Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Goat anti-Mouse IgG2a Cross-Adsorbed Secondary Antibody, Alexa Fluor 488


Antibody ID


Target Antigen

Mouse IgG2a Cross-Adsorbed mouse


Thermo Fisher Scientific Go To Vendor

Cat Num


Proper Citation

(Thermo Fisher Scientific Cat# A-21131, RRID:AB_2535771)


polyclonal antibody

Host Organism



Applications: IF (1 µg/mL), IHC (1-10 µg/mL), ICC (1 µg/mL), Flow (1-10 µg/mL)

Sensitivity and specificity of phospho-Ser129 α-synuclein monoclonal antibodies.

  • Delic V
  • J. Comp. Neurol.
  • 2018 Aug 15

Literature context: Thermo Fisher: A‐21131


α-Synuclein (α-syn) is an abundant presynaptic protein that is the primary constituent of inclusions that define Lewy body diseases (LBDs). In these inclusions, α-syn is phosphorylated at the serine-129 residue. Antibodies directed to this phosphorylation site are used to measure inclusion abundance and stage disease progression in preclinical models as well as in postmortem tissues in LBDs. While it is critical to reliably identify inclusions, phospho-specific antibodies often cross-react with nonspecific antigens. Four commercially available monoclonal antibodies, two from rabbits (clones EP1536Y and MJF-R13) and two from mice (81a and pSyn#64), have been the most widely used in detecting pS129-α-syn inclusions. Here, we systematically evaluated these antibodies in brain sections and protein lysates from rats and mice. All antibodies detected pS129-α-syn inclusions in the brain that were induced by preformed α-syn fibrils in wild-type rats and mice. Antibody titrations revealed that clones EP1536Y and 81a comparably labeled inclusions in both the perikarya and neuronal processes in contrast to clones MJF-R13 and pSyn#64 that incompletely labeled inclusions at various antibody concentrations. Except for EP1536Y, the clones produced nonspecific diffuse neuropil labeling in α-syn knockout mice as well as mice and rats injected with monomeric α-syn, with some nonspecific staining titrating with pS129-α-syn inclusions. By immunoblot, all the clones cross-reacted with proteins other than α-syn, warranting caution in interpretations of specificity. Clone EP1536Y uniquely and robustly detected endogenous pS129-α-syn in highly soluble protein fractions from the mouse brain. In summary, EP1536Y had the highest sensitivity and specificity for detecting pS129-α-syn.

Funding information:
  • NIGMS NIH HHS - GM08347(United States)
  • NINDS NIH HHS - P20 NS092530()
  • NINDS NIH HHS - R01 NS064934()
  • NINDS NIH HHS - R21 NS097643()
  • NINDS NIH HHS - R33 NS097643()

The H3K36me2 Methyltransferase Nsd1 Demarcates PRC2-Mediated H3K27me2 and H3K27me3 Domains in Embryonic Stem Cells.

  • Streubel G
  • Mol. Cell
  • 2018 Apr 19

Literature context: ntibody Thermo Fisher A-21131l; RRID:AB_2535771 Bacterial and Virus Strains


The Polycomb repressor complex 2 (PRC2) is composed of the core subunits Ezh1/2, Suz12, and Eed, and it mediates all di- and tri-methylation of histone H3 at lysine 27 in higher eukaryotes. However, little is known about how the catalytic activity of PRC2 is regulated to demarcate H3K27me2 and H3K27me3 domains across the genome. To address this, we mapped the endogenous interactomes of Ezh2 and Suz12 in embryonic stem cells (ESCs), and we combined this with a functional screen for H3K27 methylation marks. We found that Nsd1-mediated H3K36me2 co-locates with H3K27me2, and its loss leads to genome-wide expansion of H3K27me3. These increases in H3K27me3 occurred at PRC2/PRC1 target genes and as de novo accumulation within what were previously broad H3K27me2 domains. Our data support a model in which Nsd1 is a key modulator of PRC2 function required for regulating the demarcation of genome-wide H3K27me2 and H3K27me3 domains in ESCs.

Funding information:
  • Medical Research Council - BB/F007590/1(United Kingdom)

Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish.

  • González-Rosa JM
  • Dev. Cell
  • 2018 Feb 26

Literature context: Fisher Scientific Cat# A-21131; RRID:AB_2535771 Goat anti-Mouse IgG2a Cross-Ads


Correlative evidence suggests that polyploidization of heart muscle, which occurs naturally in post-natal mammals, creates a barrier to heart regeneration. Here, we move beyond a correlation by demonstrating that experimental polyploidization of zebrafish cardiomyocytes is sufficient to suppress their proliferative potential during regeneration. Initially, we determined that zebrafish myocardium becomes susceptible to polyploidization upon transient cytokinesis inhibition mediated by dominant-negative Ect2. Using a transgenic strategy, we generated adult animals containing mosaic hearts composed of differentially labeled diploid and polyploid-enriched cardiomyocyte populations. Diploid cardiomyocytes outcompeted their polyploid neighbors in producing regenerated heart muscle. Moreover, hearts composed of equivalent proportions of diploid and polyploid cardiomyocytes failed to regenerate altogether, demonstrating that a critical percentage of diploid cardiomyocytes is required to achieve heart regeneration. Our data identify cardiomyocyte polyploidization as a barrier to heart regeneration and suggest that mobilizing rare diploid cardiomyocytes in the human heart will improve its regenerative capacity.

Funding information:
  • Canadian Institutes of Health Research - (Canada)
  • NHLBI NIH HHS - R01 HL127067()

mTOR-dependent alterations of Kv1.1 subunit expression in the neuronal subset-specific Pten knockout mouse model of cortical dysplasia with epilepsy.

  • Nguyen LH
  • Sci Rep
  • 2018 Feb 23

Literature context: 1:500, Invitrogen #A21145), and anti-mouse IgG2a (488) (1:500, Invitrogen #{"type":"entrez-nucleotide","attrs":{"text":"A21131","term_id":"514092","term_text":"A21131"}}A21131). All antibodies were diluted in


Cortical dysplasia (CD) is a common cause for intractable epilepsy. Hyperactivation of the mechanistic target of rapamycin (mTOR) pathway has been implicated in CD; however, the mechanisms by which mTOR hyperactivation contribute to the epilepsy phenotype remain elusive. Here, we investigated whether constitutive mTOR hyperactivation in the hippocampus is associated with altered voltage-gated ion channel expression in the neuronal subset-specific Pten knockout (NS-Pten KO) mouse model of CD with epilepsy. We found that the protein levels of Kv1.1, but not Kv1.2, Kv1.4, or Kvβ2, potassium channel subunits were increased, along with altered Kv1.1 distribution, within the hippocampus of NS-Pten KO mice. The aberrant Kv1.1 protein levels were present in young adult (≥postnatal week 6) but not juvenile (≤postnatal week 4) NS-Pten KO mice. No changes in hippocampal Kv1.1 mRNA levels were found between NS-Pten KO and WT mice. Interestingly, mTOR inhibition with rapamycin treatment at early and late stages of the pathology normalized Kv1.1 protein levels in NS-Pten KO mice to WT levels. Together, these studies demonstrate altered Kv1.1 protein expression in association with mTOR hyperactivation in NS-Pten KO mice and suggest a role for mTOR signaling in the modulation of voltage-gated ion channel expression in this model.

Funding information:
  • NIAID NIH HHS - R01AI067979(United States)
  • NICHD NIH HHS - U54 HD083092()
  • NINDS NIH HHS - R01 NS081053()

Input-Timing-Dependent Plasticity in the Hippocampal CA2 Region and Its Potential Role in Social Memory.

  • Leroy F
  • Neuron
  • 2017 Aug 30

Literature context: Fisher Scientific Cat# A21131; RRID:AB_2535771 Goat anti-Mouse IgG2a Secondary


Input-timing-dependent plasticity (ITDP) is a circuit-based synaptic learning rule by which paired activation of entorhinal cortical (EC) and Schaffer collateral (SC) inputs to hippocampal CA1 pyramidal neurons (PNs) produces a long-term enhancement of SC excitation. We now find that paired stimulation of EC and SC inputs also induces ITDP of SC excitation of CA2 PNs. However, whereas CA1 ITDP results from long-term depression of feedforward inhibition (iLTD) as a result of activation of CB1 endocannabinoid receptors on cholecystokinin-expressing interneurons, CA2 ITDP results from iLTD through activation of δ-opioid receptors on parvalbumin-expressing interneurons. Furthermore, whereas CA1 ITDP has been previously linked to enhanced specificity of contextual memory, we find that CA2 ITDP is associated with enhanced social memory. Thus, ITDP may provide a general synaptic learning rule for distinct forms of hippocampal-dependent memory mediated by distinct hippocampal regions.

Periostin induces pancreatic regeneration.

  • Smid JK
  • Endocrinology
  • 2015 Mar 21

Literature context:


We found that the secreted protein periostin (Postn) is highly induced after partial pancreatectomy in regenerating areas containing mesenchymal stroma and tubular complexes. Importantly, after partial pancreatectomy, Postn-deficient mice exhibit impaired mesenchymal formation and reduced regeneration specifically within the pancreatic β-cell compartment. Furthermore, Postn-deficient mice demonstrate an increased sensitivity to streptozotocin. Notably, injection of Postn directly into the pancreas stimulated proliferation of vimentin-expressing cells within 24 hours, and by 3 days, a mesenchymal stroma was present containing proliferating duct-like cells expressing the progenitor markers Ngn3 and Pdx1. Intraperitoneal injection of Postn resulted in increased numbers of islets and long-term glucoregulatory benefits with no adverse effects found in other tissues. Delivery of Postn throughout the pancreas via the common bile duct resulted in increased numbers of small insulin-expressing clusters and a significant improvement in glucose tolerance. Therefore, Postn is novel molecule capable of potentiating pancreatic β-cell regeneration.

Funding information:
  • NIDDK NIH HHS - R01 DK055758(United States)
  • NINDS NIH HHS - R01 NS073981(United States)