mediating dendrite self-avoidance in the C. elegans multidendritic PVD neurons. Similar findings in Drosophila suggest that this novel function of Wntless is conserved. The mig-14 mutant shows defects in dendrite self-avoidance, and ectopic MIG-14 expression triggers dendrite repulsion. Functions of dendrite self-avoidance and Wnt secretion could be mapped to distinct MIG-14 domains, indicating that these two functions of MIG-14 are genetically separable, consistent with lack of self-avoidance defects in the Wnt mutants. We further demonstrate that MIG-14 engages Wiskott-Aldrich syndrome protein (WASP)-dependent actin assembly to regulate dendrite self-avoidance. Our work expands the repertoire of self-avoidance molecules and uncovers a previously unknown, Wnt-independent function of MIG-14/Wntless.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/D020190/1(United Kingdom)

SPIN1 promotes tumorigenesis by blocking the uL18 (universal large ribosomal subunit protein 18)-MDM2-p53 pathway in human cancer.

  • Fang Z
  • Elife
  • 2018 Mar 16

Literature context:


Abstract:

Ribosomal proteins (RPs) play important roles in modulating the MDM2-p53 pathway. However, less is known about the upstream regulators of the RPs. Here, we identify SPIN1 (Spindlin 1) as a novel binding partner of human RPL5/uL18 that is important for this pathway. SPIN1 ablation activates p53, suppresses cell growth, reduces clonogenic ability, and induces apoptosis of human cancer cells. Mechanistically, SPIN1 sequesters uL18 in the nucleolus, preventing it from interacting with MDM2, and thereby alleviating uL18-mediated inhibition of MDM2 ubiquitin ligase activity toward p53. SPIN1 deficiency increases ribosome-free uL18 and uL5 (human RPL11), which are required for SPIN1 depletion-induced p53 activation. Analysis of cancer genomic databases suggests that SPIN1 is highly expressed in several human cancers, and its overexpression is positively correlated with poor prognosis in cancer patients. Altogether, our findings reveal that the oncogenic property of SPIN1 may be attributed to its negative regulation of uL18, leading to p53 inactivation.

Funding information:
  • National Institutes of Health - 2G12MD007595()
  • National Institutes of Health - R01CA095441()
  • National Institutes of Health - R01CA127724()
  • National Institutes of Health - R01CA172468()
  • National Institutes of Health - R21 CA201889()
  • National Institutes of Health - R21CA190775()
  • NCI NIH HHS - CA89194(United States)

FoxO1 Is Required for Most of the Metabolic and Hormonal Perturbations Produced by Hepatic Insulin Receptor Deletion in Male Mice.

  • Ling AV
  • Endocrinology
  • 2018 Mar 1

Literature context:


Abstract:

Insulin coordinates the complex response to feeding, affecting numerous metabolic and hormonal pathways. Forkhead box protein O1 (FoxO1) is one of several signaling molecules downstream of insulin; FoxO1 drives gluconeogenesis and is suppressed by insulin. To determine the role of FoxO1 in mediating other actions of insulin, we studied mice with hepatic deletion of the insulin receptor, FoxO1, or both. We found that mice with deletion of the insulin receptor alone showed not only hyperglycemia but also a 70% decrease in plasma insulin-like growth factor 1 and delayed growth during the first 2 months of life, a 24-fold increase in the soluble leptin receptor and a 19-fold increase in plasma leptin levels. Deletion of the insulin receptor also produced derangements in fatty acid metabolism, with a decrease in the expression of the lipogenic enzymes, hepatic diglycerides, and plasma triglycerides; in parallel, it increased expression of the fatty acid oxidation enzymes. Mice with deletion of both insulin receptor and FoxO1 showed a much more modest phenotype, with normal or near-normal glucose levels, growth, leptin levels, hepatic diglycerides, and fatty acid oxidation gene expression; however, lipogenic gene expression remained low. Taken together, these data reveal the pervasive role of FoxO1 in mediating the effects of insulin on not only glucose metabolism but also other hormonal signaling pathways and even some aspects of lipid metabolism.

Funding information:
  • NCI NIH HHS - CA157581(United States)
  • NIDDK NIH HHS - R01 DK094162(United States)
  • NIDDK NIH HHS - R01 DK101579(United States)

Transcriptional Regulation of the Warburg Effect in Cancer by SIX1.

  • Li L
  • Cancer Cell
  • 2018 Mar 12

Literature context:


Abstract:

Aerobic glycolysis (the Warburg effect) facilitates tumor growth, and drugs targeting aerobic glycolysis are being developed. However, how the Warburg effect is directly regulated is largely unknown. Here we show that transcription factor SIX1 directly increases the expression of many glycolytic genes, promoting the Warburg effect and tumor growth in vitro and in vivo. SIX1 regulates glycolysis through HBO1 and AIB1 histone acetyltransferases. Cancer-related SIX1 mutation increases its ability to promote aerobic glycolysis and tumor growth. SIX1 glycolytic function is directly repressed by microRNA-548a-3p, which is downregulated, inversely correlates with SIX1, and is a good predictor of prognosis in breast cancer patients. Thus, the microRNA-548a-3p/SIX1 axis strongly links aerobic glycolysis to carcinogenesis and may become a promising cancer therapeutic target.

Funding information:
  • NHLBI NIH HHS - HL084312(United States)

FUS Regulates Activity of MicroRNA-Mediated Gene Silencing.

  • Zhang T
  • Mol. Cell
  • 2018 Mar 1

Literature context:


Abstract:

MicroRNA-mediated gene silencing is a fundamental mechanism in the regulation of gene expression. It remains unclear how the efficiency of RNA silencing could be influenced by RNA-binding proteins associated with the microRNA-induced silencing complex (miRISC). Here we report that fused in sarcoma (FUS), an RNA-binding protein linked to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), interacts with the core miRISC component AGO2 and is required for optimal microRNA-mediated gene silencing. FUS promotes gene silencing by binding to microRNA and mRNA targets, as illustrated by its action on miR-200c and its target ZEB1. A truncated mutant form of FUS that leads its carriers to an aggressive form of ALS, R495X, impairs microRNA-mediated gene silencing. The C. elegans homolog fust-1 also shares a conserved role in regulating the microRNA pathway. Collectively, our results suggest a role for FUS in regulating the activity of microRNA-mediated silencing.

Funding information:
  • NCI NIH HHS - P30 CA045508()
  • NICHD NIH HHS - HD24061(United States)
  • NINDS NIH HHS - R01 NS074324()
  • NINDS NIH HHS - R01 NS089616()

PTEN negatively regulates the cell lineage progression from NG2+ glial progenitor to oligodendrocyte via mTOR-independent signaling.

  • González-Fernández E
  • Elife
  • 2018 Feb 20

Literature context:


Abstract:

Oligodendrocytes (OLs), the myelin-forming CNS glia, are highly vulnerable to cellular stresses, and a severe myelin loss underlies numerous CNS disorders. Expedited OL regeneration may prevent further axonal damage and facilitate functional CNS repair. Although adult OL progenitors (OPCs) are the primary players for OL regeneration, targetable OPC-specific intracellular signaling mechanisms for facilitated OL regeneration remain elusive. Here, we report that OPC-targeted PTEN inactivation in the mouse, in contrast to OL-specific manipulations, markedly promotes OL differentiation and regeneration in the mature CNS. Unexpectedly, an additional deletion of mTOR did not reverse the enhanced OL development from PTEN-deficient OPCs. Instead, ablation of GSK3β, another downstream signaling molecule that is negatively regulated by PTEN-Akt, enhanced OL development. Our results suggest that PTEN persistently suppresses OL development in an mTOR-independent manner, and at least in part, via controlling GSK3β activity. OPC-targeted PTEN-GSK3β inactivation may benefit facilitated OL regeneration and myelin repair.

Funding information:
  • Ellison Medical Foundation - AG-NS-1101-13()
  • National Institute of Neurological Disorders and Stroke - R01NS07693()
  • National Institute of Neurological Disorders and Stroke - R01NS089586()
  • NIH HHS - DP2 OD006740(United States)
  • Shriners Hospitals for Children - 84298-PHI()
  • Shriners Hospitals for Children - 85500-PHI-14()
  • Shriners Hospitals for Children - 86600()

GRP94 Is an Essential Regulator of Pancreatic β-Cell Development, Mass, and Function in Male Mice.

  • Kim DS
  • Endocrinology
  • 2018 Feb 1

Literature context:


Abstract:

Deficiencies in pancreatic β-cell mass contribute to both type 1 and type 2 diabetes. We investigated the role of the glucose-regulated protein (GRP) 94, an endoplasmic reticulum protein abundantly expressed in the pancreatic acini and islets, in β-cell development, survival, and function. We used a conditional knockout (KO) mouse in which the GRP94 gene, Hsp90b1, was specifically deleted in pancreatic and duodenal homeobox 1 (Pdx1)-expressing cells. These Hsp90b1 flox/flox;Pdx1Cre KO mice exhibited pancreatic hypoplasia at embryonic day (E) 16.5 to E18.5 and had significantly reduced β-cell mass at 4 weeks after birth. Further mechanistic studies showed that deletion of GRP94 reduced β-cell proliferation with increased cell apoptosis in both Pdx1+ endocrine progenitor cells and differentiated β cells. Although Hsp90b1 flox/flox;Pdx1Cre KO mice remained euglycemic at 8 weeks of age, they exhibited impaired glucose tolerance. In aggregate, these findings indicate that GRP94 is an essential regulator of pancreatic β-cell development, mass, and function.

Funding information:
  • Cancer Research UK - (United Kingdom)
  • NIBIB NIH HHS - R03 EB015744()
  • NIDDK NIH HHS - R01 DK105183()
  • NIDDK NIH HHS - R01 DK107412()
  • NIDDK NIH HHS - R21 DK097544()
  • NIDDK NIH HHS - R21 DK099696()

Paracrine Wnt5a-β-Catenin Signaling Triggers a Metabolic Program that Drives Dendritic Cell Tolerization.

  • Zhao F
  • Immunity
  • 2018 Jan 16

Literature context:


Abstract:

Despite recent advances, many cancers remain refractory to available immunotherapeutic strategies. Emerging evidence indicates that the tolerization of local dendritic cells (DCs) within the tumor microenvironment promotes immune evasion. Here, we have described a mechanism by which melanomas establish a site of immune privilege via a paracrine Wnt5a-β-catenin-peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling pathway that drives fatty acid oxidation (FAO) in DCs by upregulating the expression of the carnitine palmitoyltransferase-1A (CPT1A) fatty acid transporter. This FAO shift increased the protoporphyrin IX prosthetic group of indoleamine 2,3-dioxgenase-1 (IDO) while suppressing interleukin(IL)-6 and IL-12 cytokine expression, culminating in enhanced IDO activity and the generation of regulatory T cells. We demonstrated that blockade of this pathway augmented anti-melanoma immunity, enhanced the activity of anti-PD-1 antibody immunotherapy, and suppressed disease progression in a transgenic melanoma model. This work implicates a role for tumor-mediated metabolic reprogramming of local DCs in immune evasion and immunotherapy resistance.

Funding information:
  • NCI NIH HHS - K08 CA191063()
  • NCI NIH HHS - R00 CA168997()
  • Wellcome Trust - (United Kingdom)

RAPGEF5 Regulates Nuclear Translocation of β-Catenin.

  • Griffin JN
  • Dev. Cell
  • 2018 Jan 22

Literature context:


Abstract:

Canonical Wnt signaling coordinates many critical aspects of embryonic development, while dysregulated Wnt signaling contributes to common diseases, including congenital malformations and cancer. The nuclear localization of β-catenin is the defining step in pathway activation. However, despite intensive investigation, the mechanisms regulating β-catenin nuclear transport remain undefined. In a patient with congenital heart disease and heterotaxy, a disorder of left-right patterning, we previously identified the guanine nucleotide exchange factor, RAPGEF5. Here, we demonstrate that RAPGEF5 regulates left-right patterning via Wnt signaling. In particular, RAPGEF5 regulates the nuclear translocation of β-catenin independently of both β-catenin cytoplasmic stabilization and the importin β1/Ran-mediated transport system. We propose a model whereby RAPGEF5 activates the nuclear GTPases, Rap1a/b, to facilitate the nuclear transport of β-catenin, defining a parallel nuclear transport pathway to Ran. Our results suggest new targets for modulating Wnt signaling in disease states.

Funding information:
  • Medical Research Council - (United Kingdom)
  • NHLBI NIH HHS - R01 HL124402()
  • NICHD NIH HHS - R01 HD081379()
  • NIH HHS - S10 OD020142()

Abrogating Mitochondrial Dynamics in Mouse Hearts Accelerates Mitochondrial Senescence.

  • Song M
  • Cell Metab.
  • 2017 Dec 5

Literature context:


Abstract:

Mitochondrial fusion and fission are critical to heart health; genetically interrupting either is rapidly lethal. To understand whether it is loss of, or the imbalance between, fusion and fission that underlies observed cardiac phenotypes, we engineered mice in which Mfn-mediated fusion and Drp1-mediated fission could be concomitantly abolished. Compared to fusion-defective Mfn1/Mfn2 cardiac knockout or fission-defective Drp1 cardiac knockout mice, Mfn1/Mfn2/Drp1 cardiac triple-knockout mice survived longer and manifested a unique pathological form of cardiac hypertrophy. Over time, however, combined abrogation of fission and fusion provoked massive progressive mitochondrial accumulation that severely distorted cardiomyocyte sarcomeric architecture. Mitochondrial biogenesis was not responsible for mitochondrial superabundance, whereas mitophagy was suppressed despite impaired mitochondrial proteostasis. Similar but milder defects were observed in aged hearts. Thus, cardiomyopathies linked to dynamic imbalance between fission and fusion are temporarily mitigated by forced mitochondrial adynamism at the cost of compromising mitochondrial quantity control and accelerating mitochondrial senescence.

Funding information:
  • NHLBI NIH HHS - R01 HL059888()
  • NHLBI NIH HHS - R01 HL128071()
  • NHLBI NIH HHS - R35 HL135736()
  • NICHD NIH HHS - R01-HD45595(United States)

NOTCH2 Hajdu-Cheney Mutations Escape SCFFBW7-Dependent Proteolysis to Promote Osteoporosis.

  • Fukushima H
  • Mol. Cell
  • 2017 Nov 16

Literature context:


Abstract:

Hajdu-Cheney syndrome (HCS), a rare autosomal disorder caused by heterozygous mutations in NOTCH2, is clinically characterized by acro-osteolysis, severe osteoporosis, short stature, neurological symptoms, cardiovascular defects, and polycystic kidneys. Recent studies identified that aberrant NOTCH2 signaling and consequent osteoclast hyperactivity are closely associated with the bone-related disorder pathogenesis, but the exact molecular mechanisms remain unclear. Here, we demonstrate that sustained osteoclast activity is largely due to accumulation of NOTCH2 carrying a truncated C terminus that escapes FBW7-mediated ubiquitination and degradation. Mice with osteoclast-specific Fbw7 ablation revealed osteoporotic phenotypes reminiscent of HCS, due to elevated Notch2 signaling. Importantly, administration of Notch inhibitors in Fbw7 conditional knockout mice alleviated progressive bone resorption. These findings highlight the molecular basis of HCS pathogenesis and provide clinical insights into potential targeted therapeutic strategies for skeletal disorders associated with the aberrant FBW7/NOTCH2 pathway as observed in patients with HCS.

Funding information:
  • NIMH NIH HHS - R01 MH086920(United States)

Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor.

  • Wei Y
  • Cell
  • 2017 Jan 12

Literature context:


Abstract:

The removal of unwanted or damaged mitochondria by autophagy, a process called mitophagy, is essential for key events in development, cellular homeostasis, tumor suppression, and prevention of neurodegeneration and aging. However, the precise mechanisms of mitophagy remain uncertain. Here, we identify the inner mitochondrial membrane protein, prohibitin 2 (PHB2), as a crucial mitophagy receptor involved in targeting mitochondria for autophagic degradation. PHB2 binds the autophagosomal membrane-associated protein LC3 through an LC3-interaction region (LIR) domain upon mitochondrial depolarization and proteasome-dependent outer membrane rupture. PHB2 is required for Parkin-induced mitophagy in mammalian cells and for the clearance of paternal mitochondria after embryonic fertilization in C. elegans. Our findings pinpoint a conserved mechanism of eukaryotic mitophagy and demonstrate a function of prohibitin 2 that may underlie its roles in physiology, aging, and disease.

Funding information:
  • NCI NIH HHS - P30 CA142543()
  • NCI NIH HHS - R01 CA109618()
  • NIAID NIH HHS - K08 AI099150()