X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Goat anti-Mouse IgG2b Cross-Adsorbed Secondary Antibody, Alexa Fluor 647

RRID:AB_2535811

Antibody ID

AB_2535811

Target Antigen

Mouse IgG2b Cross-Adsorbed mouse

Proper Citation

(Thermo Fisher Scientific Cat# A-21242, RRID:AB_2535811)

Clonality

polyclonal antibody

Comments

Applications: ICC (1-10 µg/mL), IF (1-10 µg/mL), IHC (1-10 µg/mL)

Host Organism

goat

Vendor

Thermo Fisher Scientific Go To Vendor

The H3K36me2 Methyltransferase Nsd1 Demarcates PRC2-Mediated H3K27me2 and H3K27me3 Domains in Embryonic Stem Cells.

  • Streubel G
  • Mol. Cell
  • 2018 Apr 19

Literature context:


Abstract:

The Polycomb repressor complex 2 (PRC2) is composed of the core subunits Ezh1/2, Suz12, and Eed, and it mediates all di- and tri-methylation of histone H3 at lysine 27 in higher eukaryotes. However, little is known about how the catalytic activity of PRC2 is regulated to demarcate H3K27me2 and H3K27me3 domains across the genome. To address this, we mapped the endogenous interactomes of Ezh2 and Suz12 in embryonic stem cells (ESCs), and we combined this with a functional screen for H3K27 methylation marks. We found that Nsd1-mediated H3K36me2 co-locates with H3K27me2, and its loss leads to genome-wide expansion of H3K27me3. These increases in H3K27me3 occurred at PRC2/PRC1 target genes and as de novo accumulation within what were previously broad H3K27me2 domains. Our data support a model in which Nsd1 is a key modulator of PRC2 function required for regulating the demarcation of genome-wide H3K27me2 and H3K27me3 domains in ESCs.

Funding information:
  • Medical Research Council - BB/F007590/1(United Kingdom)

Generation of 3 spinocerebellar ataxia type 1 (SCA1) patient-derived induced pluripotent stem cell lines LUMCi002-A, B, and C and 2 unaffected sibling control induced pluripotent stem cell lines LUMCi003-A and B.

  • Buijsen RAM
  • Stem Cell Res
  • 2018 Apr 16

Literature context:


Abstract:

Spinocerebellar ataxia type 1 (SCA1) is a hereditary neurodegenerative disease caused by a CAG repeat expansion in exon 8 of the ATXN1 gene. We generated induced pluripotent stem cells (hiPSCs) from a SCA1 patient and his non-affected sister by using non-integrating Sendai Viruses (SeV). The resulting hiPSCs are SeVfree, express pluripotency markers, display a normal karyotype, retain the mutation (length of the CAG repeat expansion in the ATXN1 gene) and are able to differentiate into the three germ layers in vitro.

Funding information:
  • NIAID NIH HHS - T32 AI007638-09(United States)

Angiotensin-II-induced Muscle Wasting is Mediated by 25-Hydroxycholesterol via GSK3β Signaling Pathway.

  • Shen C
  • EBioMedicine
  • 2017 Feb 5

Literature context:


Abstract:

While angiotensin II (ang II) has been implicated in the pathogenesis of cardiac cachexia (CC), the molecules that mediate ang II's wasting effect have not been identified. It is known TNF-α level is increased in patients with CC, and TNF-α release is triggered by ang II. We therefore hypothesized that ang II induced muscle wasting is mediated by TNF-α. Ang II infusion led to skeletal muscle wasting in wild type (WT) but not in TNF alpha type 1 receptor knockout (TNFR1KO) mice, suggesting that ang II induced muscle loss is mediated by TNF-α through its type 1 receptor. Microarray analysis identified cholesterol 25-hydroxylase (Ch25h) as the down stream target of TNF-α. Intraperitoneal injection of 25-hydroxycholesterol (25-OHC), the product of Ch25h, resulted in muscle loss in C57BL/6 mice, accompanied by increased expression of atrogin-1, MuRF1 and suppression of IGF-1/Akt signaling pathway. The identification of 25-OHC as an inducer of muscle wasting has implications for the development of specific treatment strategies in preventing muscle loss.

The intracellular plasma membrane-connected compartment in the assembly of HIV-1 in human macrophages.

  • Nkwe DO
  • BMC Biol.
  • 2016 Jun 23

Literature context:


Abstract:

BACKGROUND: In HIV-infected macrophages, newly formed progeny virus particles accumulate in intracellular plasma membrane-connected compartments (IPMCs). Although the virus is usually seen in these compartments, it is unclear whether HIV assembly is specifically targeted to IPMCs or whether some viruses may also form at the cell surface but are not detected, as particles budding from the latter site will be released into the medium. RESULTS: To investigate the fidelity of HIV-1 targeting to IPMCs compared to the cell surface directly, we generated mutants defective in recruitment of the Endosomal Sorting Complexes Required for Transport (ESCRT) proteins required for virus scission. For mutants unable to bind the ESCRT-I component Tsg101, HIV release was inhibited and light and electron microscopy revealed that budding was arrested. When expressed in human monocyte-derived macrophages (MDM), these mutants formed budding-arrested, immature particles at their assembly sites, allowing us to capture virtually all of the virus budding events. A detailed morphological analysis of the distribution of the arrested viruses by immunofluorescence staining and confocal microscopy, and by electron microscopy, demonstrated that HIV assembly in MDMs is targeted primarily to IPMCs, with fewer than 5 % of budding events seen at the cell surface. Morphometric analysis of the relative membrane areas at the cell surface and IPMCs confirmed a large enrichment of virus assembly events in IPMCs. Serial block-face scanning electron microscopy of macrophages infected with a budding-defective HIV mutant revealed high-resolution 3D views of the complex organisation of IPMCs, with in excess of 15,000 associated HIV budding sites, and multiple connections between IPMCs and the cell surface. CONCLUSIONS: Using detailed quantitative analysis, we demonstrate that HIV assembly in MDMs is specifically targeted to IPMCs. Furthermore, 3D analysis shows, for the first time, the detailed ultrastructure of an IPMC within a large cell volume, at a resolution that allowed identification of individual virus assembly events, and potential portals through which virus may be released during cell-cell transfer. These studies provide new insights to the organisation of the HIV assembly compartments in macrophages, and show how HIV particles accumulating in these protected sites may function as a virus reservoir.