Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

beta Amyloid Polyclonal Antibody


Antibody ID


Target Antigen

beta Amyloid human

Proper Citation

(Thermo Fisher Scientific Cat# 51-2700, RRID:AB_2533902)


polyclonal antibody


Applications: ELISA (0.1-1.0 µg/mL), WB (0.2-2 µg/mL), IF (1-5 µg/mL), IHC (0.1-1.0 µg/mL)

Clone ID

Clone CT695

Host Organism



Thermo Fisher Scientific Go To Vendor

Cat Num


Publications that use this research resource

Defining an Analytic Framework to Evaluate Quantitative MRI Markers of Traumatic Axonal Injury: Preliminary Results in a Mouse Closed Head Injury Model.

  • Haber M
  • eNeuro
  • 2018 May 30

Literature context:


Diffuse axonal injury (DAI) is a hallmark of traumatic brain injury (TBI) pathology. Recently, the Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA) was developed to generate an experimental model of DAI in a mouse. The characterization of DAI using diffusion tensor magnetic resonance imaging (MRI; diffusion tensor imaging, DTI) may provide a useful set of outcome measures for preclinical and clinical studies. The objective of this study was to identify the complex neurobiological underpinnings of DTI features following DAI using a comprehensive and quantitative evaluation of DTI and histopathology in the CHIMERA mouse model. A consistent neuroanatomical pattern of pathology in specific white matter tracts was identified across ex vivo DTI maps and photomicrographs of histology. These observations were confirmed by voxelwise and regional analysis of DTI maps, demonstrating reduced fractional anisotropy (FA) in distinct regions such as the optic tract. Similar regions were identified by quantitative histology and exhibited axonal damage as well as robust gliosis. Additional analysis using a machine-learning algorithm was performed to identify regions and metrics important for injury classification in a manner free from potential user bias. This analysis found that diffusion metrics were able to identify injured brains almost with the same degree of accuracy as the histology metrics. Good agreement between regions detected as abnormal by histology and MRI was also found. The findings of this work elucidate the complexity of cellular changes that give rise to imaging abnormalities and provide a comprehensive and quantitative evaluation of the relative importance of DTI and histological measures to detect brain injury.

Primary Traumatic Axonopathy in Mice Subjected to Impact Acceleration: A Reappraisal of Pathology and Mechanisms with High-Resolution Anatomical Methods.

  • Ziogas NK
  • J. Neurosci.
  • 2018 Apr 18

Literature context:


Traumatic axonal injury (TAI) is a common neuropathology in traumatic brain injury and is featured by primary injury to axons. Here, we generated TAI with impact acceleration of the head in male Thy1-eYFP-H transgenic mice in which specific populations of neurons and their axons are labeled with yellow fluorescent protein. This model results in axonal lesions in multiple axonal tracts along with blood-brain barrier disruption and neuroinflammation. The corticospinal tract, a prototypical long tract, is severely affected and is the focus of this study. Using optimized CLARITY at single-axon resolution, we visualized the entire corticospinal tract volume from the pons to the cervical spinal cord in 3D and counted the total number of axonal lesions and their progression over time. Our results divulged the presence of progressive traumatic axonopathy that was maximal at the pyramidal decussation. The perikarya of injured corticospinal neurons atrophied, but there was no evidence of neuronal cell death. We also used CLARITY at single-axon resolution to explore the role of the NMNAT2-SARM1 axonal self-destruction pathway in traumatic axonopathy. When we interfered with this pathway by genetically ablating SARM1 or by pharmacological strategies designed to increase levels of Nicotinamide (Nam), a feedback inhibitor of SARM1, we found a significant reduction in the number of axonal lesions early after injury. Our findings show that high-resolution neuroanatomical strategies reveal important features of TAI with biological implications, especially the progressive axonopathic nature of TAI and the role of the NMNAT2-SARM1 pathway in the early stages of axonopathy.SIGNIFICANCE STATEMENT In the first systematic application of novel high-resolution neuroanatomical tools in neuropathology, we combined CLARITY with 2-photon microscopy, optimized for detection of single axonal lesions, to reconstruct the injured mouse brainstem in a model of traumatic axonal injury (TAI) that is a common pathology associated with traumatic brain injury. The 3D reconstruction of the corticospinal tract at single-axon resolution allowed for a more advanced level of qualitative and quantitative understanding of TAI. Using this model, we showed that TAI is an axonopathy with a prominent role of the NMNAT2-SARM1 molecular pathway, that is also implicated in peripheral neuropathy. Our results indicate that high-resolution anatomical models of TAI afford a level of detail and sensitivity that is ideal for testing novel molecular and biomechanical hypotheses.

Funding information:
  • NIDDK NIH HHS - R01 DK083402(United States)

αII Spectrin Forms a Periodic Cytoskeleton at the Axon Initial Segment and Is Required for Nervous System Function.

  • Huang CY
  • J. Neurosci.
  • 2017 Nov 22

Literature context:


Spectrins form a submembranous cytoskeleton proposed to confer strength and flexibility to neurons and to participate in ion channel clustering at axon initial segments (AIS) and nodes of Ranvier. Neuronal spectrin cytoskeletons consist of diverse β subunits and αII spectrin. Although αII spectrin is found in neurons in both axonal and somatodendritic domains, using proteomics, biochemistry, and superresolution microscopy, we show that αII and βIV spectrin interact and form a periodic AIS cytoskeleton. To determine the role of spectrins in the nervous system, we generated Sptan1f/f mice for deletion of CNS αII spectrin. We analyzed αII spectrin-deficient mice of both sexes and found that loss of αII spectrin causes profound reductions in all β spectrins. αII spectrin-deficient mice die before 1 month of age and have disrupted AIS and many other neurological impairments including seizures, disrupted cortical lamination, and widespread neurodegeneration. These results demonstrate the importance of the spectrin cytoskeleton both at the AIS and throughout the nervous system.SIGNIFICANCE STATEMENT Spectrin cytoskeletons play diverse roles in neurons, including assembly of excitable domains such as the axon initial segment (AIS) and nodes of Ranvier. However, the molecular composition and structure of these cytoskeletons remain poorly understood. Here, we show that αII spectrin partners with βIV spectrin to form a periodic cytoskeleton at the AIS. Using a new αII spectrin conditional knock-out mouse, we show that αII spectrin is required for AIS assembly, neuronal excitability, cortical lamination, and to protect against neurodegeneration. These results demonstrate the broad importance of spectrin cytoskeletons for nervous system function and development and have important implications for nervous system injuries and diseases because disruption of the spectrin cytoskeleton is a common molecular pathology.