Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 647


Antibody ID


Target Antigen

Mouse IgG (H+L) Highly Cross-Adsorbed mouse

Proper Citation

(Thermo Fisher Scientific Cat# A-21236, RRID:AB_2535805)


polyclonal antibody


Applications: ICC (2 µg/mL), Flow (1-10 µg/mL), IF (2 µg/mL), IHC (1-10 µg/mL)

Host Organism



Thermo Fisher Scientific Go To Vendor

A Combination of Ontogeny and CNS Environment Establishes Microglial Identity.

  • Bennett FC
  • Neuron
  • 2018 Jun 27

Literature context: ) Life Technologies Cat#A21236; RRID:AB_2535805 Rat anti-mouse albumin (1:750)


Microglia, the brain's resident macrophages, are dynamic CNS custodians with surprising origins in the extra-embryonic yolk sac. The consequences of their distinct ontogeny are unknown but critical to understanding and treating brain diseases. We created a brain macrophage transplantation system to disentangle how environment and ontogeny specify microglial identity. We find that donor cells extensively engraft in the CNS of microglia-deficient mice, and even after exposure to a cell culture environment, microglia fully regain their identity when returned to the CNS. Though transplanted macrophages from multiple tissues can express microglial genes in the brain, only those of yolk-sac origin fully attain microglial identity. Transplanted macrophages of inappropriate origin, including primary human cells in a humanized host, express disease-associated genes and specific ontogeny markers. Through brain macrophage transplantation, we discover new principles of microglial identity that have broad applications to the study of disease and development of myeloid cell therapies.

Funding information:
  • NCI NIH HHS - P30 CA016672(United States)
  • NCI NIH HHS - R01 CA216054()
  • NCRR NIH HHS - S10 RR025518()
  • NIA NIH HHS - P50 AG047366()
  • NIDA NIH HHS - R37 DA015043()
  • NIMH NIH HHS - K08 MH112120()
  • NIMH NIH HHS - L30 MH108106()
  • NIMH NIH HHS - T32 MH019938()
  • NINDS NIH HHS - F31 NS078813()
  • NINDS NIH HHS - K08 NS075144()
  • NINDS NIH HHS - K08 NS085324()
  • NINDS NIH HHS - K08 NS091527()
  • NINDS NIH HHS - P30 NS069375()

Cell-Specific Imd-NF-κB Responses Enable Simultaneous Antibacterial Immunity and Intestinal Epithelial Cell Shedding upon Bacterial Infection.

  • Zhai Z
  • Immunity
  • 2018 May 15

Literature context: oFisher Scientific Cat# A21236; RRID:AB_2535805 Bacterial and Virus Strains


Intestinal infection triggers potent immune responses to combat pathogens and concomitantly drives epithelial renewal to maintain barrier integrity. Current models propose that epithelial renewal is primarily driven by damage caused by reactive oxygen species (ROS). Here we found that in Drosophila, the Imd-NF-κB pathway controlled enterocyte (EC) shedding upon infection, via a mechanism independent of ROS-associated apoptosis. Mechanistically, the Imd pathway synergized with JNK signaling to induce epithelial cell shedding specifically in the context of bacterial infection, requiring also the reduced expression of the transcription factor GATAe. Furthermore, cell-specific NF-κB responses enabled simultaneous production of antimicrobial peptides (AMPs) and epithelial shedding in different EC populations. Thus, the Imd-NF-κB pathway is central to the intestinal antibacterial response by mediating both AMP production and the maintenance of barrier integrity. Considering the similarities between Drosophila Imd signaling and mammalian TNFR pathway, our findings suggest the existence of an evolutionarily conserved genetic program in immunity-induced epithelial shedding.

Funding information:
  • NIA NIH HHS - R01 AG31675(United States)

Developing two reference control samples for the Indian population.

  • Iyer S
  • Stem Cell Res
  • 2018 May 12

Literature context: lecular Probes Cat# A24876) and Alexa Fluor® 647 Goat Anti-Mouse IgG (H+L) Antibody, (Life Technologies, USA Cat# A-21236). Before use, the secondary ant


Human induced Pluripotent Stem Cells (HiPSCs) have immense potential in research and therapeutics. Under the aegis of Department of Biotechnology funded national program entitled, "The Accelerator program for Discovery in Brain Disorders using Stem Cells (ADBS)" we have established a HiPSC biorepository (https://www.ncbs.res.in/adbs/bio-repository) with an objective to study severe mental illness. The repository comprises of HiPSC lines derived from healthy control donors and individuals with life time diagnosis of severe mental illness from dense families. In the current report we submit information regarding two population control reference lines (male = 1; female = 1) from this biorepository.

Funding information:
  • Medical Research Council - G0701153(United Kingdom)

Mammalian Oocytes Locally Remodel Follicular Architecture to Provide the Foundation for Germline-Soma Communication.

  • El-Hayek S
  • Curr. Biol.
  • 2018 Apr 2

Literature context: 1:200) Thermo Fisher A21236; RRID:AB_2535805 Goat anti-rabbit IgG-Alexa 488


Germ cells develop in a microenvironment created by the somatic cells of the gonad [1-3]. Although in males, the germ and somatic support cells lie in direct contact, in females, a thick extracellular coat surrounds the oocyte, physically separating it from the somatic follicle cells [4]. To bypass this barrier to communication, narrow cytoplasmic extensions of the follicle cells traverse the extracellular coat to reach the oocyte plasma membrane [5-9]. These delicate structures provide the sole platform for the contact-mediated communication between the oocyte and its follicular environment that is indispensable for production of a fertilizable egg [8, 10-15]. Identifying the mechanisms underlying their formation should uncover conserved regulators of fertility. We show here in mice that these structures, termed transzonal projections (TZPs), are specialized filopodia whose number amplifies enormously as oocytes grow, enabling increased germ-soma communication. By creating chimeric complexes of genetically tagged oocytes and follicle cells, we demonstrate that follicle cells elaborate new TZPs that push through the extracellular coat to reach the oocyte surface. We further show that growth-differentiation factor 9, produced by the oocyte, drives the formation of new TZPs, uncovering a key yet unanticipated role for the germ cell in building these essential bridges of communication. Moreover, TZP number and germline-soma communication are strikingly reduced in reproductively aged females. Thus, the growing oocyte locally remodels follicular architecture to ensure that its developmental needs are met, and an inability of somatic follicle cells to respond appropriately to oocyte-derived cues may contribute to human infertility.

Funding information:
  • NICHD NIH HHS - R21 HD086407()
  • NIDDK NIH HHS - R01 DK059499-04(United States)

Rbfox1 Regulates Synaptic Transmission through the Inhibitory Neuron-Specific vSNARE Vamp1.

  • Vuong CK
  • Neuron
  • 2018 Apr 4

Literature context: Fisher Scientific Cat#A-21236; RRID:AB_2535805 Goat anti-Mouse IgG (H+L) Cross


Dysfunction of the neuronal RNA binding protein RBFOX1 has been linked to epilepsy and autism spectrum disorders. Rbfox1 loss in mice leads to neuronal hyper-excitability and seizures, but the physiological basis for this is unknown. We identify the vSNARE protein Vamp1 as a major Rbfox1 target. Vamp1 is strongly downregulated in Rbfox1 Nes-cKO mice due to loss of 3' UTR binding by RBFOX1. Cytoplasmic Rbfox1 stimulates Vamp1 expression in part by blocking microRNA-9. We find that Vamp1 is specifically expressed in inhibitory neurons, and that both Vamp1 knockdown and Rbfox1 loss lead to decreased inhibitory synaptic transmission and E/I imbalance. Re-expression of Vamp1 selectively within interneurons rescues the electrophysiological changes in the Rbfox1 cKO, indicating that Vamp1 loss is a major contributor to the Rbfox1 Nes-cKO phenotype. The regulation of interneuron-specific Vamp1 by Rbfox1 provides a paradigm for broadly expressed RNA-binding proteins performing specialized functions in defined neuronal subtypes.

Funding information:
  • NIDDK NIH HHS - DK094311(United States)
  • NIGMS NIH HHS - R01 GM114463()
  • NIGMS NIH HHS - T32 GM007185()
  • NIMH NIH HHS - R01 MH060919()
  • NIMH NIH HHS - R21 MH101684()
  • NINDS NIH HHS - F31 NS093923()

Endosomal Rab cycles regulate Parkin-mediated mitophagy.

  • Yamano K
  • Elife
  • 2018 Jan 23

Literature context: RRID:AB_2535805 1:500 (IF)


Damaged mitochondria are selectively eliminated by mitophagy. Parkin and PINK1, gene products mutated in familial Parkinson's disease, play essential roles in mitophagy through ubiquitination of mitochondria. Cargo ubiquitination by E3 ubiquitin ligase Parkin is important to trigger selective autophagy. Although autophagy receptors recruit LC3-labeled autophagic membranes onto damaged mitochondria, how other essential autophagy units such as ATG9A-integrated vesicles are recruited remains unclear. Here, using mammalian cultured cells, we demonstrate that RABGEF1, the upstream factor of the endosomal Rab GTPase cascade, is recruited to damaged mitochondria via ubiquitin binding downstream of Parkin. RABGEF1 directs the downstream Rab proteins, RAB5 and RAB7A, to damaged mitochondria, whose associations are further regulated by mitochondrial Rab-GAPs. Furthermore, depletion of RAB7A inhibited ATG9A vesicle assembly and subsequent encapsulation of the mitochondria by autophagic membranes. These results strongly suggest that endosomal Rab cycles on damaged mitochondria are a crucial regulator of mitophagy through assembling ATG9A vesicles.

Funding information:
  • Japan Science and Technology Agency - JPMJCR13M7(International)
  • Japan Society for the Promotion of Science - 16K15095(International)
  • Japan Society for the Promotion of Science - JP15H01196(International)
  • Japan Society for the Promotion of Science - JP16K18545(International)
  • Japan Society for the Promotion of Science - JP26000014(International)
  • Japan Society for the Promotion of Science - JP26111729(International)
  • Japan Society for the Promotion of Science - JP26840033(International)
  • NIDCR NIH HHS - R03 DE018415-02(United States)
  • NINDS NIH HHS - Intramural program(United States)

A Method for the Acute and Rapid Degradation of Endogenous Proteins.

  • Clift D
  • Cell
  • 2017 Dec 14

Literature context: or 647 ThermoFisher Cat#A21236; RRID:AB_2535805 Rabbit anti-Mouse IgG HRP-conju


Methods for the targeted disruption of protein function have revolutionized science and greatly expedited the systematic characterization of genes. Two main approaches are currently used to disrupt protein function: DNA knockout and RNA interference, which act at the genome and mRNA level, respectively. A method that directly alters endogenous protein levels is currently not available. Here, we present Trim-Away, a technique to degrade endogenous proteins acutely in mammalian cells without prior modification of the genome or mRNA. Trim-Away harnesses the cellular protein degradation machinery to remove unmodified native proteins within minutes of application. This rapidity minimizes the risk that phenotypes are compensated and that secondary, non-specific defects accumulate over time. Because Trim-Away utilizes antibodies, it can be applied to a wide range of target proteins using off-the-shelf reagents. Trim-Away allows the study of protein function in diverse cell types, including non-dividing primary cells where genome- and RNA-targeting methods are limited.

Funding information:
  • NIDCD NIH HHS - P30 DC04657(United States)

Age-Dependent Dopaminergic Neurodegeneration and Impairment of the Autophagy-Lysosomal Pathway in LRRK-Deficient Mice.

  • Giaime E
  • Neuron
  • 2017 Nov 15

Literature context: Fisher Scientific Cat # A21236 RRID:AB_2535805 Goat anti-Rabbit Alexa Fluor 48


LRRK2 mutations are the most common genetic cause of Parkinson's disease, but LRRK2's normal physiological role in the brain is unclear. Here, we show that inactivation of LRRK2 and its functional homolog LRRK1 results in earlier mortality and age-dependent, selective neurodegeneration. Loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and of noradrenergic neurons in the locus coeruleus is accompanied with increases in apoptosis, whereas the cerebral cortex and cerebellum are unaffected. Furthermore, selective age-dependent neurodegeneration is only present in LRRK-/-, not LRRK1-/- or LRRK2-/- brains, and it is accompanied by increases in α-synuclein and impairment of the autophagy-lysosomal pathway. Quantitative electron microscopy (EM) analysis revealed age-dependent increases of autophagic vacuoles in the SNpc of LRRK-/- mice before the onset of DA neuron loss. These findings revealed an essential role of LRRK in the survival of DA neurons and in the regulation of the autophagy-lysosomal pathway in the aging brain.

Funding information:
  • NINDS NIH HHS - P50 NS094733()
  • NINDS NIH HHS - R01 NS071251()
  • NINDS NIH HHS - R37 NS071251()

Neural organization of afferent pathways from the stomatopod compound eye.

  • Thoen HH
  • J. Comp. Neurol.
  • 2017 Oct 1

Literature context: iley Periodicals, Inc.KEYWORDS: RRID: AB_2535805; RRID: AB_528479; Stomatopoda; c


Crustaceans and insects share many similarities of brain organization suggesting that their common ancestor possessed some components of those shared features. Stomatopods (mantis shrimps) are basal eumalacostracan crustaceans famous for their elaborate visual system, the most complex of which possesses 12 types of color photoreceptors and the ability to detect both linearly and circularly polarized light. Here, using a palette of histological methods we describe neurons and their neuropils most immediately associated with the stomatopod retina. We first provide a general overview of the major neuropil structures in the eyestalks lateral protocerebrum, with respect to the optical pathways originating from the six rows of specialized ommatidia in the stomatopod's eye, termed the midband. We then focus on the structure and neuronal types of the lamina, the first optic neuropil in the stomatopod visual system. Using Golgi impregnations to resolve single neurons we identify cells in different parts of the lamina corresponding to the three different regions of the stomatopod eye (midband and the upper and lower eye halves). While the optic cartridges relating to the spectral and polarization sensitive midband ommatidia show some specializations not found in the lamina serving the upper and lower eye halves, the general morphology of the midband lamina reflects cell types elsewhere in the lamina and cell types described for other species of Eumalacostraca.

Light reintroduction after dark exposure reactivates plasticity in adults via perisynaptic activation of MMP-9.

  • Murase S
  • Elife
  • 2017 Sep 6

Literature context: RID:AB_2534089, RRID:AB_2534093, RRID:AB_2535805, RRID:AB_2534118, 1:1000.In viv


The sensitivity of ocular dominance to regulation by monocular deprivation is the canonical model of plasticity confined to a critical period. However, we have previously shown that visual deprivation through dark exposure (DE) reactivates critical period plasticity in adults. Previous work assumed that the elimination of visual input was sufficient to enhance plasticity in the adult mouse visual cortex. In contrast, here we show that light reintroduction (LRx) after DE is responsible for the reactivation of plasticity. LRx triggers degradation of the ECM, which is blocked by pharmacological inhibition or genetic ablation of matrix metalloproteinase-9 (MMP-9). LRx induces an increase in MMP-9 activity that is perisynaptic and enriched at thalamo-cortical synapses. The reactivation of plasticity by LRx is absent in Mmp9-/- mice, and is rescued by hyaluronidase, an enzyme that degrades core ECM components. Thus, the LRx-induced increase in MMP-9 removes constraints on structural and functional plasticity in the mature cortex.

Funding information:
  • Canadian Institutes of Health Research - (Canada)

Cerebral Vein Malformations Result from Loss of Twist1 Expression and BMP Signaling from Skull Progenitor Cells and Dura.

  • Tischfield MA
  • Dev. Cell
  • 2017 Sep 11

Literature context: (Thermo Fisher)A-11029, A-11032,A-21236Goat anti-Rabbit IgG (H+L) (1:50


Dural cerebral veins (CV) are required for cerebrospinal fluid reabsorption and brain homeostasis, but mechanisms that regulate their growth and remodeling are unknown. We report molecular and cellular processes that regulate dural CV development in mammals and describe venous malformations in humans with craniosynostosis and TWIST1 mutations that are recapitulated in mouse models. Surprisingly, Twist1 is dispensable in endothelial cells but required for specification of osteoprogenitor cells that differentiate into preosteoblasts that produce bone morphogenetic proteins (BMPs). Inactivation of Bmp2 and Bmp4 in preosteoblasts and periosteal dura causes skull and CV malformations, similar to humans harboring TWIST1 mutations. Notably, arterial development appears normal, suggesting that morphogens from the skull and dura establish optimal venous networks independent from arterial influences. Collectively, our work establishes a paradigm whereby CV malformations result from primary or secondary loss of paracrine BMP signaling from preosteoblasts and dura, highlighting unique cellular interactions that influence tissue-specific angiogenesis in mammals.

The β-alanine transporter BalaT is required for visual neurotransmission in Drosophila.

  • Han Y
  • Elife
  • 2017 Aug 14

Literature context: 0, Jackson ImmunoResearch, USA; RRID:AB_2535805) were used as secondary antibod


The recycling of neurotransmitters is essential for sustained synaptic transmission. In Drosophila, histamine recycling is required for visual synaptic transmission. Synaptic histamine is rapidly taken up by laminar glia, and is converted to carcinine. After delivered back to photoreceptors, carcinine is hydrolyzed to release histamine and β-alanine. This histamine is repackaged into synaptic vesicles, but it is unclear how the β-alanine is returned to the laminar glial cells. Here, we identified a new β-alanine transporter, which we named BalaT (Beta-alanine Transporter). Null balat mutants exhibited lower levels of β-alanine, as well as less β-alanine accumulation in the retina. Moreover, BalaT is expressed and required in retinal pigment cells for maintaining visual synaptic transmission and phototaxis behavior. These results provide the first genetic evidence that retinal pigment cells play a critical role in visual neurotransmission, and suggest that a BalaT-dependent β-alanine trafficking pathway is required for histamine homeostasis and visual neurotransmission.

Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

  • Aguilar JI
  • Neuron
  • 2017 Aug 30

Literature context: Fisher Scientific Cat# A-21236; RRID:AB_2535805 Bacterial and Virus Strains


The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content.

Synchronized HIV assembly by tunable PIP2 changes reveals PIP2 requirement for stable Gag anchoring.

  • Mücksch F
  • Elife
  • 2017 Jun 2

Literature context: # A-21236 RRID:AB_2535805). Finally,


HIV-1 assembles at the plasma membrane (PM) of infected cells. PM association of the main structural protein Gag depends on its myristoylated MA domain and PM PI(4,5)P2. Using a novel chemical biology tool that allows rapidly tunable manipulation of PI(4,5)P2 levels in living cells, we show that depletion of PI(4,5)P2 completely prevents Gag PM targeting and assembly site formation. Unexpectedly, PI(4,5)P2 depletion also caused loss of pre-assembled Gag lattices from the PM. Subsequent restoration of PM PI(4,5)P2 reinduced assembly site formation even in the absence of new protein synthesis, indicating that the dissociated Gag molecules remained assembly competent. These results reveal an important role of PI(4,5)P2 for HIV-1 morphogenesis beyond Gag recruitment to the PM and suggest a dynamic equilibrium of Gag-lipid interactions. Furthermore, they establish an experimental system that permits synchronized induction of HIV-1 assembly leading to induced production of infectious virions by targeted modulation of Gag PM targeting.

Dynamic Palmitoylation Targets MAP6 to the Axon to Promote Microtubule Stabilization during Neuronal Polarization.

  • Tortosa E
  • Neuron
  • 2017 May 17

Literature context: s A21236, RRID:AB_2535805), anti-rab


Microtubule-associated proteins (MAPs) are main candidates to stabilize neuronal microtubules, playing an important role in establishing axon-dendrite polarity. However, how MAPs are selectively targeted to specific neuronal compartments remains poorly understood. Here, we show specific localization of microtubule-associated protein 6 (MAP6)/stable tubule-only polypeptide (STOP) throughout neuronal maturation and its role in axonal development. In unpolarized neurons, MAP6 is present at the Golgi complex and in secretory vesicles. As neurons mature, MAP6 is translocated to the proximal axon, where it binds and stabilizes microtubules. Further, we demonstrate that dynamic palmitoylation, mediated by the family of α/β Hydrolase domain-containing protein 17 (ABHD17A-C) depalmitoylating enzymes, controls shuttling of MAP6 between membranes and microtubules and is required for MAP6 retention in axons. We propose a model in which MAP6's palmitoylation mediates microtubule stabilization, allows efficient organelle trafficking, and controls axon maturation in vitro and in situ.

KChIP2 is a core transcriptional regulator of cardiac excitability.

  • Nassal DM
  • Elife
  • 2017 Mar 6

Literature context: # A-21236 RRID:AB_2535805 1:500 agai


Arrhythmogenesis from aberrant electrical remodeling is a primary cause of death among patients with heart disease. Amongst a multitude of remodeling events, reduced expression of the ion channel subunit KChIP2 is consistently observed in numerous cardiac pathologies. However, it remains unknown if KChIP2 loss is merely a symptom or involved in disease development. Using rat and human derived cardiomyocytes, we identify a previously unobserved transcriptional capacity for cardiac KChIP2 critical in maintaining electrical stability. Through interaction with genetic elements, KChIP2 transcriptionally repressed the miRNAs miR-34b and miR-34c, which subsequently targeted key depolarizing (INa) and repolarizing (Ito) currents altered in cardiac disease. Genetically maintaining KChIP2 expression or inhibiting miR-34 under pathologic conditions restored channel function and moreover, prevented the incidence of reentrant arrhythmias. This identifies the KChIP2/miR-34 axis as a central regulator in developing electrical dysfunction and reveals miR-34 as a therapeutic target for treating arrhythmogenesis in heart disease.

Funding information:
  • NHLBI NIH HHS - R01 HL096962()
  • NHLBI NIH HHS - R01 HL132520()

Pharmacological Rescue of Long-Term Potentiation in Alzheimer Diseased Synapses.

  • Prieto GA
  • J. Neurosci.
  • 2017 Feb 1

Literature context: atalog #A-21236 RRID:AB_2535805); from Sigma-Aldrich: β-actin (


Long-term potentiation (LTP) is an activity-dependent and persistent increase in synaptic transmission. Currently available techniques to measure LTP are time-intensive and require highly specialized expertise and equipment, and thus are not well suited for screening of multiple candidate treatments, even in animal models. To expand and facilitate the analysis of LTP, here we use a flow cytometry-based method to track chemically induced LTP by detecting surface AMPA receptors in isolated synaptosomes: fluorescence analysis of single-synapse long-term potentiation (FASS-LTP). First, we demonstrate that FASS-LTP is simple, sensitive, and models electrically induced LTP recorded in intact circuitries. Second, we conducted FASS-LTP analysis in two well-characterized Alzheimer's disease (AD) mouse models (3xTg and Tg2576) and, importantly, in cryopreserved human AD brain samples. By profiling hundreds of synaptosomes, our data provide the first direct evidence to support the idea that synapses from AD brain are intrinsically defective in LTP. Third, we used FASS-LTP for drug evaluation in human synaptosomes. Testing a panel of modulators of cAMP and cGMP signaling pathways, FASS-LTP identified vardenafil and Bay-73-6691 (phosphodiesterase-5 and -9 inhibitors, respectively) as potent enhancers of LTP in synaptosomes from AD cases. These results indicate that our approach could provide the basis for protocols to study LTP in both healthy and diseased human brains, a previously unattainable goal. SIGNIFICANCE STATEMENT: Learning and memory depend on the ability of synapses to strengthen in response to activity. Long-term potentiation (LTP) is a rapid and persistent increase in synaptic transmission that is thought to be affected in Alzheimer's disease (AD). However, direct evidence of LTP deficits in human AD brain has been elusive, primarily due to methodological limitations. Here, we analyze LTP in isolated synapses from AD brain using a novel approach that allows testing LTP in cryopreserved brain. Our analysis of hundreds of synapses supports the idea that AD-diseased synapses are intrinsically defective in LTP. Further, we identified pharmacological agents that rescue LTP in AD, thus opening up a new avenue for drug screening and evaluation of strategies for alleviating memory impairments.

Funding information:
  • NIA NIH HHS - P01 AG000538()
  • NIA NIH HHS - P50 AG016573()
  • NIA NIH HHS - R01 AG034667()
  • NIA NIH HHS - R21 AG048506()
  • NINDS NIH HHS - P01 NS045260()

Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila.

  • Dey NS
  • Elife
  • 2016 Oct 26

Literature context: # A-21236 RRID:AB_2535805 and goat a


Drosophila hematopoiesis bears striking resemblance with that of vertebrates, both in the context of distinct phases and the signaling molecules. Even though, there has been no evidence of Hematopoietic stem cells (HSCs) in Drosophila, the larval lymph gland with its Hedgehog dependent progenitors served as an invertebrate model of progenitor biology. Employing lineage-tracing analyses, we have now identified Notch expressing HSCs in the first instar larval lymph gland. Our studies clearly establish the hierarchical relationship between Notch expressing HSCs and the previously described Domeless expressing progenitors. These HSCs require Decapentapelagic (Dpp) signal from the hematopoietic niche for their maintenance in an identical manner to vertebrate aorta-gonadal-mesonephros (AGM) HSCs. Thus, this study not only extends the conservation across these divergent taxa, but also provides a new model that can be exploited to gain better insight into the AGM related Hematopoietic stem cells (HSCs).

Funding information:
  • NEI NIH HHS - EY04067(United States)

Sex and laterality differences in medial amygdala neurons and astrocytes of adult mice.

  • Pfau DR
  • J. Comp. Neurol.
  • 2016 Aug 15

Literature context: ] A21236, RRID:AB_10564125) (1:2000)


The posterodorsal aspect of the medial amygdala (MePD) in rats is sexually dimorphic, being larger and containing more and larger neurons in males than in females. It is also highly lateralized, with the right MePD larger than the left in both sexes, but with the smaller left MePD actually containing more and larger neurons than the larger right. Astrocytes are also strikingly sexually differentiated, with male-biased numbers and lateralized favoring the right in the rat MePD. However, comparable information is scant for mice where genetic tools offer greater experimental power. Hence, we examined the MePD from adult male and female C57Bl/6(J) mice. We now report that the MePD is larger in males than in females, with the MePD in males containing more astrocytes and neurons than in females. However, we did not find sex differences in astrocyte complexity or overall glial number nor effects of laterality in either measure. While the mouse MePD is generally less lateralized than in rats, we did find that the sex difference in astrocyte number is only on the right because of a significant lateralization in females, with significantly fewer astrocytes on the right than the left but only in females. A sex difference in neuronal soma size favoring males was also evident, but only on the left. Sex differences in the number of neurons and astrocytes common to both rodent species may represent core morphological features that critically underlie the expression of sex-specific behaviors that depend on the MePD. J. Comp. Neurol. 524:2492-2502, 2016. © 2016 Wiley Periodicals, Inc.

Funding information:
  • Wellcome Trust - WT098418MA(United Kingdom)

Activin Enhances α- to β-Cell Transdifferentiation as a Source For β-Cells In Male FSTL3 Knockout Mice.

  • Brown ML
  • Endocrinology
  • 2016 Mar 27

Literature context:


Diabetes results from inadequate β-cell number and/or function to control serum glucose concentrations so that replacement of lost β-cells could become a viable therapy for diabetes. In addition to embryonic stem cell sources for new β-cells, evidence for transdifferentiation/reprogramming of non-β-cells to functional β-cells is accumulating. In addition, de-differentiation of β-cells observed in diabetes and their subsequent conversion to α-cells raises the possibility that adult islet cell fate is malleable and controlled by local hormonal and/or environmental cues. We previously demonstrated that inactivation of the activin antagonist, follistatin-like 3 (FSTL3) resulted in β-cell expansion and improved glucose homeostasis in the absence of β-cell proliferation. We recently reported that activin directly suppressed expression of critical α-cell genes while increasing expression of β-cell genes, supporting the hypothesis that activin is one of the local hormones controlling islet cell fate and that increased activin signaling accelerates α- to β-cell transdifferentiation. We tested this hypothesis using Gluc-Cre/yellow fluorescent protein (YFP) α-cell lineage tracing technology combined with FSTL3 knockout (KO) mice to label α-cells with YFP. Flow cytometry was used to quantify unlabeled and labeled α- and β-cells. We found that Ins+/YFP+ cells were significantly increased in FSTL3 KO mice compared with wild type littermates. Labeled Ins+/YFP+ cells increased significantly with age in FSTL3 KO mice but not wild type littermates. Sorting results were substantiated by counting fluorescently labeled cells in pancreatic sections. Activin treatment of isolated islets significantly increased the number of YFP+/Ins+ cells. These results suggest that α- to β-cell transdifferentiation is influenced by activin signaling and may contribute substantially to β-cell mass.

Funding information:
  • NCATS NIH HHS - UL1 TR001082(United States)
  • PHS HHS - T32 016434-33(United States)

Activins A and B Regulate Fate-Determining Gene Expression in Islet Cell Lines and Islet Cells From Male Mice.

  • Andrzejewski D
  • Endocrinology
  • 2015 Jul 20

Literature context:


TGFβ superfamily ligands, receptors, and second messengers, including activins A and B, have been identified in pancreatic islets and proposed to have important roles regulating development, proliferation, and function. We previously demonstrated that Fstl3 (an antagonist of activin activity) null mice have larger islets with β-cell hyperplasia and improved glucose tolerance and insulin sensitivity in the absence of altered β-cell proliferation. This suggested the hypothesis that increased activin signaling influences β-cell expansion by destabilizing the α-cell phenotype and promoting transdifferentiation to β-cells. We tested the first part of this hypothesis by treating α- and β-cell lines and sorted mouse islet cells with activin and related ligands. Treatment of the αTC1-6 α cell line with activins A or B suppressed critical α-cell gene expression, including Arx, glucagon, and MafB while also enhancing β-cell gene expression. In INS-1E β-cells, activin A treatment induced a significant increase in Pax4 (a fate determining β-cell gene) and insulin expression. In sorted primary islet cells, α-cell gene expression was again suppressed by activin treatment in α-cells, whereas Pax4 was enhanced in β-cells. Activin treatment in both cell lines and primary cells resulted in phosphorylated mothers against decapentaplegic-2 phosphorylation. Finally, treatment of αTC1-6 cells with activins A or B significantly inhibited proliferation. These results support the hypothesis that activin signaling destabilized the α-cell phenotype while promoting a β-cell fate. Moreover, these results support a model in which the β-cell expansion observed in Fstl3 null mice may be due, at least in part, to enhanced α- to β-cell transdifferentiation.

Funding information:
  • Canadian Institutes of Health Research - 43881(Canada)
  • NIDDK NIH HHS - R01DK069351(United States)