[June 26, 2019] Our hosting provider is experiencing serious networking issues. We apologize for any inconvenience.
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

VGluT1 (vesicular glutamate transporte-1) antibody

RRID:AB_2571616

Antibody ID

AB_2571616

Target Antigen

mouse VGluT1, 531-560 aa (BC054462) mouse

Proper Citation

(Frontier Institute Cat# VGluT1-Rb, RRID:AB_2571616)

Clonality

polyclonal antibody

Host Organism

rabbit

Vendor

Frontier Institute Go To Vendor

Cat Num

VGluT1-Rb

Publications that use this research resource

Parvalbumin-producing striatal interneurons receive excitatory inputs onto proximal dendrites from the motor thalamus in male mice.

  • Nakano Y
  • J. Neurosci. Res.
  • 2018 Jan 10

Literature context:


Abstract:

In rodents, the dorsolateral striatum regulates voluntary movement by integrating excitatory inputs from the motor-related cerebral cortex and thalamus to produce contingent inhibitory output to other basal ganglia nuclei. Striatal parvalbumin (PV)-producing interneurons receiving this excitatory input then inhibit medium spiny neurons (MSNs) and modify their outputs. To understand basal ganglia function in motor control, it is important to reveal the precise synaptic organization of motor-related cortical and thalamic inputs to striatal PV interneurons. To examine which domains of the PV neurons receive these excitatory inputs, we used male bacterial artificial chromosome transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein in PV neurons. An anterograde tracing study with the adeno-associated virus vector combined with immunodetection of pre- and postsynaptic markers visualized the distribution of the excitatory appositions on PV dendrites. Statistical analysis revealed that the density of thalamostriatal appositions along the dendrites was significantly higher on the proximal than distal dendrites. In contrast, there was no positional preference in the density of appositions from axons of the dorsofrontal cortex. Population observations of thalamostriatal and corticostriatal appositions by immunohistochemistry for pathway-specific vesicular glutamate transporters confirmed that thalamic inputs preferentially, and cortical ones less preferentially, made apposition on proximal dendrites of PV neurons. This axodendritic organization suggests that PV neurons produce fast and reliable inhibition of MSNs in response to thalamic inputs and process excitatory inputs from motor cortices locally and plastically, possibly together with other GABAergic and dopaminergic dendritic inputs, to modulate MSN inhibition.

Funding information:
  • NEI NIH HHS - R01-EY020535(United States)

Alterations in expression of Cat-315 epitope of perineuronal nets during normal ageing, and its modulation by an open-channel NMDA receptor blocker, memantine.

  • Yamada J
  • J. Comp. Neurol.
  • 2017 Jun 15

Literature context:


Abstract:

The perineuronal net (PNN), a specialized aggregate of the extracellular matrix, is involved in neuroprotection against oxidative stress, which is now recognized as a major contributor to age-related decline in brain functions. In this study, we investigated the age-related molecular changes of PNNs using monoclonal antibody Cat-315, which recognizes human natural killer-1 (HNK-1) glycan on aggrecan-based PNNs. Western blot analysis showed that the expression levels of Cat-315 epitope in the hippocampus were higher in middle-aged (MA, 12-month-old) mice than in young adult (YA, 2-month-old) mice. Although there were no differences in the expression levels of Cat-315 epitope between old age (OA, 20-month-old) and MA mice, Cat-315 immunoreactivity was also detected in astrocytes of OA mice. To focus on Cat-315 epitope in PNNs, we used YA and MA mice in the following experiments. Optical disector analysis showed that there were no differences in the numbers of Cat-315-positive (Cat-315+ ) PNNs between YA and MA mice. Fluorescence intensity analysis indicated that Cat-315 immunoreactivity in PNNs increased with age in the dorsal hippocampus, which is mainly involved in cognitive functions. Administration of an open-channel blocker of NMDA receptor, memantine, reduced the expression levels of Cat-315 epitope in the hippocampus. Furthermore, the numbers of glutamatergic and GABAergic terminals colocalized with Cat-315 epitope around parvalbumin-positive neurons were decreased by memantine. These findings provide novel insight into the involvement of PNNs in normal brain ageing, and suggest that memantine may counteract the age-related alterations in expression levels of Cat-315 epitope via regulation of its subcellular localization.