Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

beta Actin Monoclonal Antibody (AC-15)


Antibody ID


Target Antigen

beta Actin human

Proper Citation

(Thermo Fisher Scientific Cat# AM4302, RRID:AB_2536382)


monoclonal antibody


Applications: ICC (Assay Dependent), IF (Assay Dependent)

Clone ID

Clone AC-15

Host Organism



Thermo Fisher Scientific Go To Vendor

Cat Num


Publications that use this research resource

Different Neuronal Activity Patterns Induce Different Gene Expression Programs.

  • Tyssowski KM
  • Neuron
  • 2018 May 2

Literature context: Cat# AM4302; RRID:AB_2536382 Rabbit anti-phospho-CaMKIV Sant


A vast number of different neuronal activity patterns could each induce a different set of activity-regulated genes. Mapping this coupling between activity pattern and gene induction would allow inference of a neuron's activity-pattern history from its gene expression and improve our understanding of activity-pattern-dependent synaptic plasticity. In genome-scale experiments comparing brief and sustained activity patterns, we reveal that activity-duration history can be inferred from gene expression profiles. Brief activity selectively induces a small subset of the activity-regulated gene program that corresponds to the first of three temporal waves of genes induced by sustained activity. Induction of these first-wave genes is mechanistically distinct from that of the later waves because it requires MAPK/ERK signaling but does not require de novo translation. Thus, the same mechanisms that establish the multi-wave temporal structure of gene induction also enable different gene sets to be induced by different activity durations.

Funding information:
  • Cancer Research UK - C20691/A11834(United Kingdom)

Histone Hypervariants H2A.Z.1 and H2A.Z.2 Play Independent and Context-Specific Roles in Neuronal Activity-Induced Transcription of Arc/Arg3.1 and Other Immediate Early Genes.

  • Dunn CJ
  • eNeuro
  • 2017 Aug 31

Literature context: her Scientific, AM4302; RRID:AB_2536382), rabbit anti-ARC (Synaptic Sys


The histone variant H2A.Z is an essential and conserved regulator of eukaryotic gene transcription. However, the exact role of this histone in the transcriptional process remains perplexing. In vertebrates, H2A.Z has two hypervariants, H2A.Z.1 and H2A.Z.2, that have almost identical sequences except for three amino acid residues. Due to such similarity, functional specificity of these hypervariants in neurobiological processes, if any, remain largely unknown. In this study with dissociated rat cortical neurons, we asked if H2A.Z hypervariants have distinct functions in regulating basal and activity-induced gene transcription. Hypervariant-specific RNAi and microarray analyses revealed that H2A.Z.1 and H2A.Z.2 regulate basal expression of largely nonoverlapping gene sets, including genes that code for several synaptic proteins. In response to neuronal activity, rapid transcription of our model gene Arc is impaired by depletion of H2A.Z.2, but not H2A.Z.1. This impairment is partially rescued by codepletion of the H2A.Z chaperone, ANP32E. In contrast, under a different context (after 48 h of tetrodotoxin, TTX), rapid transcription of Arc is impaired by depletion of either hypervariant. Such context-dependent roles of H2A.Z hypervariants, as revealed by our multiplexed gene expression assays, are also evident with several other immediate early genes, where regulatory roles of these hypervariants vary from gene to gene under different conditions. Together, our data suggest that H2A.Z hypervariants have context-specific roles that complement each other to mediate activity-induced neuronal gene transcription.