X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Donkey Anti-Goat IgG H&L (Alexa Fluor 488) Antibody

RRID:AB_2687506

Antibody ID

AB_2687506

Target Antigen

Goat IgG goat

Proper Citation

(Abcam Cat# ab150129, RRID:AB_2687506)

Clonality

polyclonal antibody

Comments

Image validation for ICC/IF in MDS.

Host Organism

donkey

Vendor

Abcam

Induced pluripotent stem cells derived from a schizophrenia patient with ASTN2 deletion.

  • Arioka Y
  • Stem Cell Res
  • 2018 May 19

Literature context:


Abstract:

Astrotactin-2, encoded by ASTN2, is implicated in neuronal migration. Although genetic studies of schizophrenia (SCZ) patients have suggested that exonic deletions of ASTN2 are associated with neurodevelopmental and psychiatric disorders, their biological significance remains unclear. Herein, we generated human induced pluripotent stem cells (iPSCs) from a SCZ patient with an exonic deletion of ASTN2. The generated iPSCs carried ASTN2 deletion and showed typical iPSC morphology, pluripotency marker expression, normal chromosomal aneuploidy, and the capacity to differentiate into three germ layers. This iPSC line may be suitable for evaluating Astrotactin-2 function relevant for SCZ onset in the human brain.

Funding information:
  • NIAID NIH HHS - R01 AI-064522(United States)

Parvalbumin and Somatostatin Interneurons Control Different Space-Coding Networks in the Medial Entorhinal Cortex.

  • Miao C
  • Cell
  • 2017 Oct 19

Literature context:


Abstract:

The medial entorhinal cortex (MEC) contains several discrete classes of GABAergic interneurons, but their specific contributions to spatial pattern formation in this area remain elusive. We employed a pharmacogenetic approach to silence either parvalbumin (PV)- or somatostatin (SOM)-expressing interneurons while MEC cells were recorded in freely moving mice. PV-cell silencing antagonized the hexagonally patterned spatial selectivity of grid cells, especially in layer II of MEC. The impairment was accompanied by reduced speed modulation in colocalized speed cells. Silencing SOM cells, in contrast, had no impact on grid cells or speed cells but instead decreased the spatial selectivity of cells with discrete aperiodic firing fields. Border cells and head direction cells were not affected by either intervention. The findings point to distinct roles for PV and SOM interneurons in the local dynamics underlying periodic and aperiodic firing in spatially modulated cells of the MEC. VIDEO ABSTRACT.

Apoptosis and Compensatory Proliferation Signaling Are Coupled by CrkI-Containing Microvesicles.

  • Gupta KH
  • Dev. Cell
  • 2017 Jun 19

Literature context:


Abstract:

Apoptosis has been implicated in compensatory proliferation signaling (CPS), whereby dying cells induce proliferation in neighboring cells as a means to restore homeostasis. The nature of signaling between apoptotic cells and their neighboring cells remains largely unknown. Here we show that a fraction of apoptotic cells produce and release CrkI-containing microvesicles (distinct from exosomes and apoptotic bodies), which induce proliferation in neighboring cells upon contact. We provide visual evidence of CPS by videomicroscopy. We show that purified vesicles in vitro and in vivo are sufficient to stimulate proliferation in other cells. Our data demonstrate that CrkI inactivation by ExoT bacterial toxin or by mutagenesis blocks vesicle formation in apoptotic cells and inhibits CPS, thus uncoupling apoptosis from CPS. We further show that c-Jun amino-terminal kinase (JNK) plays a pivotal role in mediating vesicle-induced CPS in recipient cells. CPS could have important ramifications in diseases that involve apoptotic cell death.

Funding information:
  • NIAID NIH HHS - R21 AI110685()