X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

IRDye® 680RD Goat anti-Mouse IgG (H + L) antibody

RRID:AB_2651128

Antibody ID

AB_2651128

Target Antigen

IgG mouse

Proper Citation

(LI-COR Biosciences Cat# 925-68070, RRID:AB_2651128)

Clonality

polyclonal antibody

Host Organism

goat

Vendor

LI-COR Biosciences

Cat Num

925-68070

Regulation of Epithelial Plasticity Determines Metastatic Organotropism in Pancreatic Cancer.

  • Reichert M
  • Dev. Cell
  • 2018 Jun 18

Literature context: Goat anti-mouse, 680RDLi-CorCat#925-68070Goat anti-rabbit, 800CWLi-CorCat


Abstract:

The regulation of metastatic organotropism in pancreatic ductal a denocarcinoma (PDAC) remains poorly understood. We demonstrate, using multiple mouse models, that liver and lung metastatic organotropism is dependent upon p120catenin (p120ctn)-mediated epithelial identity. Mono-allelic p120ctn loss accelerates KrasG12D-driven pancreatic cancer formation and liver metastasis. Importantly, one p120ctn allele is sufficient for E-CADHERIN-mediated cell adhesion. By contrast, cells with bi-allelic p120ctn loss demonstrate marked lung organotropism; however, rescue with p120ctn isoform 1A restores liver metastasis. In a p120ctn-independent PDAC model, mosaic loss of E-CADHERIN expression reveals selective pressure for E-CADHERIN-positive liver metastasis and E-CADHERIN-negative lung metastasis. Furthermore, human PDAC and liver metastases support the premise that liver metastases exhibit predominantly epithelial characteristics. RNA-seq demonstrates differential induction of pathways associated with metastasis and epithelial-to-mesenchymal transition in p120ctn-deficient versus p120ctn-wild-type cells. Taken together, P120CTN and E-CADHERIN mediated epithelial plasticity is an addition to the conceptual framework underlying metastatic organotropism in pancreatic cancer.

Funding information:
  • NCI NIH HHS - F30 CA180601()
  • NCI NIH HHS - F32 CA221094()
  • NIDDK NIH HHS - P30 DK050306()
  • NIDDK NIH HHS - R01 DK060694()
  • NIDDK NIH HHS - R21DK090778(United States)

Different Neuronal Activity Patterns Induce Different Gene Expression Programs.

  • Tyssowski KM
  • Neuron
  • 2018 May 2

Literature context: + L) LI-COR Cat# P/N 925-68070; RRID:AB_2651128 Goat anti-Rabbit IgG (H+L) Seco


Abstract:

A vast number of different neuronal activity patterns could each induce a different set of activity-regulated genes. Mapping this coupling between activity pattern and gene induction would allow inference of a neuron's activity-pattern history from its gene expression and improve our understanding of activity-pattern-dependent synaptic plasticity. In genome-scale experiments comparing brief and sustained activity patterns, we reveal that activity-duration history can be inferred from gene expression profiles. Brief activity selectively induces a small subset of the activity-regulated gene program that corresponds to the first of three temporal waves of genes induced by sustained activity. Induction of these first-wave genes is mechanistically distinct from that of the later waves because it requires MAPK/ERK signaling but does not require de novo translation. Thus, the same mechanisms that establish the multi-wave temporal structure of gene induction also enable different gene sets to be induced by different activity durations.

Funding information:
  • Cancer Research UK - C20691/A11834(United Kingdom)

The O-GlcNAc Transferase Intellectual Disability Mutation L254F Distorts the TPR Helix.

  • Gundogdu M
  • Cell Chem Biol
  • 2018 May 17

Literature context: anti-Mouse LICOR P/N 925-68070; RRID:AB_621840 Donkey IRDye® 800CW anti-Rabbit


Abstract:

O-linked β-N-acetyl-D-glucosamine (O-GlcNAc) transferase (OGT) regulates protein O-GlcNAcylation, an essential post-translational modification that is abundant in the brain. Recently, OGT mutations have been associated with intellectual disability, although it is not understood how they affect OGT structure and function. Using a multi-disciplinary approach we show that the L254F OGT mutation leads to conformational changes of the tetratricopeptide repeats and reduced activity, revealing the molecular mechanisms contributing to pathogenesis.

Funding information:
  • NIGMS NIH HHS - GM086856(United States)

Conserved Lipid and Small-Molecule Modulation of COQ8 Reveals Regulation of the Ancient Kinase-like UbiB Family.

  • Reidenbach AG
  • Cell Chem Biol
  • 2018 Feb 15

Literature context: ody LI-COR Cat#925-68070; RRID:AB_2651128 Bacterial and Virus Strains


Abstract:

Human COQ8A (ADCK3) and Saccharomyces cerevisiae Coq8p (collectively COQ8) are UbiB family proteins essential for mitochondrial coenzyme Q (CoQ) biosynthesis. However, the biochemical activity of COQ8 and its direct role in CoQ production remain unclear, in part due to lack of known endogenous regulators of COQ8 function and of effective small molecules for probing its activity in vivo. Here, we demonstrate that COQ8 possesses evolutionarily conserved ATPase activity that is activated by binding to membranes containing cardiolipin and by phenolic compounds that resemble CoQ pathway intermediates. We further create an analog-sensitive version of Coq8p and reveal that acute chemical inhibition of its endogenous activity in yeast is sufficient to cause respiratory deficiency concomitant with CoQ depletion. Collectively, this work defines lipid and small-molecule modulators of an ancient family of atypical kinase-like proteins and establishes a chemical genetic system for further exploring the mechanistic role of COQ8 in CoQ biosynthesis.

Funding information:
  • NHLBI NIH HHS - T32 HL007899()
  • NIAMS NIH HHS - 1R03AR062832(United States)
  • NIGMS NIH HHS - R01 GM112057()
  • NIGMS NIH HHS - R35 GM118110()
  • NIGMS NIH HHS - T32 GM008505()
  • NIGMS NIH HHS - T32 GM008692()

Mechanisms Connecting the Conserved Protein Kinases Ssp1, Kin1, and Pom1 in Fission Yeast Cell Polarity and Division.

  • Lee ME
  • Curr. Biol.
  • 2018 Jan 8

Literature context: R Biosciences Cat #: 925-68070; RRID:AB_2651128 IRDye800CW Goat anti-Rabbit IgG


Abstract:

Connections between the protein kinases that function within complex cell polarity networks are poorly understood. Rod-shaped fission yeast cells grow in a highly polarized manner, and genetic screens have identified many protein kinases, including the CaMKK-like Ssp1 and the MARK/PAR-1 family kinase Kin1, that are required for polarized growth and cell shape, but their functional mechanisms and connections have been unknown [1-5]. We found that Ssp1 promotes cell polarity by phosphorylating the activation loop of Kin1. Kin1 regulates cell polarity and cytokinesis through unknown mechanisms [4-7]. We performed a large-scale phosphoproteomic screen and found that Kin1 phosphorylates itself and Pal1 to promote growth at cell tips, and these proteins are interdependent for localization to growing cell tips. Additional Kin1 substrates for cell polarity and cytokinesis (Tea4, Mod5, Cdc15, and Cyk3) were also phosphorylated by a second kinase, the DYRK family member Pom1 [8]. Kin1 and Pom1 were enriched at opposite ends of growing cells, and they phosphorylated largely non-overlapping sites on shared substrates. Combined inhibition of both Kin1and Pom1 led to synthetic defects in their shared substrates Cdc15 and Cyk3, confirming a non-redundant functional connection through shared substrates. These findings uncover a new Ssp1-Kin1 signaling pathway, and define its functional and mechanistic connection with Pom1 signaling for cell polarity and cytokinesis. These kinases are conserved in many eukaryotes including humans, suggesting that similar connections and mechanisms might operate in a broad range of cells.

Funding information:
  • NIAID NIH HHS - U01 AI074509(United States)
  • NIGMS NIH HHS - R01 GM099774()
  • NIGMS NIH HHS - R35 GM119455()
  • NIGMS NIH HHS - T32 GM008704()

Epithelial cell adhesion molecule fragments and signaling in primary human liver cells.

  • Gerlach JC
  • J. Cell. Physiol.
  • 2017 Nov 19

Literature context: anti-mouse IgG (Cat# 925-68070, RRID:AB_2651128) (all LI-COR Biosciences). Drie


Abstract:

Epithelial Cell Adhesion Molecule (EpCAM), or CD326, is a trans-membrane glycoprotein expressed by multiple normal epithelia as well as carcinoma. Human hepatic stem cells and bile duct epithelium of the liver are EpCAM positive. In tumor cell lines, its intracellular domain can be released after cleavage of the extracellular domain. Within the cell nucleus, it induces cell proliferation, but cleavage depends on cell contact. Fragments of various lengths have been described in tumor cells. Despite its described important role in proliferation in tumor cells, there is not much known about the expression and role of EpCAM fragments in primary human liver cells. Here, we demonstrate that EpCAM protein fragments and function are considerable different between tumor cells, normal fetal and adult liver cells. Contrary to previously reported findings in tumor cells, gene knockdown or treatment with an inhibitor of the cleavage enzyme ADAM17 (TACE) rather increased cell numbers in primary human fetal liver-derived EpCAM-positive cells. EpCAM fragment sizes were not affected by treatment with inhibitor. Knockdown of EPCAM gene expression by siRNA in sorted cells did not significantly affect proliferation-associated genes or cell numbers. The intracellular domain could not be detected within cell nuclei of fetal and adult liver cells. In conclusion, signaling through the intracellular domain of EpCAM appears to be a mechanism that induces proliferation specifically in tumorigenic cells but not in normal primary EpCAM-positive liver cells.

Age-Dependent Dopaminergic Neurodegeneration and Impairment of the Autophagy-Lysosomal Pathway in LRRK-Deficient Mice.

  • Giaime E
  • Neuron
  • 2017 Nov 15

Literature context: -COR Bioscience Cat # 925-68070 RRID:AB_2651128 Donkey anti-guinea pig IRdye680


Abstract:

LRRK2 mutations are the most common genetic cause of Parkinson's disease, but LRRK2's normal physiological role in the brain is unclear. Here, we show that inactivation of LRRK2 and its functional homolog LRRK1 results in earlier mortality and age-dependent, selective neurodegeneration. Loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and of noradrenergic neurons in the locus coeruleus is accompanied with increases in apoptosis, whereas the cerebral cortex and cerebellum are unaffected. Furthermore, selective age-dependent neurodegeneration is only present in LRRK-/-, not LRRK1-/- or LRRK2-/- brains, and it is accompanied by increases in α-synuclein and impairment of the autophagy-lysosomal pathway. Quantitative electron microscopy (EM) analysis revealed age-dependent increases of autophagic vacuoles in the SNpc of LRRK-/- mice before the onset of DA neuron loss. These findings revealed an essential role of LRRK in the survival of DA neurons and in the regulation of the autophagy-lysosomal pathway in the aging brain.

Funding information:
  • NINDS NIH HHS - P50 NS094733()
  • NINDS NIH HHS - R01 NS071251()
  • NINDS NIH HHS - R37 NS071251()

Argonaute CLIP Defines a Deregulated miR-122-Bound Transcriptome that Correlates with Patient Survival in Human Liver Cancer.

  • Luna JM
  • Mol. Cell
  • 2017 Aug 3

Literature context: 25-68070; RRID:AB_2651128 IRDye 800C


Abstract:

MicroRNA-122, an abundant and conserved liver-specific miRNA, regulates hepatic metabolism and functions as a tumor suppressor, yet systematic and direct biochemical elucidation of the miR-122 target network remains incomplete. To this end, we performed Argonaute crosslinking immunoprecipitation (Argonaute [Ago]-CLIP) sequencing in miR-122 knockout and control mouse livers, as well as in matched human hepatocellular carcinoma (HCC) and benign liver tissue to identify miRNA target sites transcriptome-wide in two species. We observed a majority of miR-122 binding on 3' UTRs and coding exons followed by extensive binding to other genic and non-genic sites. Motif analysis of miR-122-dependent binding revealed a G-bulged motif in addition to canonical motifs. A large number of miR-122 targets were found to be species specific. Upregulation of several common mouse and human targets, most notably BCL9, predicted survival in HCC patients. These results broadly define the molecular consequences of miR-122 downregulation in hepatocellular carcinoma.

PKC-mediated phosphorylation of nuclear lamins at a single serine residue regulates interphase nuclear size in Xenopus and mammalian cells.

  • Edens LJ
  • Mol. Biol. Cell
  • 2017 May 15

Literature context: Cor) or IRDye 680RD anti-mouse (925-68070; Li-Cor


Abstract:

How nuclear size is regulated is a fundamental cell-biological question with relevance to cancers, which often exhibit enlarged nuclei. We previously reported that conventional protein kinase C (cPKC) contributes to nuclear size reductions that occur during early Xenopus development. Here we report that PKC-mediated phosphorylation of lamin B3 (LB3) contributes to this mechanism of nuclear size regulation. By mapping PKC phosphorylation sites on LB3 and testing the effects of phosphomutants in Xenopus laevis embryos, we identify the novel site S267 as being an important determinant of nuclear size. Furthermore, FRAP studies demonstrate that phosphorylation at this site increases lamina dynamics, providing a mechanistic explanation for how PKC activity influences nuclear size. We subsequently map this X. laevis LB3 phosphorylation site to a conserved site in mammalian lamin A (LA), S268. Manipulating PKC activity in cultured mammalian cells alters nuclear size, as does expression of LA-S268 phosphomutants. Taken together, these data demonstrate that PKC-mediated lamin phosphorylation is a conserved mechanism of nuclear size regulation.

Funding information:
  • NIGMS NIH HHS - R01 GM113028()

Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013-2016 Epidemic.

  • Diehl WE
  • Cell
  • 2016 Nov 3

Literature context: ram3537goat anti-mouse-680Li-Cor925-68070goat anti-rabbit-800Li-Cor925-32


Abstract:

The magnitude of the 2013-2016 Ebola virus disease (EVD) epidemic enabled an unprecedented number of viral mutations to occur over successive human-to-human transmission events, increasing the probability that adaptation to the human host occurred during the outbreak. We investigated one nonsynonymous mutation, Ebola virus (EBOV) glycoprotein (GP) mutant A82V, for its effect on viral infectivity. This mutation, located at the NPC1-binding site on EBOV GP, occurred early in the 2013-2016 outbreak and rose to high frequency. We found that GP-A82V had heightened ability to infect primate cells, including human dendritic cells. The increased infectivity was restricted to cells that have primate-specific NPC1 sequences at the EBOV interface, suggesting that this mutation was indeed an adaptation to the human host. GP-A82V was associated with increased mortality, consistent with the hypothesis that the heightened intrinsic infectivity of GP-A82V contributed to disease severity during the EVD epidemic.