X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Cleaved Caspase-3 (Asp175) Antibody

RRID:AB_2341188

Antibody ID

AB_2341188

Target Antigen

Cleaved Caspase-3 (Asp175) human, mouse, rat, monkey

Proper Citation

(Cell Signaling Technology Cat# 9661, RRID:AB_2341188)

Clonality

polyclonal antibody

Comments

Applications: W, IP, IHC-P, IF-IC, F. Consolidation on 9/2016: AB_331440, AB_331441, AB_2314091, AB_2314093, AB_2314094. Info: Rated by ISCC, Intestinal Stem Cell Consortium (check ras https://iscc.coh.org/). Used By NYUIHC-314

Host Organism

rabbit

Vendor

Cell Signaling Technology

Cat Num

9661 also NYUIHC-314, 9661S, 9661L

Publications that use this research resource

Cancer Lipid Metabolism Confers Antiangiogenic Drug Resistance.

  • Iwamoto H
  • Cell Metab.
  • 2018 Jul 3

Literature context: ase-3 Cell Signaling Cat# 9661; RRID:AB_2341188 Rabbit polyclonal anti-CA9 Novu


Abstract:

Intrinsic and evasive antiangiogenic drug (AAD) resistance is frequently developed in cancer patients, and molecular mechanisms underlying AAD resistance remain largely unknown. Here we describe AAD-triggered, lipid-dependent metabolic reprogramming as an alternative mechanism of AAD resistance. Unexpectedly, tumor angiogenesis in adipose and non-adipose environments is equally sensitive to AAD treatment. AAD-treated tumors in adipose environment show accelerated growth rates in the presence of a minimal number of microvessels. Mechanistically, AAD-induced tumor hypoxia initiates the fatty acid oxidation metabolic reprogramming and increases uptake of free fatty acid (FFA) that stimulates cancer cell proliferation. Inhibition of carnitine palmitoyl transferase 1A (CPT1) significantly compromises the FFA-induced cell proliferation. Genetic and pharmacological loss of CPT1 function sensitizes AAD therapeutic efficacy and enhances its anti-tumor effects. Together, we propose an effective cancer therapy concept by combining drugs that target angiogenesis and lipid metabolism.

Funding information:
  • British Heart Foundation - G0802266(United Kingdom)

Th17 Lymphocytes Induce Neuronal Cell Death in a Human iPSC-Based Model of Parkinson's Disease.

  • Sommer A
  • Cell Stem Cell
  • 2018 Jul 5

Literature context: caspase 3 Cell Signaling 9661, RRID:AB_2341188 anti mouse 488 Life Technology


Abstract:

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive degeneration of midbrain neurons (MBNs). Recent evidence suggests contribution of the adaptive immune system in PD. Here, we show a role for human T lymphocytes as cell death inducers of induced pluripotent stem cell (iPSC)-derived MBNs in sporadic PD. Higher Th17 frequencies were found in the blood of PD patients and increased numbers of T lymphocytes were detected in postmortem PD brain tissues. We modeled this finding using autologous co-cultures of activated T lymphocytes and iPSC-derived MBNs of sporadic PD patients and controls. After co-culture with T lymphocytes or the addition of IL-17, PD iPSC-derived MBNs underwent increased neuronal death driven by upregulation of IL-17 receptor (IL-17R) and NFκB activation. Blockage of IL-17 or IL-17R, or the addition of the FDA-approved anti-IL-17 antibody, secukinumab, rescued the neuronal death. Our findings indicate a critical role for IL-17-producing T lymphocytes in sporadic PD.

Funding information:
  • NIDCR NIH HHS - DE019075(United States)

The microbiota influences cell death and microglial colonization in the perinatal mouse brain.

  • Castillo-Ruiz A
  • Brain Behav. Immun.
  • 2018 Jul 11

Literature context: MA, USA; Antibody Registry ID: RRID:AB_2341188; 1:20,000) or rabbit anti-Iba1


Abstract:

The mammalian fetus develops in a largely sterile environment, and direct exposure to a complex microbiota does not occur until birth. We took advantage of this to examine the effect of the microbiota on brain development during the first few days of life. The expression of anti- and pro-inflammatory cytokines, developmental cell death, and microglial colonization in the brain were compared between newborn conventionally colonized mice and mice born in sterile, germ-free (GF) conditions. Expression of the pro-inflammatory cytokines interleukin 1β and tumor necrosis factor α was markedly suppressed in GF newborns. GF mice also had altered cell death, with some regions exhibiting higher rates (paraventricular nucleus of the hypothalamus and the CA1 oriens layer of the hippocampus) and other regions exhibiting no change or lower rates (arcuate nucleus of the hypothalamus) of cell death. Microglial labeling was elevated in GF mice, due to an increase in both microglial cell size and number. The changes in cytokine expression, cell death and microglial labeling were evident on the day of birth, but were absent on embryonic day 18.5, approximately one-half day prior to expected delivery. Taken together, our results suggest that direct exposure to the microbiota at birth influences key neurodevelopmental events and does so within hours. These findings may help to explain some of the behavioral and neurochemical alterations previously seen in adult GF mice.

Funding information:
  • NIMH NIH HHS - R21 MH108345()

PNPT1 Release from Mitochondria during Apoptosis Triggers Decay of Poly(A) RNAs.

  • Liu X
  • Cell
  • 2018 Jun 28

Literature context: 3 Cell Signaling Cat#9661; RRID:AB_2341188 Rabbit polyclonal anti-Caspase


Abstract:

Widespread mRNA decay, an unappreciated feature of apoptosis, enhances cell death and depends on mitochondrial outer membrane permeabilization (MOMP), TUTases, and DIS3L2. Which RNAs are decayed and the decay-initiating event are unknown. Here, we show extensive decay of mRNAs and poly(A) noncoding (nc)RNAs at the 3' end, triggered by the mitochondrial intermembrane space 3'-to-5' exoribonuclease PNPT1, released during MOMP. PNPT1 knockdown inhibits apoptotic RNA decay and reduces apoptosis, while ectopic expression of PNPT1, but not an RNase-deficient mutant, increases RNA decay and cell death. The 3' end of PNPT1 substrates thread through a narrow channel. Many non-poly(A) ncRNAs contain 3'-secondary structures or bind proteins that may block PNPT1 activity. Indeed, mutations that disrupt the 3'-stem-loop of a decay-resistant ncRNA render the transcript susceptible, while adding a 3'-stem-loop to an mRNA prevents its decay. Thus, PNPT1 release from mitochondria during MOMP initiates apoptotic decay of RNAs lacking 3'-structures.

Funding information:
  • NIEHS NIH HHS - R01 ES015359(United States)

Alpha protocadherins and Pyk2 kinase regulate cortical neuron migration and cytoskeletal dynamics via Rac1 GTPase and WAVE complex in mice.

  • Fan L
  • Elife
  • 2018 Jun 18

Literature context:


Abstract:

Diverse clustered protocadherins are thought to function in neurite morphogenesis and neuronal connectivity in the brain. Here we report that the protocadherin alpha (Pcdha) gene cluster regulates neuronal migration during cortical development and cytoskeletal dynamics in primary cortical culture through the WAVE (Wiskott-Aldrich syndrome family verprolin homologous protein, also known as WASP or Wasf) complex. In addition, overexpression of proline-rich tyrosine kinase 2 (Pyk2, also known as Ptk2b, Cakb, Raftk, Fak2, and Cadtk), a non-receptor cell-adhesion kinase and scaffold protein downstream of Pcdha, impairs cortical neuron migration via inactivation of the small GTPase Rac1. Thus, we define a molecular Pcdha/WAVE/Pyk2/Rac1 axis from protocadherin cell-surface receptors to actin cytoskeletal dynamics in cortical neuron migration in mouse brain.

Funding information:
  • Ministry of Science and Technology of the People's Republic of China - 2017YFA0504203()
  • National Natural Science Foundation of China - 31470820()
  • National Natural Science Foundation of China - 31630039()
  • National Natural Science Foundation of China - 91640118()
  • NIGMS NIH HHS - GM052872(United States)

Lateral line placodes of aquatic vertebrates are evolutionarily conserved in mammals.

  • Washausen S
  • Biol Open
  • 2018 Jun 19

Literature context: l Signaling Technology, lot 37, RRID:AB_2341188; 1:8000, overnight, 4°C) (Washa


Abstract:

Placodes are focal thickenings of the surface ectoderm which, together with neural crest, generate the peripheral nervous system of the vertebrate head. Here we examine how, in embryonic mice, apoptosis contributes to the remodelling of the primordial posterior placodal area (PPA) into physically separated otic and epibranchial placodes. Using pharmacological inhibition of apoptosis-associated caspases, we find evidence that apoptosis eliminates hitherto undiscovered rudiments of the lateral line sensory system which, in fish and aquatic amphibia, serves to detect movements, pressure changes or electric fields in the surrounding water. Our results refute the evolutionary theory, valid for more than a century that the whole lateral line was completely lost in amniotes. Instead, those parts of the PPA which, under experimental conditions, escape apoptosis have retained the developmental potential to produce lateral line placodes and the primordia of neuromasts that represent the major functional units of the mechanosensory lateral line system.

Funding information:
  • NIAID NIH HHS - U19 AI091036(United States)

Cancer Cells Co-opt the Neuronal Redox-Sensing Channel TRPA1 to Promote Oxidative-Stress Tolerance.

  • Takahashi N
  • Cancer Cell
  • 2018 Jun 11

Literature context: Signaling Technology Cat# 9661; RRID:AB_2341188 Mouse monoclonal antibody anti-


Abstract:

Cancer cell survival is dependent on oxidative-stress defenses against reactive oxygen species (ROS) that accumulate during tumorigenesis. Here, we show a non-canonical oxidative-stress defense mechanism through TRPA1, a neuronal redox-sensing Ca2+-influx channel. In TRPA1-enriched breast and lung cancer spheroids, TRPA1 is critical for survival of inner cells that exhibit ROS accumulation. Moreover, TRPA1 promotes resistance to ROS-producing chemotherapies, and TRPA1 inhibition suppresses xenograft tumor growth and enhances chemosensitivity. TRPA1 does not affect redox status but upregulates Ca2+-dependent anti-apoptotic pathways. NRF2, an oxidant-defense transcription factor, directly controls TRPA1 expression, thus providing an orthogonal mechanism for protection against oxidative stress together with canonical ROS-neutralizing mechanisms. These findings reveal an oxidative-stress defense program involving TRPA1 that could be exploited for targeted cancer therapies.

Funding information:
  • NCRR NIH HHS - C06 RR030414(United States)

Liver Cancer Initiation Requires p53 Inhibition by CD44-Enhanced Growth Factor Signaling.

  • Dhar D
  • Cancer Cell
  • 2018 Jun 11

Literature context: ling Technologies Cat# CS9661; RRID:AB_2341188 anti-p-p53(Ser15) Cell Signalin


Abstract:

How fully differentiated cells that experience carcinogenic insults become proliferative cancer progenitors that acquire multiple initiating mutations is not clear. This question is of particular relevance to hepatocellular carcinoma (HCC), which arises from differentiated hepatocytes. Here we show that one solution to this problem is provided by CD44, a hyaluronic acid receptor whose expression is rapidly induced in carcinogen-exposed hepatocytes in a STAT3-dependent manner. Once expressed, CD44 potentiates AKT activation to induce the phosphorylation and nuclear translocation of Mdm2, which terminates the p53 genomic surveillance response. This allows DNA-damaged hepatocytes to escape p53-induced death and senescence and respond to proliferative signals that promote fixation of mutations and their transmission to daughter cells that go on to become HCC progenitors.

Funding information:
  • Intramural NIH HHS - Z01 ES101765(United States)
  • NCI NIH HHS - R01 CA118165()
  • NIEHS NIH HHS - P42 ES010337()

Type 2 Diabetes Leads to Axon Initial Segment Shortening in db/db Mice.

  • Yermakov LM
  • Front Cell Neurosci
  • 2018 Jun 26

Literature context: Signaling Technology Cat# 9661, RRID:AB_2341188); chicken polyclonal neurofasci


Abstract:

Cognitive and mood impairments are common central nervous system complications of type 2 diabetes, although the neuronal mechanism(s) remains elusive. Previous studies focused mainly on neuronal inputs such as altered synaptic plasticity. Axon initial segment (AIS) is a specialized functional domain within neurons that regulates neuronal outputs. Structural changes of AIS have been implicated as a key pathophysiological event in various psychiatric and neurological disorders. Here we evaluated the structural integrity of the AIS in brains of db/db mice, an established animal model of type 2 diabetes associated with cognitive and mood impairments. We assessed the AIS before (5 weeks of age) and after (10 weeks) the development of type 2 diabetes, and after daily exercise treatment of diabetic condition. We found that the development of type 2 diabetes is associated with significant AIS shortening in both medial prefrontal cortex and hippocampus, as evident by immunostaining of the AIS structural protein βIV spectrin. AIS shortening occurs in the absence of altered neuronal and AIS protein levels. We found no change in nodes of Ranvier, another neuronal functional domain sharing a molecular organization similar to the AIS. This is the first study to identify AIS alteration in type 2 diabetes condition. Since AIS shortening is known to lower neuronal excitability, our results may provide a new avenue for understanding and treating cognitive and mood impairments in type 2 diabetes.

Funding information:
  • NIDDK NIH HHS - K01 DK076743(United States)

Dual Requirement of CHD8 for Chromatin Landscape Establishment and Histone Methyltransferase Recruitment to Promote CNS Myelination and Repair.

  • Zhao C
  • Dev. Cell
  • 2018 Jun 18

Literature context: Signaling Technology Cat# 9661, RRID:AB_2341188 Rabbit anti-GFP Molecular Probe


Abstract:

Disruptive mutations in chromatin remodeler CHD8 cause autism spectrum disorders, exhibiting widespread white matter abnormalities; however, the underlying mechanisms remain elusive. We show that cell-type specific Chd8 deletion in oligodendrocyte progenitors, but not in neurons, results in myelination defects, revealing a cell-intrinsic dependence on CHD8 for oligodendrocyte lineage development, myelination and post-injury remyelination. CHD8 activates expression of BRG1-associated SWI/SNF complexes that in turn activate CHD7, thus initiating a successive chromatin remodeling cascade that orchestrates oligodendrocyte lineage progression. Genomic occupancy analyses reveal that CHD8 establishes an accessible chromatin landscape, and recruits MLL/KMT2 histone methyltransferase complexes distinctively around proximal promoters to promote oligodendrocyte differentiation. Inhibition of histone demethylase activity partially rescues myelination defects of CHD8-deficient mutants. Our data indicate that CHD8 exhibits a dual function through inducing a cascade of chromatin reprogramming and recruiting H3K4 histone methyltransferases to establish oligodendrocyte identity, suggesting potential strategies of therapeutic intervention for CHD8-associated white matter defects.

Funding information:
  • NIMH NIH HHS - R01 MH087592(United States)

Evolution of Cortical Neurogenesis in Amniotes Controlled by Robo Signaling Levels.

  • Cárdenas A
  • Cell
  • 2018 Jun 20

Literature context: ase 3 Cell signaling Cat# 9661, RRID:AB_2341188 Chicken polyclonal anti-GFP Ave


Abstract:

Cerebral cortex size differs dramatically between reptiles, birds, and mammals, owing to developmental differences in neuron production. In mammals, signaling pathways regulating neurogenesis have been identified, but genetic differences behind their evolution across amniotes remain unknown. We show that direct neurogenesis from radial glia cells, with limited neuron production, dominates the avian, reptilian, and mammalian paleocortex, whereas in the evolutionarily recent mammalian neocortex, most neurogenesis is indirect via basal progenitors. Gain- and loss-of-function experiments in mouse, chick, and snake embryos and in human cerebral organoids demonstrate that high Slit/Robo and low Dll1 signaling, via Jag1 and Jag2, are necessary and sufficient to drive direct neurogenesis. Attenuating Robo signaling and enhancing Dll1 in snakes and birds recapitulates the formation of basal progenitors and promotes indirect neurogenesis. Our study identifies modulation in activity levels of conserved signaling pathways as a primary mechanism driving the expansion and increased complexity of the mammalian neocortex during amniote evolution.

Funding information:
  • Wellcome Trust - (United Kingdom)

UBE2M Is a Stress-Inducible Dual E2 for Neddylation and Ubiquitylation that Promotes Targeted Degradation of UBE2F.

  • Zhou W
  • Mol. Cell
  • 2018 Jun 21

Literature context: ase-3 Cell Signaling Cat# 9661; RRID:AB_2341188 NOXA Millipore Cat# OP180; RRID


Abstract:

UBE2M and UBE2F are two family members of neddylation E2 conjugating enzyme that, together with E3s, activate CRLs (Cullin-RING Ligases) by catalyzing cullin neddylation. However, whether and how two E2s cross-talk with each other are largely unknown. Here, we report that UBE2M is a stress-inducible gene subjected to cis-transactivation by HIF-1 and AP1, and MLN4924, a small molecule inhibitor of E1 NEDD8-activating enzyme (NAE), upregulates UBE2M via blocking degradation of HIF-1α and c-JUN. UBE2M is a dual E2 for targeted ubiquitylation and degradation of UBE2F, acting as a neddylation E2 to activate CUL3-Keap1 E3 under physiological conditions but as a ubiquitylation E2 for Parkin-DJ-1 E3 under stressed conditions. UBE2M-induced UBE2F degradation leads to CRL5 inactivation and subsequent NOXA accumulation to suppress the growth of lung cancer cells. Collectively, our study establishes a negative regulatory axis between two neddylation E2s with UBE2M ubiquitylating UBE2F, and two CRLs with CRL3 inactivating CRL5.

Funding information:
  • NCI NIH HHS - R01 CA156744()
  • NCI NIH HHS - R01 CA171277()
  • NCI NIH HHS - R01-CA078461(United States)

The neuroregenerative capacity of olfactory stem cells is not limitless: implications for aging.

  • Child KM
  • J. Neurosci.
  • 2018 Jun 22

Literature context: Cell Signaling Technology 9661S RRID:AB_2341188 Rabbit


Abstract:

The olfactory epithelium (OE) of vertebrates is a highly regenerative neuroepithelium, maintained under normal condition by a population of stem and progenitor cells - globose basal cells (GBCs) that also contribute to epithelial reconstitution after injury. However, aging of the OE often leads to neurogenic exhaustion - the disappearance of both GBCs and olfactory sensory neurons (OSNs). Aneuronal tissue may remain as olfactory, with an uninterrupted sheet of apically arrayed microvillar-capped sustentacular cell, or may undergo respiratory metaplasia. We have generated a transgenic mouse model for neurogenic exhaustion using OMP-driven Tet-off regulation of the A subunit of Diphtheria toxin such that the death of mature OSNs is accelerated. As early as 2 months of age the epithelium of transgenic mice, regardless of sex, recapitulates what is seen in the aged OE of humans and rodents. Areas of the epithelium completely lack neurons and GBCs, while the horizontal basal cells, a reserve stem cell population, show no evidence of activation. Surprisingly, other areas that were olfactory undergo respiratory metaplasia. The impact of accelerated neuronal death and reduced innervation on the olfactory bulb (OB) is also examined. Constant neuronal turnover leaves glomeruli shrunken and impacts the dopaminergic interneurons in the periglomerular layer. Moreover, the acceleration of OSN death can be reversed in those areas where some GBCs persist. However, the projection onto the OB recovers incompletely and the reinnervated glomeruli are markedly altered. Thus, the capacity for OE regeneration is tempered when GBCs disappear.SIGNIFICANCE STATEMENTA large percentage of humans lose or suffer a significant decline in olfactory function as they age. Consequently, quality of life suffers, and safety and nutritional status are put at risk. With age, the OE apparently becomes incapable of fully maintaining the neuronal population of the epithelium despite its well-known capacity for recovering from most forms of injury when younger which may contribute to age-related olfactory loss. Efforts to identify the mechanism by which olfactory neurogenesis becomes exhausted with age require a powerful model for accelerating age-related tissue pathology. The current OMP-tTA;TetO-DTA transgenic mouse model, in which olfactory neurons die when they reach maturity and accelerated death can be aborted to assess the capacity for structural recovery, satisfies that need.

Funding information:
  • NICHD NIH HHS - R01 HD008188-36(United States)
  • NIDCD NIH HHS - R01 DC014217(United States)

Twist1 Activation in Muscle Progenitor Cells Causes Muscle Loss Akin to Cancer Cachexia.

  • Parajuli P
  • Dev. Cell
  • 2018 Jun 18

Literature context: g 9661; RRID:AB_2341188 Cytokeratin 19 Abcam ab52625; R


Abstract:

Cancer cachexia is characterized by extreme skeletal muscle loss that results in high morbidity and mortality. The incidence of cachexia varies among tumor types, being lowest in sarcomas, whereas 90% of pancreatic ductal adenocarcinoma (PDAC) patients experience severe weight loss. How these tumors trigger muscle depletion is still unfolding. Serendipitously, we found that overexpression of Twist1 in mouse muscle progenitor cells, either constitutively during development or inducibly in adult animals, caused severe muscle atrophy with features reminiscent of cachexia. Using several genetic mouse models of PDAC, we detected a marked increase in Twist1 expression in muscle undergoing cachexia. In cancer patients, elevated levels of Twist1 are associated with greater degrees of muscle wasting. Finally, both genetic and pharmacological inactivation of Twist1 in muscle progenitor cells afforded substantial protection against cancer-mediated cachexia, which translated into meaningful survival benefits, implicating Twist1 as a possible target for attenuating muscle cachexia in cancer patients.

Funding information:
  • NIDDK NIH HHS - 2R01 DK-041274(United States)

Mesenchymal Stem Cells Form 3D Clusters Following Intraventricular Transplantation.

  • Jungwirth N
  • J. Mol. Neurosci.
  • 2018 May 1

Literature context: #9661/RRID:AB_2341188


Abstract:

Mesenchymal stem cells (MSCs) are regarded as an immune privileged cell type with numerous regeneration-promoting effects. The in vivo behavior of MSC and underlying mechanisms leading to their regenerative effects are largely unknown. The aims of this study were to comparatively investigate the in vivo behavior of canine (cMSC), human (hMSC), and murine MSC (mMSC) following intra-cerebroventricular transplantation. At 7 days post transplantation (dpt), clusters of cMSC, hMSC, and mMSC were detected within the ventricular system. At 49 dpt, cMSC-transplanted mice showed clusters mostly consisting of extracellular matrix lacking transplanted MSC. Similarly, hMSC-transplanted mice lacked MSC clusters at 49 dpt. Xenogeneic MSC transplantation was associated with a local T lymphocyte-dominated immune reaction at both time points. Interestingly, no associated inflammation was observed following syngeneic mMSC transplantation. In conclusion, transplanted MSC formed intraventricular cell clusters and exhibited a short life span in vivo. Xenogeneically in contrast to syngeneically transplanted MSC triggered a T cell-mediated graft rejection indicating that MSCs are not as immune privileged as previously assumed. However, MSC may mediate their effects by a "hit and run" mechanism and future studies will show whether syngeneically or xenogeneically transplanted MSCs exert better therapeutic effects in animals with CNS disease.

Funding information:
  • Deutsche Forschungsgemeinschaft - BA 815/14-1,()
  • Deutsche Forschungsgemeinschaft - STA 518/4-1()
  • Deutsche Forschungsgemeinschaft - TI 309/4-2()
  • NCRR NIH HHS - P20RR016474(United States)

iPSCs from a Hibernator Provide a Platform for Studying Cold Adaptation and Its Potential Medical Applications.

  • Ou J
  • Cell
  • 2018 May 3

Literature context: ase-3 (1:500)Cell SignalingCat# 9661Chicken polyclonal anti-GFP (1:1


Abstract:

Hibernating mammals survive hypothermia (<10°C) without injury, a remarkable feat of cellular preservation that bears significance for potential medical applications. However, mechanisms imparting cold resistance, such as cytoskeleton stability, remain elusive. Using the first iPSC line from a hibernating mammal (13-lined ground squirrel), we uncovered cellular pathways critical for cold tolerance. Comparison between human and ground squirrel iPSC-derived neurons revealed differential mitochondrial and protein quality control responses to cold. In human iPSC-neurons, cold triggered mitochondrial stress, resulting in reactive oxygen species overproduction and lysosomal membrane permeabilization, contributing to microtubule destruction. Manipulations of these pathways endowed microtubule cold stability upon human iPSC-neurons and rat (a non-hibernator) retina, preserving its light responsiveness after prolonged cold exposure. Furthermore, these treatments significantly improved microtubule integrity in cold-stored kidneys, demonstrating the potential for prolonging shelf-life of organ transplants. Thus, ground squirrel iPSCs offer a unique platform for bringing cold-adaptive strategies from hibernators to humans in clinical applications. VIDEO ABSTRACT.

Funding information:
  • NCI NIH HHS - CA035299(United States)

Boosting ATM activity alleviates aging and extends lifespan in a mouse model of progeria.

  • Qian M
  • Elife
  • 2018 May 2

Literature context: nology (Beverly, MA) Cat #9661; RRID:AB_2341188 Applications: WB


Abstract:

DNA damage accumulates with age (Lombard et al., 2005). However, whether and how robust DNA repair machinery promotes longevity is elusive. Here, we demonstrate that ATM-centered DNA damage response (DDR) progressively declines with senescence and age, while low dose of chloroquine (CQ) activates ATM, promotes DNA damage clearance, rescues age-related metabolic shift, and prolongs replicative lifespan. Molecularly, ATM phosphorylates SIRT6 deacetylase and thus prevents MDM2-mediated ubiquitination and proteasomal degradation. Extra copies of Sirt6 extend lifespan in Atm-/- mice, with restored metabolic homeostasis. Moreover, the treatment with CQ remarkably extends lifespan of Caenorhabditis elegans, but not the ATM-1 mutants. In a progeria mouse model with low DNA repair capacity, long-term administration of CQ ameliorates premature aging features and extends lifespan. Thus, our data highlights a pro-longevity role of ATM, for the first time establishing direct causal links between robust DNA repair machinery and longevity, and providing therapeutic strategy for progeria and age-related metabolic diseases.

Funding information:
  • Department of Health - (United Kingdom)
  • Ministry of Science and Technology of the People's Republic of China - 2016YFC0904600()
  • Ministry of Science and Technology of the People's Republic of China - 2017YFA0503900()
  • National Natural Science Foundation of China - 81422016()
  • National Natural Science Foundation of China - 81501206()
  • National Natural Science Foundation of China - 81501210()
  • National Natural Science Foundation of China - 81571374()
  • National Natural Science Foundation of China - 91439133()
  • Natural Science Foundation of Guangdong Province - 2014A030308011()
  • Natural Science Foundation of Guangdong Province - 2015A030308007()
  • Natural Science Foundation of Guangdong Province - 2016A030310064()
  • Research Grant Council of Hong Kong - 773313()
  • Research Grant Council of Hong Kong - HKU2/CRF/13G()
  • Shenzhen Science and Technology Innovation Commission - CXZZ20140903103747568()
  • Shenzhen Science and Technology Innovation Commission - JCYJ20140418095735645()
  • Shenzhen Science and Technology Innovation Commission - JCYJ20160226191451487()

Fetal Neuropathology in Zika Virus-Infected Pregnant Female Rhesus Monkeys.

  • Martinot AJ
  • Cell
  • 2018 May 17

Literature context: p175 Cell Signaling Cat# 9664S; RRID:AB_2341188 CD68, clone kP1 Dako Cat# GA609


Abstract:

The development of interventions to prevent congenital Zika syndrome (CZS) has been limited by the lack of an established nonhuman primate model. Here we show that infection of female rhesus monkeys early in pregnancy with Zika virus (ZIKV) recapitulates many features of CZS in humans. We infected 9 pregnant monkeys with ZIKV, 6 early in pregnancy (weeks 6-7 of gestation) and 3 later in pregnancy (weeks 12-14 of gestation), and compared findings with uninfected controls. 100% (6 of 6) of monkeys infected early in pregnancy exhibited prolonged maternal viremia and fetal neuropathology, including fetal loss, smaller brain size, and histopathologic brain lesions, including microcalcifications, hemorrhage, necrosis, vasculitis, gliosis, and apoptosis of neuroprogenitor cells. High-resolution MRI demonstrated concordant lesions indicative of deep gray matter injury. We also observed spinal, ocular, and neuromuscular pathology. Our data show that vascular compromise and neuroprogenitor cell dysfunction are hallmarks of CZS pathogenesis, suggesting novel strategies to prevent and to treat this disease.

Funding information:
  • NIAID NIH HHS - 2R01 AI056153(United States)
  • NIAID NIH HHS - U19 AI096040()
  • NIAID NIH HHS - U19 AI128751()
  • NIAID NIH HHS - UM1 AI124377()

Top2b is involved in the formation of outer segment and synapse during late-stage photoreceptor differentiation by controlling key genes of photoreceptor transcriptional regulatory network.

  • Li Y
  • J. Neurosci. Res.
  • 2018 May 11

Literature context: to Asp175.Cell Signaling, 9661, AB_2341188, rabbit, polyclonal1:1,600CrxAm


Abstract:

Topoisomerase II beta (Top2b) is an enzyme that alters the topologic states of DNA during transcription. Top2b deletion in early retinal progenitor cells causes severe defects in neural differentiation and affects cell survival in all retinal cell types. However, it is unclear whether the observed severe phenotypes are the result of cell-autonomous/primary defects or non-cell-autonomous/secondary defects caused by alterations of other retinal cells. Using photoreceptor cells as a model, we first characterized the phenotypes in Top2b conditional knockout. Top2b deletion leads to malformation of photoreceptor outer segments (OSs) and synapses accompanied by dramatic cell loss at late-stage photoreceptor differentiation. Then, we performed mosaic analysis with shRNA-mediated Top2b knockdown in neonatal retina using in vivo electroportation to target rod photoreceptors in neonatal retina. Top2b knockdown causes defective OS without causing a dramatic cell loss, suggesting a Top2b cell-autonomous function. Furthermore, RNA-seq analysis reveals that Top2b controls the expression of key genes in the photoreceptor gene-regulatory network (e.g., Crx, Nr2e3, Opn1sw, Vsx2) and retinopathy-related genes (e.g., Abca4, Bbs7, Pde6b). Together, our data establish a combinatorial cell-autonomous and non-cell-autonomous role for Top2b in the late stage of photoreceptor differentiation and maturation. © 2017 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

Funding information:
  • NEI NIH HHS - R21 EY018738()
  • NIDA NIH HHS - R21 DA035594()
  • NIDA NIH HHS - R21 DA039686()

Otoprotective effects of mouse nerve growth factor in DBA/2J mice with early-onset progressive hearing loss.

  • Wang Q
  • J. Neurosci. Res.
  • 2018 May 11

Literature context: 661L Lot# RRID:AB_331441). After ri


Abstract:

As it displays progressive hair-cell loss and degeneration of spiral ganglion neurons (SGNs) characterized by early-onset progressive hearing loss (ePHL), DBA/2J is an inbred mouse strain widely used in hearing research. Mouse nerve growth factor (mNGF), as a common exogenous nerve growth factor (NGF), has been studied extensively for its ability to promote neuronal survival and growth. To determine whether mNGF can ameliorate progressive hearing loss (PHL) in DBA/2J mice, saline or mNGF was given to DBA/2J mice of either sex by daily intramuscular injection from the 1st to the 9th week after birth. At 5, 7, and 9 weeks of age, in comparison with vehicle groups, mNGF groups experienced decreased auditory-evoked brainstem response (ABR) thresholds and increased distortion product otoacoustic emission (DPOAE) amplitudes, the prevention of hair cell loss, and the inhibition of apoptosis of SGNs. Downregulation of Bak/Bax and Caspase genes and proteins in cochleae of mice receiving the mNGF treatment was detected by real-time PCR, Western blot, and immunohistochemistry. This suggests that the Bak-dependent mitochondrial apoptosis pathway may be involved in the otoprotective mechanism of mNGF in progressive hearing loss of DBA/2J mice. Our results demonstrate that mNGF can act as an otoprotectant in the DBA/2J mice for the early intervention of PHL and, thus, could become of great value in clinical applications. © 2017 Wiley Periodicals, Inc.

Funding information:
  • NIDCD NIH HHS - R01 DC015111()

mTORC1 Is Transiently Reactivated in Injured Nerves to Promote c-Jun Elevation and Schwann Cell Dedifferentiation.

  • Norrmén C
  • J. Neurosci.
  • 2018 May 16

Literature context: ing Technology, catalog #9661S, RRID:AB_2341188, 1:500), phospho-Erk1/2T202/Y20


Abstract:

Schwann cells (SCs) are endowed with a remarkable plasticity. When peripheral nerves are injured, SCs dedifferentiate and acquire new functions to coordinate nerve repair as so-called repair SCs. Subsequently, SCs redifferentiate to remyelinate regenerated axons. Given the similarities between SC dedifferentiation/redifferentiation in injured nerves and in demyelinating neuropathies, elucidating the signals involved in SC plasticity after nerve injury has potentially wider implications. c-Jun has emerged as a key transcription factor regulating SC dedifferentiation and the acquisition of repair SC features. However, the upstream pathways that control c-Jun activity after nerve injury are largely unknown. We report that the mTORC1 pathway is transiently but robustly reactivated in dedifferentiating SCs. By inducible genetic deletion of the functionally crucial mTORC1-subunit Raptor in mouse SCs (including male and female animals), we found that mTORC1 reactivation is necessary for proper myelin clearance, SC dedifferentiation, and consequently remyelination, without major alterations in the inflammatory response. In the absence of mTORC1 signaling, c-Jun failed to be upregulated correctly. Accordingly, a c-Jun binding motif was found to be enriched in promoters of genes with reduced expression in injured mutants. Furthermore, using cultured SCs, we found that mTORC1 is involved in c-Jun regulation by promoting its translation, possibly via the eIF4F-subunit eIF4A. These results provide evidence that proper c-Jun elevation after nerve injury involves also mTORC1-dependent post-transcriptional regulation to ensure timely dedifferentiation of SCs.SIGNIFICANCE STATEMENT A crucial evolutionary acquisition of vertebrates is the envelopment of axons in myelin sheaths produced by oligodendrocytes in the CNS and Schwann cells (SCs) in the PNS. When myelin is damaged, conduction of action potentials along axons slows down or is blocked, leading to debilitating diseases. Unlike oligodendrocytes, SCs have a high regenerative potential, granted by their remarkable plasticity. Thus, understanding the mechanisms underlying SC plasticity may uncover new therapeutic targets in nerve regeneration and demyelinating diseases. Our work reveals that reactivation of the mTORC1 pathway in SCs is essential for efficient SC dedifferentiation after nerve injury. Accordingly, modulating this signaling pathway might be of therapeutic relevance in peripheral nerve injury and other diseases.

Funding information:
  • Medical Research Council - MC_U120081321(United Kingdom)

LOX-catalyzed collagen stabilization is a proximal cause for intrinsic resistance to chemotherapy.

  • Rossow L
  • Oncogene
  • 2018 May 21

Literature context: Signaling Technology Cat# 9661, RRID:AB_2341188), Carbonic Anhydrase IX (Santa


Abstract:

The potential of altering the tumor ECM to improve drug response remains fairly unexplored. To identify targets for modification of the ECM aiming to improve drug response and overcome resistance, we analyzed expression data sets from pre-treatment patient cohorts. Cross-evaluation identified a subset of chemoresistant tumors characterized by increased expression of collagens and collagen-stabilizing enzymes. We demonstrate that strong collagen expression and stabilization sets off a vicious circle of self-propagating hypoxia, malignant signaling, and aberrant angiogenesis that can be broken by an appropriate auxiliary intervention: Interfering with collagen stabilization by inhibition of lysyl oxidases significantly enhanced response to chemotherapy in various tumor models, even in metastatic disease. Inhibition of collagen stabilization by itself can reduce or enhance tumor growth depending on the tumor type. The mechanistical basis for this behavior is the dependence of the individual tumor on nutritional supply on one hand and on high tissue stiffness for FAK signaling on the other.

Funding information:
  • NCI NIH HHS - R01 CA122086(United States)

R-Ras1 and R-Ras2 Are Essential for Oligodendrocyte Differentiation and Survival for Correct Myelination in the Central Nervous System.

  • Sanz-Rodriguez M
  • J. Neurosci.
  • 2018 May 30

Literature context: aling Technology catalog #9661, RRID:AB_2341188), rabbit anti-MBP 1:300 (Abcam


Abstract:

Rapid and effective neural transmission of information requires correct axonal myelination. Modifications in myelination alter axonal capacity to transmit electric impulses and enable pathological conditions. In the CNS, oligodendrocytes (OLs) myelinate axons, a complex process involving various cellular interactions. However, we know little about the mechanisms that orchestrate correct myelination. Here, we demonstrate that OLs express R-Ras1 and R-Ras2. Using female and male mutant mice to delete these proteins, we found that activation of the PI3K/Akt and Erk1/2-MAPK pathways was weaker in mice lacking one or both of these GTPases, suggesting that both proteins coordinate the activity of these two pathways. Loss of R-Ras1 and/or R-Ras2 diminishes the number of OLs in major myelinated CNS tracts and increases the proportion of immature OLs. In R-Ras1-/- and R-Ras2-/--null mice, OLs show aberrant morphologies and fail to differentiate correctly into myelin-forming phenotypes. The smaller OL population and abnormal OL maturation induce severe hypomyelination, with shorter nodes of Ranvier in R-Ras1-/- and/or R-Ras2-/- mice. These defects explain the slower conduction velocity of myelinated axons that we observed in the absence of R-Ras1 and R-Ras2. Together, these results suggest that R-Ras1 and R-Ras2 are upstream elements that regulate the survival and differentiation of progenitors into OLs through the PI3K/Akt and Erk1/2-MAPK pathways for proper myelination.SIGNIFICANCE STATEMENT In this study, we show that R-Ras1 and R-Ras2 play essential roles in regulating myelination in vivo and control fundamental aspects of oligodendrocyte (OL) survival and differentiation through synergistic activation of PI3K/Akt and Erk1/2-MAPK signaling. Mice lacking R-Ras1 and/or R-Ras2 show a diminished OL population with a higher proportion of immature OLs, explaining the observed hypomyelination in main CNS tracts. In vivo electrophysiology recordings demonstrate a slower conduction velocity of nerve impulses in the absence of R-Ras1 and R-Ras2. Therefore, R-Ras1 and R-Ras2 are essential for proper axonal myelination and accurate neural transmission.

Funding information:
  • Intramural NIH HHS - ZIA BC011010-06(United States)

Plasma Membrane Localization of Apoptotic Caspases for Non-apoptotic Functions.

  • Amcheslavsky A
  • Dev. Cell
  • 2018 May 21

Literature context: Signaling Technology Cat#9661S; RRID:AB_2341188 Mouse monoclonal Wg (1:50) DSHB


Abstract:

Caspases are best characterized for their function in apoptosis. However, they also have non-apoptotic functions such as apoptosis-induced proliferation (AiP), where caspases release mitogens for compensatory proliferation independently of their apoptotic role. Here, we report that the unconventional myosin, Myo1D, which is known for its involvement in left/right development, is an important mediator of AiP in Drosophila. Mechanistically, Myo1D translocates the initiator caspase Dronc to the basal side of the plasma membrane of epithelial cells where Dronc promotes the activation of the NADPH-oxidase Duox for reactive oxygen species generation and AiP in a non-apoptotic manner. We propose that the basal side of the plasma membrane constitutes a non-apoptotic compartment for caspases. Finally, Myo1D promotes tumor growth and invasiveness of the neoplastic scrib RasV12 model. Together, we identified a new function of Myo1D for AiP and tumorigenesis, and reveal a mechanism by which cells sequester apoptotic caspases in a non-apoptotic compartment at the plasma membrane.

Funding information:
  • NIGMS NIH HHS - R01 GM107789()
  • NIGMS NIH HHS - R35 GM118330()
  • NINDS NIH HHS - R01 NS26115(United States)

Brain phospholipid precursors administered post-injury reduce tissue damage and improve neurological outcome in experimental traumatic brain injury.

  • Thau-Zuchman O
  • J. Neurotrauma
  • 2018 May 17

Literature context: o NYUIHC-314, 9661S, 9661L Lot# RRID:AB_2341188); and antidoublecortin (DCX; fo


Abstract:

Traumatic brain injury (TBI) leads to cellular loss, destabilisation of membranes, disruption of synapses and altered brain connectivity, and increased risk of neurodegenerative disease. A significant and long-lasting decrease in phospholipids (PL), essential membrane constituents, has recently been reported in plasma and brain tissue, in human and experimental TBI. We hypothesised that supporting PL synthesis post-injury could improve outcome after TBI. We tested this hypothesis using a multi-nutrient combination designed to support the biosynthesis of phospholipids and available for clinical use. The multi-nutrient Fortasyn® Connect (FC) contains polyunsaturated omega-3 fatty acids, choline, uridine, vitamins, co-factors required for PL biosynthesis, and has been shown to have significant beneficial effects in early Alzheimer's disease. Male C57BL/6 mice received a controlled cortical impact injury and then were fed a control diet or a diet enriched with FC for 70 days. FC led to a significantly improved sensorimotor outcome and cognition, reduced lesion size and oligodendrocyte loss, and it restored myelin. It reversed the loss of the synaptic protein synaptophysin and decreased levels of the axon growth inhibitor Nogo-A, thus creating a permissive environment. It decreased microglia activation and the rise in ß-amyloid precursor protein and restored the depressed neurogenesis. The effects of this medical multi-nutrient suggest that support of PL biosynthesis after TBI, a new treatment paradigm, has significant therapeutic potential in this neurological condition for which there is no satisfactory treatment. The multi-nutrient tested has been used in dementia patients, is safe and well-tolerated, which would enable rapid clinical exploration in TBI.

Funding information:
  • Medical Research Council - K-0912(United Kingdom)

The pro-apoptotic JNK scaffold POSH/SH3RF1 mediates CHMP2BIntron5-associated toxicity in animal models of frontotemporal dementia.

  • West RJH
  • Hum. Mol. Genet.
  • 2018 Apr 15

Literature context: :200, Cell Signaling Technology 9661), anti-GAPDH [Merck, MAB374 (6C


Abstract:

Frontotemporal dementia (FTD) is one of the most prevalent forms of early-onset dementia. However, the pathological mechanisms driving neuronal atrophy in FTD remain poorly understood. Here we identify a conserved role for the novel pro-apoptotic protein plenty of SH3s (POSH)/SH3 domain containing ring finger 1 in mediating neuropathology in Drosophila and mammalian models of charged multivesicular body protein 2B (CHMP2BIntron5) associated FTD. Aberrant, AKT dependent, accumulation of POSH was observed throughout the nervous system of both Drosophila and mice expressing CHMP2BIntron5. Knockdown of POSH was shown to be neuroprotective and sufficient to alleviate aberrant neuronal morphology, behavioral deficits and premature-lethality in Drosophila models, as well as dendritic collapse and cell death in CHMP2BIntron5expressing rat primary neurons. POSH knockdown also ameliorated elevated markers of Jun N-terminal kinase and apoptotic cascades in both Drosophila and mammalian models. This study provides the first characterization of POSH as a potential component of an FTD neuropathology, identifying a novel apoptotic pathway with relevance to the FTD spectrum.

Funding information:
  • NCI NIH HHS - CA096832(United States)

Brimapitide Reduced Neuronal Stress Markers and Cognitive Deficits in 5XFAD Transgenic Mice.

  • Gourmaud S
  • J. Alzheimers Dis.
  • 2018 Apr 18

Literature context: : AB_331440), p-c-Jun [Ser63] 1:500 (RRID:


Abstract:

Alzheimer's disease (AD) is characterized by accumulations of amyloid-β (Aβ42) and hyperphosphorylated tau proteins, associated with neuroinflammation, synaptic loss, and neuronal death. Several studies indicate that c-Jun N-terminal kinase (JNK) is implicated in the pathological features of AD. We have investigated in 5XFAD mice, the therapeutic effects of Brimapitide, a JNK-specific inhibitory peptide previously tested with higher concentrations in another AD model (TgCRND8). Three-month-old 5XFAD and wild-type littermate mice were treated by intravenous injections of low doses (10 mg/kg) of Brimapitide every 3 weeks, for 3 or 6 months (n = 6-9 per group). Cognitive deficits and brain lesions were assessed using Y-maze, fear-conditioning test, and histological and biochemical methods. Chronic treatment of Brimapitide for 3 months resulted in a reduction of Aβ plaque burden in the cortex of 5XFAD treated mice. After 6 months of treatment, cognitive deficits were reduced but also a significant reduction of cell death markers and the pro-inflammatory IL-1β cytokine in treated mice were detected. The Aβ plaque burden was not anymore modified by the 6 months of treatment. In addition to modulating cognition and amyloid plaque accumulation, depending on the treatment duration, Brimapitide seems experimentally to reduce neuronal stress in 5XFAD mice.

Funding information:
  • NIDDK NIH HHS - R01 DK080852(United States)

Angiogenin/Ribonuclease 5 Is an EGFR Ligand and a Serum Biomarker for Erlotinib Sensitivity in Pancreatic Cancer.

  • Wang YN
  • Cancer Cell
  • 2018 Apr 9

Literature context: Signaling Technology Cat#9661; RRID:AB_2341188 p68 RNA helicase Santa Cruz Bio


Abstract:

Pancreatic ribonuclease (RNase) is a secreted enzyme critical for host defense. We discover an intrinsic RNase function, serving as a ligand for epidermal growth factor receptor (EGFR), a member of receptor tyrosine kinase (RTK), in pancreatic ductal adenocarcinoma (PDAC). The closely related bovine RNase A and human RNase 5 (angiogenin [ANG]) can trigger oncogenic transformation independently of their catalytic activities via direct association with EGFR. Notably, high plasma ANG level in PDAC patients is positively associated with response to EGFR inhibitor erlotinib treatment. These results identify a role of ANG as a serum biomarker that may be used to stratify patients for EGFR-targeted therapies, and offer insights into the ligand-receptor relationship between RNase and RTK families.

Funding information:
  • NCI NIH HHS - P30 CA016672()
  • NCI NIH HHS - R01 CA211615()
  • NCI NIH HHS - T32 CA186892()
  • NCI NIH HHS - U01 CA201777()
  • NIGMS NIH HHS - R01 GM098294(United States)

Identification of New Activators of Mitochondrial Fusion Reveals a Link between Mitochondrial Morphology and Pyrimidine Metabolism.

  • Miret-Casals L
  • Cell Chem Biol
  • 2018 Mar 15

Literature context: ell Signaling Cat#9661 RRID:AB_2341188 Rabbit monoclonal anti-PARP Cel


Abstract:

Mitochondria are dynamic organelles that produce most of the cellular ATP, and are involved in many other cellular functions such as Ca2+ signaling, differentiation, apoptosis, cell cycle, and cell growth. One key process of mitochondrial dynamics is mitochondrial fusion, which is catalyzed by mitofusins (MFN1 and MFN2) and OPA1. The outer mitochondrial membrane protein MFN2 plays a relevant role in the maintenance of mitochondrial metabolism, insulin signaling, and mutations that cause neurodegenerative disorders. Therefore, modulation of proteins involved in mitochondrial dynamics has emerged as a potential pharmacological strategy. Here, we report the identification of small molecules by high-throughput screen that promote mitochondrial elongation in an MFN1/MFN2-dependent manner. Detailed analysis of their mode of action reveals a previously unknown connection between pyrimidine metabolism and mitochondrial dynamics. Our data indicate a link between pyrimidine biosynthesis and mitochondrial dynamics, which maintains cell survival under stress conditions characterized by loss of pyrimidine synthesis.

Movement maintains forebrain neurogenesis via peripheral neural feedback in larval zebrafish.

  • Hall ZJ
  • Elife
  • 2018 Mar 12

Literature context: Danvers, Massachusetts Asp175; RRID:AB_2341188 Antibody rabbit anti-GFP alexa


Abstract:

The postembryonic brain exhibits experience-dependent development, in which sensory experience guides normal brain growth. This neuroplasticity is thought to occur primarily through structural and functional changes in pre-existing neurons. Whether neurogenesis also mediates the effects of experience on brain growth is unclear. Here, we characterized the importance of motor experience on postembryonic neurogenesis in larval zebrafish. We found that movement maintains an expanded pool of forebrain neural precursors by promoting progenitor self-renewal over the production of neurons. Physical cues associated with swimming (bodily movement) increase neurogenesis and these cues appear to be conveyed by dorsal root ganglia (DRG) in the zebrafish body: DRG-deficient larvae exhibit attenuated neurogenic responses to movement and targeted photoactivation of DRG in immobilized larvae expands the pallial pool of proliferative cells. Our results demonstrate the importance of movement in neurogenic brain growth and reveal a fundamental sensorimotor association that may couple early motor and brain development.

Funding information:
  • Biotechnology and Biological Sciences Research Council - (United Kingdom)
  • Natural Sciences and Engineering Research Council of Canada - Discovery grant (RGPIN-2016-06325)()
  • Natural Sciences and Engineering Research Council of Canada - Post-doctoral fellowship (PDF 454019-2014)()

Nubbin isoform antagonism governs Drosophila intestinal immune homeostasis.

  • Lindberg BG
  • PLoS Pathog.
  • 2018 Mar 3

Literature context: :300; Cell Signaling, RRID:AB_2341188]) at 4 °C over night. The next


Abstract:

Gut immunity is regulated by intricate and dynamic mechanisms to ensure homeostasis despite a constantly changing microbial environment. Several regulatory factors have been described to participate in feedback responses to prevent aberrant immune activity. Little is, however, known about how transcriptional programs are directly tuned to efficiently adapt host gut tissues to the current microbiome. Here we show that the POU/Oct gene nubbin (nub) encodes two transcription factor isoforms, Nub-PB and Nub-PD, which antagonistically regulate immune gene expression in Drosophila. Global transcriptional profiling of adult flies overexpressing Nub-PB in immunocompetent tissues revealed that this form is a strong transcriptional activator of a large set of immune genes. Further genetic analyses showed that Nub-PB is sufficient to drive expression both independently and in conjunction with nuclear factor kappa B (NF-κB), JNK and JAK/STAT pathways. Similar overexpression of Nub-PD did, conversely, repress expression of the same targets. Strikingly, isoform co-overexpression normalized immune gene transcription, suggesting antagonistic activities. RNAi-mediated knockdown of individual nub transcripts in enterocytes confirmed antagonistic regulation by the two isoforms and that both are necessary for normal immune gene transcription in the midgut. Furthermore, enterocyte-specific Nub-PB expression levels had a strong impact on gut bacterial load as well as host lifespan. Overexpression of Nub-PB enhanced bacterial clearance of ingested Erwinia carotovora carotovora 15. Nevertheless, flies quickly succumbed to the infection, suggesting a deleterious immune response. In line with this, prolonged overexpression promoted a proinflammatory signature in the gut with induction of JNK and JAK/STAT pathways, increased apoptosis and stem cell proliferation. These findings highlight a novel regulatory mechanism of host-microbe interactions mediated by antagonistic transcription factor isoforms.

Funding information:
  • NEI NIH HHS - PN1 EY016586(United States)

Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes.

  • Watson SS
  • Cell Syst
  • 2018 Mar 28

Literature context: g Cat#9661; RRID:AB_2341188 Ki67 Cell Signaling Cat#12202;


Abstract:

Extrinsic signals are implicated in breast cancer resistance to HER2-targeted tyrosine kinase inhibitors (TKIs). To examine how microenvironmental signals influence resistance, we monitored TKI-treated breast cancer cell lines grown on microenvironment microarrays composed of printed extracellular matrix proteins supplemented with soluble proteins. We tested ∼2,500 combinations of 56 soluble and 46 matrix microenvironmental proteins on basal-like HER2+ (HER2E) or luminal-like HER2+ (L-HER2+) cells treated with the TKIs lapatinib or neratinib. In HER2E cells, hepatocyte growth factor, a ligand for MET, induced resistance that could be reversed with crizotinib, an inhibitor of MET. In L-HER2+ cells, neuregulin1-β1 (NRG1β), a ligand for HER3, induced resistance that could be reversed with pertuzumab, an inhibitor of HER2-HER3 heterodimerization. The subtype-specific responses were also observed in 3D cultures and murine xenografts. These results, along with bioinformatic pathway analysis and siRNA knockdown experiments, suggest different mechanisms of resistance specific to each HER2+ subtype: MET signaling for HER2E and HER2-HER3 heterodimerization for L-HER2+ cells.

Funding information:
  • Intramural NIH HHS - (United States)

c-RAF Ablation Induces Regression of Advanced Kras/Trp53 Mutant Lung Adenocarcinomas by a Mechanism Independent of MAPK Signaling.

  • Sanclemente M
  • Cancer Cell
  • 2018 Feb 12

Literature context: RRID:AB_2341188 Goat polyclonal anti-Phospho-Co


Abstract:

A quarter of all solid tumors harbor KRAS oncogenes. Yet, no selective drugs have been approved to treat these malignancies. Genetic interrogation of the MAPK pathway revealed that systemic ablation of MEK or ERK kinases in adult mice prevent tumor development but are unacceptably toxic. Here, we demonstrate that ablation of c-RAF expression in advanced tumors driven by KrasG12V/Trp53 mutations leads to significant tumor regression with no detectable appearance of resistance mechanisms. Tumor regression results from massive apoptosis. Importantly, systemic abrogation of c-RAF expression does not inhibit canonical MAPK signaling, hence, resulting in limited toxicities. These results are of significant relevance for the design of therapeutic strategies to treat K-RAS mutant cancers.

Funding information:
  • NHLBI NIH HHS - HL076604(United States)

GRP94 Is an Essential Regulator of Pancreatic β-Cell Development, Mass, and Function in Male Mice.

  • Kim DS
  • Endocrinology
  • 2018 Feb 1

Literature context: abbit; polyclonal 1:200 (IHC) RRID:AB_2341188


Abstract:

Deficiencies in pancreatic β-cell mass contribute to both type 1 and type 2 diabetes. We investigated the role of the glucose-regulated protein (GRP) 94, an endoplasmic reticulum protein abundantly expressed in the pancreatic acini and islets, in β-cell development, survival, and function. We used a conditional knockout (KO) mouse in which the GRP94 gene, Hsp90b1, was specifically deleted in pancreatic and duodenal homeobox 1 (Pdx1)-expressing cells. These Hsp90b1 flox/flox;Pdx1Cre KO mice exhibited pancreatic hypoplasia at embryonic day (E) 16.5 to E18.5 and had significantly reduced β-cell mass at 4 weeks after birth. Further mechanistic studies showed that deletion of GRP94 reduced β-cell proliferation with increased cell apoptosis in both Pdx1+ endocrine progenitor cells and differentiated β cells. Although Hsp90b1 flox/flox;Pdx1Cre KO mice remained euglycemic at 8 weeks of age, they exhibited impaired glucose tolerance. In aggregate, these findings indicate that GRP94 is an essential regulator of pancreatic β-cell development, mass, and function.

Funding information:
  • Cancer Research UK - (United Kingdom)
  • NIBIB NIH HHS - R03 EB015744()
  • NIDDK NIH HHS - R01 DK105183()
  • NIDDK NIH HHS - R01 DK107412()
  • NIDDK NIH HHS - R21 DK097544()
  • NIDDK NIH HHS - R21 DK099696()

Intestinal Epithelial Cell Autophagy Is Required to Protect against TNF-Induced Apoptosis during Chronic Colitis in Mice.

  • Pott J
  • Cell Host Microbe
  • 2018 Feb 14

Literature context: ell Signaling Cat# 9661, RRID:AB_2341188 anti-phospho-ERK1/2 Cell Signal


Abstract:

Genome-wide association studies have linked polymorphisms in the autophagy gene ATG16L1 with susceptibility to inflammatory bowel disease (IBD). However, the cell-type-specific effects of autophagy on the regulation of chronic intestinal inflammation have not been investigated. Here, we assessed the effect of myeloid-specific or intestinal epithelial cell (IEC)-specific deletion of Atg16l1 on chronic colitis triggered by the intestinal opportunistic pathogen Helicobacter hepaticus in mice. Although Atg16l1 deficiency in myeloid cells had little effect on disease, mice selectively lacking Atg16l1 in IECs (Atg16l1VC) developed severely exacerbated pathology, accompanied by elevated pro-inflammatory cytokine secretion and increased IEC apoptosis. Using ex vivo IEC organoids, we demonstrate that autophagy intrinsically controls TNF-induced apoptosis and in vivo blockade of TNF attenuated the exacerbated pathology in Atg16l1VC mice. These findings suggest that the IBD susceptibility gene ATG16L1 and the process of autophagy within the epithelium control inflammation-induced apoptosis and barrier integrity to limit chronic intestinal inflammation.

Funding information:
  • Medical Research Council - MR/K011898/1()
  • NLM NIH HHS - R01 LM010022(United States)

Functional Defects From Endocrine Disease-Associated Mutations in HLXB9 and Its Interacting Partner, NONO.

  • Kharade SS
  • Endocrinology
  • 2018 Feb 1

Literature context: ell Signaling Technology 9661 RRID:AB_2341188


Abstract:

The insulin-secreting pancreatic neuroendocrine tumors, insulinomas, characterized by increased pancreatic islet β-cell proliferation, express the phosphorylated isoform of the β-cell differentiation factor HLXB9 that interacts with NONO/p54NRB, a survival factor. Interestingly, two different homozygous germline mutations in HLXB9, p.F248L and p.F272L, were reported in neonatal diabetes, a condition with functional β-cell deficiency. Also, two somatic heterozygous NONO mutations were found in endocrine-related tumors, p.H146R (parathyroid) and p.R293H (small intestine neuroendocrine tumor). However, the biological consequence of the mutations, and the role of HLXB9-NONO interaction in normal or abnormal β cells, is not known. Expression, localization, and functional analysis of the clinically relevant HLXB9 and NONO mutants showed that HLXB9/p.F248L mutant localized in the nucleus but lacked phosphorylation, and NONO/p.R293H mutant was structurally impaired. The HLXB9 and NONO mutants retained the ability to interact, and overexpression of wild-type or mutant HXLB9 in MIN6 cells suppressed cell proliferation. To further understand the biological consequence of the HLXB9-NONO interaction, we mapped the NONO-interacting region in HLXB9. An 80-amino acid conserved region of HLXB9 could compete with full-length HLXB9 to interact with NONO; however, in functional assays, nuclear expression of this HLXB9-conserved region in MIN6 cells did not interfere with cell proliferation. Overall, our results highlight the importance of HLXB9 in conditions of β-cell excess (insulinomas) and in conditions of β-cell loss or dysfunction (diabetes). Our studies implicate therapeutic strategies for either reducing β-cell proliferation in insulinomas or alleviating normal β-cell deficiency in diabetes through the modulation of HLXB9 phosphorylation.

Funding information:
  • NIAID NIH HHS - T32AI007526(United States)
  • NIDDK NIH HHS - 1ZIADK07503505()

Adult Neurogenesis Is Sustained by Symmetric Self-Renewal and Differentiation.

  • Obernier K
  • Cell Stem Cell
  • 2018 Feb 1

Literature context: ell Signaling Cat#9661; RRID:AB_2341188 Secondary antibodies conjugated


Abstract:

Somatic stem cells have been identified in multiple adult tissues. Whether self-renewal occurs symmetrically or asymmetrically is key to understanding long-term stem cell maintenance and generation of progeny for cell replacement. In the adult mouse brain, neural stem cells (NSCs) (B1 cells) are retained in the walls of the lateral ventricles (ventricular-subventricular zone [V-SVZ]). The mechanism of B1 cell retention into adulthood for lifelong neurogenesis is unknown. Using multiple clonal labeling techniques, we show that the vast majority of B1 cells divide symmetrically. Whereas 20%-30% symmetrically self-renew and can remain in the niche for several months before generating neurons, 70%-80% undergo consuming divisions generating progeny, resulting in the depletion of B1 cells over time. This cellular mechanism decouples self-renewal from the generation of progeny. Limited rounds of symmetric self-renewal and consuming symmetric differentiation divisions can explain the levels of neurogenesis observed throughout life.

Funding information:
  • NICHD NIH HHS - R01 HD032116()
  • NICHD NIH HHS - R37 HD032116()
  • NIGMS NIH HHS - P50 GM081879()
  • NIH HHS - DP5 OD012194()
  • NINDS NIH HHS - R01 NS028478()
  • NINDS NIH HHS - R01NS058529(United States)
  • NINDS NIH HHS - R37 NS028478()

Programming of Schwann Cells by Lats1/2-TAZ/YAP Signaling Drives Malignant Peripheral Nerve Sheath Tumorigenesis.

  • Wu LMN
  • Cancer Cell
  • 2018 Feb 12

Literature context: p175) Cell Signaling Cat# 9661; RRID:AB_2341188 Mouse Monoclonal Anti-GAPDH Mil


Abstract:

Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive Schwann cell (SC)-lineage-derived sarcomas. Molecular events driving SC-to-MPNST transformation are incompletely understood. Here, we show that human MPNSTs exhibit elevated HIPPO-TAZ/YAP expression, and that TAZ/YAP hyperactivity in SCs caused by Lats1/2 loss potently induces high-grade nerve-associated tumors with full penetrance. Lats1/2 deficiency reprograms SCs to a cancerous, progenitor-like phenotype and promotes hyperproliferation. Conversely, disruption of TAZ/YAP activity alleviates tumor burden in Lats1/2-deficient mice and inhibits human MPNST cell proliferation. Moreover, genome-wide profiling reveals that TAZ/YAP-TEAD1 directly activates oncogenic programs, including platelet-derived growth factor receptor (PDGFR) signaling. Co-targeting TAZ/YAP and PDGFR pathways inhibits tumor growth. Thus, our findings establish a previously unrecognized convergence between Lats1/2-TAZ/YAP signaling and MPNST pathogenesis, revealing potential therapeutic targets in these untreatable tumors.

Funding information:
  • NHLBI NIH HHS - R01 HL132211()
  • NIA NIH HHS - R01 AG040990(United States)
  • NINDS NIH HHS - R01 NS072427()
  • NINDS NIH HHS - R01 NS075243()
  • NINDS NIH HHS - R01 NS078092()
  • NINDS NIH HHS - R01 NS086219()
  • NINDS NIH HHS - R37 NS096359()

A Translational Repression Complex in Developing Mammalian Neural Stem Cells that Regulates Neuronal Specification.

  • Zahr SK
  • Neuron
  • 2018 Feb 7

Literature context: ell Signaling Cat# 9661; RRID:AB_2341188 normal mouse IgG Millipore Cat#


Abstract:

The mechanisms instructing genesis of neuronal subtypes from mammalian neural precursors are not well understood. To address this issue, we have characterized the transcriptional landscape of radial glial precursors (RPs) in the embryonic murine cortex. We show that individual RPs express mRNA, but not protein, for transcriptional specifiers of both deep and superficial layer cortical neurons. Some of these mRNAs, including the superficial versus deep layer neuron transcriptional regulators Brn1 and Tle4, are translationally repressed by their association with the RNA-binding protein Pumilio2 (Pum2) and the 4E-T protein. Disruption of these repressive complexes in RPs mid-neurogenesis by knocking down 4E-T or Pum2 causes aberrant co-expression of deep layer neuron specification proteins in newborn superficial layer neurons. Thus, cortical RPs are transcriptionally primed to generate diverse types of neurons, and a Pum2/4E-T complex represses translation of some of these neuronal identity mRNAs to ensure appropriate temporal specification of daughter neurons.

Funding information:
  • Canadian Institutes of Health Research - MOP-111003(Canada)

Endoplasmic Reticulum Stress Contributes to the Loss of Newborn Hippocampal Neurons after Traumatic Brain Injury.

  • Hood KN
  • J. Neurosci.
  • 2018 Feb 28

Literature context: 095850), and cleaved caspase-3 (RRID:AB_2341188) were purchased from Cell Signa


Abstract:

Adult hippocampal neurogenesis has been shown to be required for certain types of cognitive function. For example, studies have shown that these neurons are critical for pattern separation, the ability to store similar experiences as distinct memories. Although traumatic brain injury (TBI) has been shown to cause the loss of newborn hippocampal neurons, the signaling pathway(s) that triggers their death is unknown. Endoplasmic reticulum (ER) stress activates the PERK-eIF2α pathway that acts to restore ER function and improve cell survival. However, unresolved/intense ER stress activates C/EBP homologous protein (CHOP), leading to cell death. We show that TBI causes the death of hippocampal newborn neurons via CHOP. Using CHOP KO mice, we show that loss of CHOP markedly reduces newborn neuron loss after TBI. Injured CHOP mice performed significantly better in a context fear discrimination task compared with injured wild-type mice. In contrast, the PERK inhibitor GSK2606414 exacerbated doublecortin cell loss and worsened contextual discrimination. Administration of guanabenz (which reduces ER stress) to injured male rats reduced the loss of newborn neurons and improved one-trial contextual fear memory. Interestingly, we also found that the surviving newborn neurons in brain-injured animals had dendritic loss, which was not observed in injured CHOP KO mice or in animals treated with guanabenz. These results indicate that ER stress plays a key role in the death of newborn neurons after TBI. Further, these findings indicate that ER stress can alter dendritic arbors, suggesting a role for ER stress in neuroplasticity and dendritic pathologies.SIGNIFICANCE STATEMENT The hippocampus, a structure in the temporal lobe, is critical for learning and memory. The hippocampus is one of only two areas in which neurons are generated in the adult brain. These newborn neurons are required for certain types of memory, and are particularly vulnerable to traumatic brain injury (TBI). However, the mechanism(s) that causes the loss of these cells after TBI is poorly understood. We show that endoplasmic reticulum (ER) stress pathways are activated in newborn neurons after TBI, and that manipulation of the CHOP cascade improves newborn neuron survival and cognitive outcome. These results suggest that treatments that prevent/resolve ER stress may be beneficial in treating TBI-triggered memory dysfunction.

Funding information:
  • NEI NIH HHS - EY017296(United States)

Phospholipid Remodeling and Cholesterol Availability Regulate Intestinal Stemness and Tumorigenesis.

  • Wang B
  • Cell Stem Cell
  • 2018 Feb 1

Literature context: ase 3 Cell Signaling Cat# 9661, RRID:AB_2341188 Rabbit monoclonal anti-Id1 BioC


Abstract:

Adequate availability of cellular building blocks, including lipids, is a prerequisite for cellular proliferation, but excess dietary lipids are linked to increased cancer risk. Despite these connections, specific regulatory relationships between membrane composition, intestinal stem cell (ISC) proliferation, and tumorigenesis are unclear. We reveal an unexpected link between membrane phospholipid remodeling and cholesterol biosynthesis and demonstrate that cholesterol itself acts as a mitogen for ISCs. Inhibition of the phospholipid-remodeling enzyme Lpcat3 increases membrane saturation and stimulates cholesterol biosynthesis, thereby driving ISC proliferation. Pharmacologic inhibition of cholesterol synthesis normalizes crypt hyperproliferation in Lpcat3-deficient organoids and mice. Conversely, increasing cellular cholesterol content stimulates crypt organoid growth, and providing excess dietary cholesterol or driving endogenous cholesterol synthesis through SREBP-2 expression promotes ISC proliferation in vivo. Finally, disruption of Lpcat3-dependent phospholipid and cholesterol homeostasis dramatically enhances tumor formation in Apcmin mice. These findings identify a critical dietary-responsive phospholipid-cholesterol axis regulating ISC proliferation and tumorigenesis.

Funding information:
  • NHLBI NIH HHS - R37 HL081737(United States)

Artemether Does Not Turn α Cells into β Cells.

  • van der Meulen T
  • Cell Metab.
  • 2018 Jan 9

Literature context: 6000) Cell Signaling Cat# 9661; RRID:AB_2341188 Biological Samples


Abstract:

Pancreatic α cells retain considerable plasticity and can, under the right circumstances, transdifferentiate into functionally mature β cells. In search of a targetable mechanistic basis, a recent paper suggested that the widely used anti-malaria drug artemether suppresses the α cell transcription factor Arx to promote transdifferentiation into β cells. However, key initial experiments in this paper were carried out in islet cell lines, and most subsequent validation experiments implied transdifferentiation without direct demonstration of α to β cell conversion. Indeed, we find no evidence that artemether promotes transdifferentiation of primary α cells into β cells. Moreover, artemether reduces Ins2 expression in primary β cells >100-fold, suppresses glucose uptake, and abrogates β cell calcium responses and insulin secretion in response to glucose. Our observations suggest that artemether induces general islet endocrine cell dedifferentiation and call into question the utility of artemisinins to promote α to β cell transdifferentiation in treating diabetes.

Funding information:
  • NIGMS NIH HHS - T32 GM007377()
  • NIGMS NIH HHS - T32 GM099608()

The AKT/BCL-2 axis mediates survival of uterine leiomyoma in a novel 3D spheroid model.

  • Vidimar V
  • Endocrinology
  • 2018 Jan 26

Literature context: naling Technology, Danvers, MA; RRID:AB_2341188), and anti-BCL-2 (PA5-20068; Th


Abstract:

A deeper understanding of the pathways that drive uterine leiomyoma (ULM) growth and survival requires model systems that more closely mimic the in vivo tumors. This would provide new insights into developing effective therapeutic strategies for these common benign tumors of childbearing-aged women. In this study, we examined the role of BCL-2 in mediating ULM survival in the context of increased AKT and oxidative stress using a novel 3-dimensional (3D), spheroid-based model that more closely resembles the native ULM tumor microenvironment. Human primary cells from matched myometrium (MM) and ULM tissues were used to establish spheroid cultures in vitro. Histological and immunohistochemical methods were used to assess the spheroid architecture and characteristics. Viability assays for 3D cultures were used to evaluate their response to BH3 mimetics and the superoxide inducer, paraquat (PQ). Primary MM and ULM cells formed spheroids in culture. Notably, ULM spheroids exhibited low proliferation, increased oxidative stress and secretion of interstitial collagen. Knockdown studies revealed that AKT sustained BCL-2 expression in ULM. Targeting BCL-2 with BH3 mimetics effectively reduced viability and induced apoptosis in a subset of ULM spheroids. ULM spheroids that did not respond to BH3 mimetics alone responded to combination treatment with PQ. In conclusion, BCL-2 mediates AKT survival of ULM providing compelling evidence for further evaluation of BH3 mimetics for ULM treatment. ULM spheroids recapitulated intrinsic features of the native ULM tumor microenvironment and can be used as a novel model for preclinical testing of potential therapeutic options for ULM.

Funding information:
  • NINDS NIH HHS - R01-NS 07312401(United States)

Abnormal Microglia and Enhanced Inflammation-Related Gene Transcription in Mice with Conditional Deletion of Ctcf in Camk2a-Cre-Expressing Neurons.

  • McGill BE
  • J. Neurosci.
  • 2018 Jan 3

Literature context: naling Technology catalog#9661, RRID:AB_2341188), 1:400 anti-S100-β (S100B; Dak


Abstract:

CCCTC-binding factor (CTCF) is an 11 zinc finger DNA-binding domain protein that regulates gene expression by modifying 3D chromatin structure. Human mutations in CTCF cause intellectual disability and autistic features. Knocking out Ctcf in mouse embryonic neurons is lethal by neonatal age, but the effects of CTCF deficiency in postnatal neurons are less well studied. We knocked out Ctcf postnatally in glutamatergic forebrain neurons under the control of Camk2a-Cre. CtcfloxP/loxP;Camk2a-Cre+ (Ctcf CKO) mice of both sexes were viable and exhibited profound deficits in spatial learning/memory, impaired motor coordination, and decreased sociability by 4 months of age. Ctcf CKO mice also had reduced dendritic spine density in the hippocampus and cerebral cortex. Microarray analysis of mRNA from Ctcf CKO mouse hippocampus identified increased transcription of inflammation-related genes linked to microglia. Separate microarray analysis of mRNA isolated specifically from Ctcf CKO mouse hippocampal neurons by ribosomal affinity purification identified upregulation of chemokine signaling genes, suggesting crosstalk between neurons and microglia in Ctcf CKO hippocampus. Finally, we found that microglia in Ctcf CKO mouse hippocampus had abnormal morphology by Sholl analysis and increased immunostaining for CD68, a marker of microglial activation. Our findings confirm that Ctcf KO in postnatal neurons causes a neurobehavioral phenotype in mice and provide novel evidence that CTCF depletion leads to overexpression of inflammation-related genes and microglial dysfunction.SIGNIFICANCE STATEMENT CCCTC-binding factor (CTCF) is a DNA-binding protein that organizes nuclear chromatin topology. Mutations in CTCF cause intellectual disability and autistic features in humans. CTCF deficiency in embryonic neurons is lethal in mice, but mice with postnatal CTCF depletion are less well studied. We find that mice lacking Ctcf in Camk2a-expressing neurons (Ctcf CKO mice) have spatial learning/memory deficits, impaired fine motor skills, subtly altered social interactions, and decreased dendritic spine density. We demonstrate that Ctcf CKO mice overexpress inflammation-related genes in the brain and have microglia with abnormal morphology that label positive for CD68, a marker of microglial activation. Our findings suggest that inflammation and dysfunctional neuron-microglia interactions are factors in the pathology of CTCF deficiency.

Funding information:
  • NICHD NIH HHS - U54 HD087011()
  • NIGMS NIH HHS - GM007240(United States)

Loss of Intercalated Cells (ITCs) in the Mouse Amygdala of Tshz1 Mutants Correlates with Fear, Depression, and Social Interaction Phenotypes.

  • Kuerbitz J
  • J. Neurosci.
  • 2018 Jan 31

Literature context: 200, Cell Signaling Technology, RRID:AB_2341188), guinea pig anti-doublecortin


Abstract:

The intercalated cells (ITCs) of the amygdala have been shown to be critical regulatory components of amygdalar circuits, which control appropriate fear responses. Despite this, the molecular processes guiding ITC development remain poorly understood. Here we establish the zinc finger transcription factor Tshz1 as a marker of ITCs during their migration from the dorsal lateral ganglionic eminence through maturity. Using germline and conditional knock-out (cKO) mouse models, we show that Tshz1 is required for the proper migration and differentiation of ITCs. In the absence of Tshz1, migrating ITC precursors fail to settle in their stereotypical locations encapsulating the lateral amygdala and BLA. Furthermore, they display reductions in the ITC marker Foxp2 and ectopic persistence of the dorsal lateral ganglionic eminence marker Sp8. Tshz1 mutant ITCs show increased cell death at postnatal time points, leading to a dramatic reduction by 3 weeks of age. In line with this, Foxp2-null mutants also show a loss of ITCs at postnatal time points, suggesting that Foxp2 may function downstream of Tshz1 in the maintenance of ITCs. Behavioral analysis of male Tshz1 cKOs revealed defects in fear extinction as well as an increase in floating during the forced swim test, indicative of a depression-like phenotype. Moreover, Tshz1 cKOs display significantly impaired social interaction (i.e., increased passivity) regardless of partner genetics. Together, these results suggest that Tshz1 plays a critical role in the development of ITCs and that fear, depression-like and social behavioral deficits arise in their absence.SIGNIFICANCE STATEMENT We show here that the zinc finger transcription factor Tshz1 is expressed during development of the intercalated cells (ITCs) within the mouse amygdala. These neurons have previously been shown to play a crucial role in fear extinction. Tshz1 mouse mutants exhibit severely reduced numbers of ITCs as a result of abnormal migration, differentiation, and survival of these neurons. Furthermore, the loss of ITCs in mouse Tshz1 mutants correlates well with defects in fear extinction as well as the appearance of depression-like and abnormal social interaction behaviors reminiscent of depressive disorders observed in human patients with distal 18q deletions, including the Tshz1 locus.

Funding information:
  • NCI NIH HHS - P30-CA051008-18(United States)
  • NIGMS NIH HHS - T32 GM063483()
  • NINDS NIH HHS - R01 NS044080()

mTORC1 Inactivation Promotes Colitis-Induced Colorectal Cancer but Protects from APC Loss-Dependent Tumorigenesis.

  • Brandt M
  • Cell Metab.
  • 2018 Jan 9

Literature context: Signaling Technology Cat#9661; RRID:AB_2341188 Rabbit polyclonal anti-p53 prot


Abstract:

Dietary habits that can induce inflammatory bowel disease (IBD) are major colorectal cancer (CRC) risk factors, but mechanisms linking nutrients, IBD, and CRC are unknown. Using human data and mouse models, we show that mTORC1 inactivation-induced chromosomal instability impairs intestinal crypt proliferation and regeneration, CDK4/6 dependently. This triggers interleukin (IL)-6-associated reparative inflammation, inducing crypt hyper-proliferation, wound healing, and CRC. Blocking IL-6 signaling or reactivating mTORC1 reduces inflammation-induced CRC, so mTORC1 activation suppresses tumorigenesis in IBD. Conversely, mTORC1 inactivation is beneficial in APC loss-dependent CRC. Thus, IL-6 blockers or protein-rich-diet-linked mTORC1 activation may prevent IBD-associated CRC. However, abolishing mTORC1 can mitigate CRC in predisposed patients with APC mutations. Our work reveals mTORC1 oncogenic and tumor-suppressive roles in intestinal epithelium and avenues to optimized and personalized therapeutic regimens for CRC.

Funding information:
  • NIGMS NIH HHS - T32 GM007067(United States)

Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis.

  • Ingold I
  • Cell
  • 2018 Jan 25

Literature context: clonal Cell signaling Cat#9661, RRID:AB_2341188 Anti-Citrate synthase, rabbit p


Abstract:

Selenoproteins are rare proteins among all kingdoms of life containing the 21st amino acid, selenocysteine. Selenocysteine resembles cysteine, differing only by the substitution of selenium for sulfur. Yet the actual advantage of selenolate- versus thiolate-based catalysis has remained enigmatic, as most of the known selenoproteins also exist as cysteine-containing homologs. Here, we demonstrate that selenolate-based catalysis of the essential mammalian selenoprotein GPX4 is unexpectedly dispensable for normal embryogenesis. Yet the survival of a specific type of interneurons emerges to exclusively depend on selenocysteine-containing GPX4, thereby preventing fatal epileptic seizures. Mechanistically, selenocysteine utilization by GPX4 confers exquisite resistance to irreversible overoxidation as cells expressing a cysteine variant are highly sensitive toward peroxide-induced ferroptosis. Remarkably, concomitant deletion of all selenoproteins in Gpx4cys/cys cells revealed that selenoproteins are dispensable for cell viability provided partial GPX4 activity is retained. Conclusively, 200 years after its discovery, a specific and indispensable role for selenium is provided.

Funding information:
  • NIGMS NIH HHS - R01 GM058888(United States)

TIM-3 Regulates CD103+ Dendritic Cell Function and Response to Chemotherapy in Breast Cancer.

  • de Mingo Pulido Á
  • Cancer Cell
  • 2018 Jan 8

Literature context: onal) Cell Signaling Cat# 9661; RRID:AB_2341188 Anti-human TIM-3 clone D5D5R Ce


Abstract:

Intratumoral CD103+ dendritic cells (DCs) are necessary for anti-tumor immunity. Here we evaluated the expression of immune regulators by CD103+ DCs in a murine model of breast cancer and identified expression of TIM-3 as a target for therapy. Anti-TIM-3 antibody improved response to paclitaxel chemotherapy in models of triple-negative and luminal B disease, with no evidence of toxicity. Combined efficacy was CD8+ T cell dependent and associated with increased granzyme B expression; however, TIM-3 expression was predominantly localized to myeloid cells in both human and murine tumors. Gene expression analysis identified upregulation of Cxcl9 within intratumoral DCs during combination therapy, and therapeutic efficacy was ablated by CXCR3 blockade, Batf3 deficiency, or Irf8 deficiency.

Funding information:
  • Intramural NIH HHS - DK015602-05(United States)
  • NCI NIH HHS - K99 CA185325()
  • NCI NIH HHS - P30 CA076292()
  • NCI NIH HHS - R00 CA185325()
  • NCI NIH HHS - R01 CA155331()
  • NCI NIH HHS - U54 CA163123()

Topoisomerase IIβ Selectively Regulates Motor Neuron Identity and Peripheral Connectivity through Hox/Pbx-Dependent Transcriptional Programs.

  • Edmond M
  • eNeuro
  • 2018 Jan 31

Literature context: (1:1000; Cell Signaling, RRID:AB_2341188), rabbit anti-Pbx1 (1:2500; Cel


Abstract:

Vital motor functions, such as respiration and locomotion, rely on the ability of spinal motor neurons (MNs) to acquire stereotypical positions in the ventral spinal cord and to project with high precision to their peripheral targets. These key properties of MNs emerge during development through transcriptional programs that dictate their subtype identity and connectivity; however, the molecular mechanisms that establish the transcriptional landscape necessary for MN specification are not fully understood. Here, we show that the enzyme topoisomerase IIβ (Top2β) controls MN migration and connectivity. Surprisingly, Top2β is not required for MN generation or survival but has a selective role in columnar specification. In the absence of Top2β, phrenic MN identity is eroded, while other motor columns are partially preserved but fail to cluster to their proper position. In Top2β-/- mice, peripheral connectivity is impaired as MNs exhibit a profound deficit in terminal branching. These defects likely result from the insufficient activation of Hox/Pbx-dependent transcriptional programs as Hox and Pbx genes are downregulated in the absence of Top2β. Top2β mutants recapitulate many aspects of Pbx mutant mice, such as MN disorganization and defects in medial motor column (MMC) specification. Our findings indicate that Top2β, a gene implicated in neurodevelopmental diseases such as autism spectrum disorders, plays a critical, cell-specific role in the assembly of motor circuits.

Funding information:
  • Wellcome Trust - 14136(United Kingdom)

Therapeutic Antibody Targeting Tumor- and Osteoblastic Niche-Derived Jagged1 Sensitizes Bone Metastasis to Chemotherapy.

  • Zheng H
  • Cancer Cell
  • 2017 Dec 11

Literature context: Signaling Technology Cat# 9661; RRID:AB_2341188 GFP in 1:1,000, Chicken Abcam C


Abstract:

Bone metastasis is a major health threat to breast cancer patients. Tumor-derived Jagged1 represents a central node in mediating tumor-stromal interactions that promote osteolytic bone metastasis. Here, we report the development of a highly effective fully human monoclonal antibody against Jagged1 (clone 15D11). In addition to its inhibitory effect on bone metastasis of Jagged1-expressing tumor cells, 15D11 dramatically sensitizes bone metastasis to chemotherapy, which induces Jagged1 expression in osteoblasts to provide a survival niche for cancer cells. We further confirm the bone metastasis-promoting function of osteoblast-derived Jagged1 using osteoblast-specific Jagged1 transgenic mouse model. These findings establish 15D11 as a potential therapeutic agent for the prevention or treatment of bone metastasis.

Funding information:
  • NCI NIH HHS - P30 CA072720()
  • NCI NIH HHS - R01 CA134519()
  • NCI NIH HHS - R01 CA141062()
  • NCI NIH HHS - R01 CA212410()
  • NIGMS NIH HHS - R29 GM053989(United States)

mTORC1 Activation during Repeated Regeneration Impairs Somatic Stem Cell Maintenance.

  • Haller S
  • Cell Stem Cell
  • 2017 Dec 7

Literature context: ell Signaling Cat#9661; RRID:AB_2341188 Mouse anti alpha-Tubulin Sigma


Abstract:

The balance between self-renewal and differentiation ensures long-term maintenance of stem cell (SC) pools in regenerating epithelial tissues. This balance is challenged during periods of high regenerative pressure and is often compromised in aged animals. Here, we show that target of rapamycin (TOR) signaling is a key regulator of SC loss during repeated regenerative episodes. In response to regenerative stimuli, SCs in the intestinal epithelium of the fly and in the tracheal epithelium of mice exhibit transient activation of TOR signaling. Although this activation is required for SCs to rapidly proliferate in response to damage, repeated rounds of damage lead to SC loss. Consistently, age-related SC loss in the mouse trachea and in muscle can be prevented by pharmacologic or genetic inhibition, respectively, of mammalian target of rapamycin complex 1 (mTORC1) signaling. These findings highlight an evolutionarily conserved role of TOR signaling in SC function and identify repeated rounds of mTORC1 activation as a driver of age-related SC decline.

Funding information:
  • BLRD VA - I01 BX002324()
  • NCRR NIH HHS - UL1 RR024989(United States)
  • NHLBI NIH HHS - R01 HL132996()
  • NIA NIH HHS - K99 AG041764()
  • NIA NIH HHS - P01 AG036695()
  • NIA NIH HHS - R00 AG041764()
  • NIA NIH HHS - R01 AG047497()
  • NIA NIH HHS - R01 AG047820()
  • NIA NIH HHS - R37 AG023806()
  • NIDDK NIH HHS - R01 DK100342()
  • NIDDK NIH HHS - R01 DK113144()

A Balance of Yki/Sd Activator and E2F1/Sd Repressor Complexes Controls Cell Survival and Affects Organ Size.

  • Zhang P
  • Dev. Cell
  • 2017 Dec 4

Literature context: Cat#9661; RRID:AB_2341188 Chicken α-GFP Thermo Fisher Sci


Abstract:

The Hippo/Yki and RB/E2F pathways both regulate tissue growth by affecting cell proliferation and survival, but interactions between these parallel control systems are poorly defined. In this study, we demonstrate that interaction between Drosophila E2F1 and Sd disrupts Yki/Sd complex formation and thereby suppresses Yki target gene expression. RBF modifies these effects by reducing E2F1/Sd interaction. This regulation has significant effects on apoptosis, organ size, and progenitor cell proliferation. Using a combination of DamID-seq and RNA-seq, we identified a set of Yki targets that play a diversity of roles during development and are suppressed by E2F1. Further, we found that human E2F1 competes with YAP for TEAD1 binding, affecting YAP activity, indicating that this mode of cross-regulation is conserved. In sum, our study uncovers a previously unknown mechanism in which RBF and E2F1 modify Hippo signaling responses to modulate apoptosis, organ growth, and homeostasis.

Funding information:
  • European Research Council - 268515()
  • NCI NIH HHS - P50 CA091956(United States)

RANKL/RANK control Brca1 mutation-driven mammary tumors.

  • Sigl V
  • Cell Res.
  • 2017 Dec 28

Literature context: CTNNB1 (E247), Abcam, ab32572). CASP3, Cleaved (1:200, Rabbit anti-human Cleav


Abstract:

Breast cancer is the most common female cancer, affecting approximately one in eight women during their life-time. Besides environmental triggers and hormones, inherited mutations in the breast cancer 1 (BRCA1) or BRCA2 genes markedly increase the risk for the development of breast cancer. Here, using two different mouse models, we show that genetic inactivation of the key osteoclast differentiation factor RANK in the mammary epithelium markedly delayed onset, reduced incidence, and attenuated progression of Brca1;p53 mutation-driven mammary cancer. Long-term pharmacological inhibition of the RANK ligand RANKL in mice abolished the occurrence of Brca1 mutation-driven pre-neoplastic lesions. Mechanistically, genetic inactivation of Rank or RANKL/RANK blockade impaired proliferation and expansion of both murine Brca1;p53 mutant mammary stem cells and mammary progenitors from human BRCA1 mutation carriers. In addition, genome variations within the RANK locus were significantly associated with risk of developing breast cancer in women with BRCA1 mutations. Thus, RANKL/RANK control progenitor cell expansion and tumorigenesis in inherited breast cancer. These results present a viable strategy for the possible prevention of breast cancer in BRCA1 mutant patients.

Funding information:
  • NCRR NIH HHS - R01RR013438(United States)
  • NIGMS NIH HHS - T32 GM007753()
  • NIGMS NIH HHS - T34 GM008663()

Activation of the STING-Dependent Type I Interferon Response Reduces Microglial Reactivity and Neuroinflammation.

  • Mathur V
  • Neuron
  • 2017 Dec 20

Literature context: Technologies Cat# 9661; RRID:AB_2341188 CD11b-PE BD Biosciences Cat# 12


Abstract:

Brain aging and neurodegeneration are associated with prominent microglial reactivity and activation of innate immune response pathways, commonly referred to as neuroinflammation. One such pathway, the type I interferon response, recognizes viral or mitochondrial DNA in the cytoplasm via activation of the recently discovered cyclic dinucleotide synthetase cGAS and the cyclic dinucleotide receptor STING. Here we show that the FDA-approved antiviral drug ganciclovir (GCV) induces a type I interferon response independent of its canonical thymidine kinase target. Inhibition of components of the STING pathway, including STING, IRF3, Tbk1, extracellular IFNβ, and the Jak-Stat pathway resulted in reduced activity of GCV and its derivatives. Importantly, functional STING was necessary for GCV to inhibit inflammation in cultured myeloid cells and in a mouse model of multiple sclerosis. Collectively, our findings uncover an unexpected new activity of GCV and identify the STING pathway as a regulator of microglial reactivity and neuroinflammation.

MST4 Phosphorylation of ATG4B Regulates Autophagic Activity, Tumorigenicity, and Radioresistance in Glioblastoma.

  • Huang T
  • Cancer Cell
  • 2017 Dec 11

Literature context: Signaling Technology Cat#9661S; RRID:AB_2341188 anti-ATG7 Cell Signaling Techno


Abstract:

ATG4B stimulates autophagy by promoting autophagosome formation through reversible modification of ATG8. We identify ATG4B as a substrate of mammalian sterile20-like kinase (STK) 26/MST4. MST4 phosphorylates ATG4B at serine residue 383, which stimulates ATG4B activity and increases autophagic flux. Inhibition of MST4 or ATG4B activities using genetic approaches or an inhibitor of ATG4B suppresses autophagy and the tumorigenicity of glioblastoma (GBM) cells. Furthermore, radiation induces MST4 expression, ATG4B phosphorylation, and autophagy. Inhibiting ATG4B in combination with radiotherapy in treating mice with intracranial GBM xenograft markedly slows tumor growth and provides a significant survival benefit. Our work describes an MST4-ATG4B signaling axis that influences GBM autophagy and malignancy, and whose therapeutic targeting enhances the anti-tumor effects of radiotherapy.

Funding information:
  • NCI NIH HHS - P01 CA163205()
  • NCI NIH HHS - R01 CA159467()
  • NCI NIH HHS - R21 CA175875()
  • NCI NIH HHS - T32 CA070085()
  • NIAAA NIH HHS - R01 AA021751()
  • NIGMS NIH HHS - R01 GM038660(United States)
  • NIMHD NIH HHS - L32 MD010147()
  • NINDS NIH HHS - P30 NS081774()
  • NINDS NIH HHS - R01 NS080619()
  • NINDS NIH HHS - R01 NS083767()
  • NINDS NIH HHS - R01 NS093843()
  • NINDS NIH HHS - R01 NS095634()
  • NINDS NIH HHS - R01 NS102669()
  • NLM NIH HHS - K99 LM011673()
  • NLM NIH HHS - R00 LM011673()
  • NLM NIH HHS - R01 LM012011()

Fibrinogen Activates BMP Signaling in Oligodendrocyte Progenitor Cells and Inhibits Remyelination after Vascular Damage.

  • Petersen MA
  • Neuron
  • 2017 Dec 6

Literature context: Signaling Technology Cat#9661; RRID:AB_2341188 Rabbit polyclonal anti-fibrinog


Abstract:

Blood-brain barrier (BBB) disruption alters the composition of the brain microenvironment by allowing blood proteins into the CNS. However, whether blood-derived molecules serve as extrinsic inhibitors of remyelination is unknown. Here we show that the coagulation factor fibrinogen activates the bone morphogenetic protein (BMP) signaling pathway in oligodendrocyte progenitor cells (OPCs) and suppresses remyelination. Fibrinogen induces phosphorylation of Smad 1/5/8 and inhibits OPC differentiation into myelinating oligodendrocytes (OLs) while promoting an astrocytic fate in vitro. Fibrinogen effects are rescued by BMP type I receptor inhibition using dorsomorphin homolog 1 (DMH1) or CRISPR/Cas9 activin A receptor type I (ACVR1) knockout in OPCs. Fibrinogen and the BMP target Id2 are increased in demyelinated multiple sclerosis (MS) lesions. Therapeutic depletion of fibrinogen decreases BMP signaling and enhances remyelination in vivo. Targeting fibrinogen may be an upstream therapeutic strategy to promote the regenerative potential of CNS progenitors in diseases with remyelination failure.

Genomic Aberrations that Activate D-type Cyclins Are Associated with Enhanced Sensitivity to the CDK4 and CDK6 Inhibitor Abemaciclib.

  • Gong X
  • Cancer Cell
  • 2017 Dec 11

Literature context: g 9661; RRID:AB_2341188 PARP Cell Signaling 9542; RRID:


Abstract:

Most cancers preserve functional retinoblastoma (Rb) and may, therefore, respond to inhibition of D-cyclin-dependent Rb kinases, CDK4 and CDK6. To date, CDK4/6 inhibitors have shown promising clinical activity in breast cancer and lymphomas, but it is not clear which additional Rb-positive cancers might benefit from these agents. No systematic survey to compare relative sensitivities across tumor types and define molecular determinants of response has been described. We report a subset of cancers highly sensitive to CDK4/6 inhibition and characterized by various genomic aberrations known to elevate D-cyclin levels and describe a recurrent CCND1 3'UTR mutation associated with increased expression in endometrial cancer. The results suggest multiple additional classes of cancer that may benefit from CDK4/6-inhibiting drugs such as abemaciclib.

Funding information:
  • NIAID NIH HHS - K08 AI089242(United States)

iASPP Is an Antioxidative Factor and Drives Cancer Growth and Drug Resistance by Competing with Nrf2 for Keap1 Binding.

  • Ge W
  • Cancer Cell
  • 2017 Nov 13

Literature context: naling technology Cat.#9661S; RRID:AB_2341188 Anti-Bax Abclonal Cat.#A0207


Abstract:

Reactive oxygen species (ROS) have emerged as important signaling molecules that play crucial roles in carcinogenesis and cytotoxic responses. Nrf2 is the master regulator of ROS balance. Thus, uncovering mechanisms of Nrf2 regulation is important for the development of alternative treatment strategies for cancers. Here, we demonstrate that iASPP, a known p53 inhibitor, lowers ROS independently of p53. Mechanistically, iASPP competes with Nrf2 for Keap1 binding via a DLT motif, leading to decreased Nrf2 ubiquitination and increased Nrf2 accumulation, nuclear translocation, and antioxidative transactivation. This iASPP-Keap1-Nrf2 axis promotes cancer growth and drug resistance both in vitro and in vivo. Thus, iASPP is an antioxidative factor and represents a promising target to improve cancer treatment, regardless of p53 status.

Funding information:
  • NCI NIH HHS - R01CA169200(United States)

Age-Dependent Dopaminergic Neurodegeneration and Impairment of the Autophagy-Lysosomal Pathway in LRRK-Deficient Mice.

  • Giaime E
  • Neuron
  • 2017 Nov 15

Literature context: Cell Signaling Cat # 9661S RRID:AB_2341188 Mouse anti-NeuN Milipore Sigma


Abstract:

LRRK2 mutations are the most common genetic cause of Parkinson's disease, but LRRK2's normal physiological role in the brain is unclear. Here, we show that inactivation of LRRK2 and its functional homolog LRRK1 results in earlier mortality and age-dependent, selective neurodegeneration. Loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and of noradrenergic neurons in the locus coeruleus is accompanied with increases in apoptosis, whereas the cerebral cortex and cerebellum are unaffected. Furthermore, selective age-dependent neurodegeneration is only present in LRRK-/-, not LRRK1-/- or LRRK2-/- brains, and it is accompanied by increases in α-synuclein and impairment of the autophagy-lysosomal pathway. Quantitative electron microscopy (EM) analysis revealed age-dependent increases of autophagic vacuoles in the SNpc of LRRK-/- mice before the onset of DA neuron loss. These findings revealed an essential role of LRRK in the survival of DA neurons and in the regulation of the autophagy-lysosomal pathway in the aging brain.

Funding information:
  • NINDS NIH HHS - P50 NS094733()
  • NINDS NIH HHS - R01 NS071251()
  • NINDS NIH HHS - R37 NS071251()

Inhibition of TRF1 Telomere Protein Impairs Tumor Initiation and Progression in Glioblastoma Mouse Models and Patient-Derived Xenografts.

  • Bejarano L
  • Cancer Cell
  • 2017 Nov 13

Literature context: p175) Cell Signaling Cat# 9661; RRID:AB_2341188 Mouse monoclonal anti-NF1 (E-8)


Abstract:

Glioblastoma multiforme (GBM) is a deadly and common brain tumor. Poor prognosis is linked to high proliferation and cell heterogeneity, including glioma stem cells (GSCs). Telomere genes are frequently mutated. The telomere binding protein TRF1 is essential for telomere protection, and for adult and pluripotent stem cells. Here, we find TRF1 upregulation in mouse and human GBM. Brain-specific Trf1 genetic deletion in GBM mouse models inhibited GBM initiation and progression, increasing survival. Trf1 deletion increased telomeric DNA damage and reduced proliferation and stemness. TRF1 chemical inhibitors mimicked these effects in human GBM cells and also blocked tumor sphere formation and tumor growth in xenografts from patient-derived primary GSCs. Thus, targeting telomeres throughout TRF1 inhibition is an effective therapeutic strategy for GBM.

Targeting Glioma Stem Cell-Derived Pericytes Disrupts the Blood-Tumor Barrier and Improves Chemotherapeutic Efficacy.

  • Zhou W
  • Cell Stem Cell
  • 2017 Nov 2

Literature context: g Tech. Cat# 9661, RRID:AB_2341188 CA9 Novus Cat# NB100-417, RRID:


Abstract:

The blood-tumor barrier (BTB) is a major obstacle for drug delivery to malignant brain tumors such as glioblastoma (GBM). Disrupting the BTB is therefore highly desirable but complicated by the need to maintain the normal blood-brain barrier (BBB). Here we show that targeting glioma stem cell (GSC)-derived pericytes specifically disrupts the BTB and enhances drug effusion into brain tumors. We found that pericyte coverage of tumor vasculature is inversely correlated with GBM patient survival after chemotherapy. Eliminating GSC-derived pericytes in xenograft models disrupted BTB tight junctions and increased vascular permeability. We identified BMX as an essential factor for maintaining GSC-derived pericytes. Inhibiting BMX with ibrutinib selectively targeted neoplastic pericytes and disrupted the BTB, but not the BBB, thereby increasing drug effusion into established tumors and enhancing the chemotherapeutic efficacy of drugs with poor BTB penetration. These findings highlight the clinical potential of targeting neoplastic pericytes to significantly improve treatment of brain tumors.

Funding information:
  • NCI NIH HHS - R01 CA169117()
  • NCI NIH HHS - R01 CA184090()
  • NCRR NIH HHS - S10 RR031536()
  • NIH HHS - S10 OD018205()
  • NINDS NIH HHS - R01 NS091080()
  • NINDS NIH HHS - R01 NS092641()
  • NINDS NIH HHS - R01 NS094199()
  • NINDS NIH HHS - R01 NS099175()

Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer.

  • Bajikar SS
  • Dev. Cell
  • 2017 Nov 20

Literature context: RRID:AB_2341188 Rabbit polyclonal anti-phospho


Abstract:

Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous carcinoma in which various tumor-suppressor genes are lost by mutation, deletion, or silencing. Here we report a tumor-suppressive mode of action for growth-differentiation factor 11 (GDF11) and an unusual mechanism of its inactivation in TNBC. GDF11 promotes an epithelial, anti-invasive phenotype in 3D triple-negative cultures and intraductal xenografts by sustaining expression of E-cadherin and inhibitor of differentiation 2 (ID2). Surprisingly, clinical TNBCs retain the GDF11 locus and expression of the protein itself. GDF11 bioactivity is instead lost because of deficiencies in its convertase, proprotein convertase subtilisin/kexin type 5 (PCSK5), causing inactive GDF11 precursor to accumulate intracellularly. PCSK5 reconstitution mobilizes the latent TNBC reservoir of GDF11 in vitro and suppresses triple-negative mammary cancer metastasis to the lung of syngeneic hosts. Intracellular GDF11 retention adds to the concept of tumor-suppressor inactivation and reveals a cell-biological vulnerability for TNBCs lacking therapeutically actionable mutations.

Funding information:
  • NIDCD NIH HHS - R01 DC011184(United States)

Generation of Mouse and Human Organoid-Forming Intestinal Progenitor Cells by Direct Lineage Reprogramming.

  • Miura S
  • Cell Stem Cell
  • 2017 Oct 5

Literature context: Technology Cat#9661S, RRID:AB_2341188 Goat anti-SIase Santa Cruz Biot


Abstract:

Intestinal organoids hold great promise as a valuable tool for studying and treating intestinal diseases. The currently available sources of human intestinal organoids, tissue fragments or pluripotent stem cells, involve invasive procedures or complex differentiation protocols, respectively. Here, we show that a set of four transcription factors, Hnf4α, Foxa3, Gata6, and Cdx2, can directly reprogram mouse fibroblasts to acquire the identity of fetal intestine-derived progenitor cells (FIPCs). These induced FIPCs (iFIPCs) form spherical organoids that develop into adult-type budding organoids containing cells with intestinal stem cell properties. The resulting stem cells produce all intestinal epithelial cell lineages and undergo self-renewing cell divisions. After transplantation, the induced spherical and budding organoids can reconstitute colonic and intestinal epithelia, respectively. The same combination of four defined transcription factors can also induce human iFIPCs. This alternative approach for producing intestinal organoids may well facilitate application for disease analysis and therapy development.

Negative effects of retinoic acid on stem cell niche of mouse incisor.

  • Xi J
  • Stem Cell Res
  • 2017 Oct 25

Literature context: chnology, RRID:AB_331441) at 4 °C f


Abstract:

The continuous growth of mouse incisors depends on epithelial stem cells (SCs) residing in the SC niche, called labial cervical loop (LaCL). The homeostasis of the SCs is subtly regulated by complex signaling networks. In this study, we focus on retinoic acid (RA), a derivative of Vitamin A and a known pivotal signaling molecule in controlling the functions of stem cells (SCs). We analyzed the expression profiles of several key molecules of the RA signaling pathway in cultured incisor explants upon exogenous RA treatment. The expression patterns of these molecules suggested a negative feedback regulation of RA signaling in the developing incisor. We demonstrated that exogenous RA had negative effects on incisor SCs and that this was accompanied by downregulation of Fgf10, a mesenchymally expressed SC survival factor in the mouse incisor. Supplement of Fgf10 in incisor cultures completely blocked RA effects by antagonizing apoptosis and increasing proliferation in LaCL epithelial SCs. In addition, Fgf10 obviously antagonized RA-induced downregulation of the SC marker Sox2 in incisor epithelial SCs. Our findings suggest that the negative effects of RA on incisor SCs result from inhibition of mesenchymal Fgf10.

Gonadotropin-Dependent Neuregulin-1 Signaling Regulates Female Rat Ovarian Granulosa Cell Survival.

  • Chowdhury I
  • Endocrinology
  • 2017 Oct 1

Literature context: echnology Rabbit (polyclonal) RRID:AB_2341188 1:1000


Abstract:

Mammalian ovarian follicular development and maturation of an oocyte competent to be fertilized and develop into an embryo depends on tightly regulated, spatiotemporally orchestrated crosstalk among cell death, survival, and differentiation signals through extra- and intraovarian signals, as well as on a permissive ovarian follicular microenvironment. Neuregulin-1 (NRG1) is a member of the epidermal growth factor-like factor family that mediates its effects by binding to a member of the erythroblastoma (ErbB) family. Our experimental results suggest gonadotropins promote differential expression of NRG1 and erbB receptors in granulosa cells (GCs), and NRG1 in theca cells during follicular development, and promote NRG1 secretions in the follicular fluid (FF) of rat ovaries. During the estrous cycle of rat, NRG1 and erbB receptors are differentially expressed in GCs and correlate positively with serum gonadotropins and steroid hormones. Moreover, in vitro experimental studies suggest that the protein kinase C inhibitor staurosporine (STS) causes the physical destruction of GCs by the activation of caspase-3. Exogenous NRG1 treatment of GCs delayed onset of STS-induced apoptosis and inhibited cleaved caspase-3 expressions. Moreover, exogenous NRG1 treatment of GCs alters STS-induced death by maintaining the expression of ErbB2, ErbB3, pAkt, Bcl2, and BclxL proteins. Taken together, these studies demonstrate that NRG1 is gonadotropin dependent, differentially regulated in GCs and theca cells, and secreted in ovarian FF as an intracellular survival factor that may govern follicular maturation.

Binding of PLD2-Generated Phosphatidic Acid to KIF5B Promotes MT1-MMP Surface Trafficking and Lung Metastasis of Mouse Breast Cancer Cells.

  • Wang Z
  • Dev. Cell
  • 2017 Oct 23

Literature context: IHC) Cell Signaling Cat# 9661; RRID:AB_2341188 Rabbit anti-EGFR (1:500 for IF,


Abstract:

Little is known about the cellular events promoting metastasis. We show that knockout of phospholipase D2 (PLD2), which generates the signaling lipid phosphatidic acid (PA), inhibits lung metastases in the mammary tumor virus (MMTV)-Neu transgenic mouse breast cancer model. PLD2 promotes local invasion through the regulation of the plasma membrane targeting of MT1-MMP and its associated invadopodia. A liposome pull-down screen identifies KIF5B, the heavy chain of the motor protein kinesin-1, as a new PA-binding protein. In vitro assays reveal that PA specifically and directly binds to the C terminus of KIF5B. The binding between PLD2-generated PA and KIF5B is required for the vesicular association of KIF5B, surface localization of MT1-MMP, invadopodia, and invasion in cancer cells. Taken together, these results identify a role of PLD2-generated PA in the regulation of kinesin-1 motor functions and breast cancer metastasis and suggest PLD2 as a potential therapeutic target for metastatic breast cancer.

Funding information:
  • NCI NIH HHS - R01 CA112403()
  • NCI NIH HHS - R01 CA193455()
  • NHLBI NIH HHS - R01 HL119478()
  • NIGMS NIH HHS - R01 GM114260()

Direct Activation of BAX by BTSA1 Overcomes Apoptosis Resistance in Acute Myeloid Leukemia.

  • Reyna DE
  • Cancer Cell
  • 2017 Oct 9

Literature context: Signaling Cat. # 9661; RRID:AB_2341188 ApopTag Peroxidase Millipore Ca


Abstract:

The BCL-2 family protein BAX is a central mediator of apoptosis. Overexpression of anti-apoptotic BCL-2 proteins contributes to tumor development and resistance to therapy by suppressing BAX and its activators. We report the discovery of BTSA1, a pharmacologically optimized BAX activator that binds with high affinity and specificity to the N-terminal activation site and induces conformational changes to BAX leading to BAX-mediated apoptosis. BTSA1-induced BAX activation effectively promotes apoptosis in leukemia cell lines and patient samples while sparing healthy cells. BAX expression levels and cytosolic conformation regulate sensitivity to BTSA1. BTSA1 potently suppressed human acute myeloid leukemia (AML) xenografts and increased host survival without toxicity. This study provides proof-of-concept for direct BAX activation as a treatment strategy in AML.

Conditional Deletion of the L-Type Calcium Channel Cav1.2 in NG2-Positive Cells Impairs Remyelination in Mice.

  • Santiago González DA
  • J. Neurosci.
  • 2017 Oct 18

Literature context: 000; Cell Signaling Technology, RRID:AB_2341188), CC1 (1:300; Calbiochem, RRID:


Abstract:

Exploring the molecular mechanisms that drive the maturation of oligodendrocyte progenitor cells (OPCs) during the remyelination process is essential to developing new therapeutic tools to intervene in demyelinating diseases such as multiple sclerosis. To determine whether L-type voltage-gated calcium channels (L-VGCCs) are required for OPC development during remyelination, we generated an inducible conditional knock-out mouse in which the L-VGCC isoform Cav1.2 was deleted in NG2-positive OPCs (Cav1.2KO). Using the cuprizone (CPZ) model of demyelination and mice of either sex, we establish that Cav1.2 deletion in OPCs leads to less efficient remyelination of the adult brain. Specifically, Cav1.2KO OPCs mature slower and produce less myelin than control oligodendrocytes during the recovery period after CPZ intoxication. This reduced remyelination was accompanied by an important decline in the number of myelinating oligodendrocytes and in the rate of OPC proliferation. Furthermore, during the remyelination phase of the CPZ model, the corpus callosum of Cav1.2KO animals presented a significant decrease in the percentage of myelinated axons and a substantial increase in the mean g-ratio of myelinated axons compared with controls. In addition, in a mouse line in which the Cav1.2KO OPCs were identified by a Cre reporter, we establish that Cav1.2KO OPCs display a reduced maturational rate through the entire remyelination process. These results suggest that Ca2+ influx mediated by L-VGCCs in oligodendroglial cells is necessary for normal remyelination and is an essential Ca2+ channel for OPC maturation during the remyelination of the adult brain.SIGNIFICANCE STATEMENT Ion channels implicated in oligodendrocyte differentiation and maturation may induce positive signals for myelin recovery. Voltage-gated Ca2+ channels (VGCCs) are important for normal myelination by acting at several critical steps during oligodendrocyte progenitor cell (OPC) development. To determine whether voltage Ca2+ entry is involved in oligodendrocyte differentiation and remyelination, we used a conditional knockout mouse for VGCCs in OPCs. Our results indicate that VGCCs can modulate oligodendrocyte maturation in the demyelinated brain and suggest that voltage-gated Ca2+ influx in OPCs is critical for remyelination. These findings could lead to novel approaches for obtaining a better understanding of the factors that control OPC maturation in order to stimulate this pool of progenitors to replace myelin in demyelinating diseases.

Funding information:
  • NCATS NIH HHS - UL1 TR001412()
  • NIA NIH HHS - R01 AG052934()
  • NIGMS NIH HHS - GM62116(United States)
  • NIGMS NIH HHS - R25 GM095459()
  • NINDS NIH HHS - R01 NS078041()

Cerebral Vein Malformations Result from Loss of Twist1 Expression and BMP Signaling from Skull Progenitor Cells and Dura.

  • Tischfield MA
  • Dev. Cell
  • 2017 Sep 11

Literature context: :250) Cell Signaling Cat# 9661; RRID:AB_2341188 Goat anti-EphB4 (1:100) R&D Sys


Abstract:

Dural cerebral veins (CV) are required for cerebrospinal fluid reabsorption and brain homeostasis, but mechanisms that regulate their growth and remodeling are unknown. We report molecular and cellular processes that regulate dural CV development in mammals and describe venous malformations in humans with craniosynostosis and TWIST1 mutations that are recapitulated in mouse models. Surprisingly, Twist1 is dispensable in endothelial cells but required for specification of osteoprogenitor cells that differentiate into preosteoblasts that produce bone morphogenetic proteins (BMPs). Inactivation of Bmp2 and Bmp4 in preosteoblasts and periosteal dura causes skull and CV malformations, similar to humans harboring TWIST1 mutations. Notably, arterial development appears normal, suggesting that morphogens from the skull and dura establish optimal venous networks independent from arterial influences. Collectively, our work establishes a paradigm whereby CV malformations result from primary or secondary loss of paracrine BMP signaling from preosteoblasts and dura, highlighting unique cellular interactions that influence tissue-specific angiogenesis in mammals.

Cellular mechanisms of cyclophosphamide-induced taste loss in mice.

  • Mukherjee N
  • PLoS ONE
  • 2017 Sep 26

Literature context: ll Signaling, Danvers, MA, USA; RRID:AB_2341188) at a concentration of 1:100 ov


Abstract:

Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system's capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake.

Proteasome inhibitor bortezomib is a novel therapeutic agent for focal radiation-induced osteoporosis.

  • Chandra A
  • FASEB J.
  • 2017 Sep 2

Literature context: RID: RRID:AB_2341188; both from Cell Signaling Techn


Abstract:

Bone atrophy and its related fragility fractures are frequent, late side effects of radiotherapy in cancer survivors and have a detrimental impact on their quality of life. In another study, we showed that parathyroid hormone 1-34 and anti-sclerostin antibody attenuates radiation-induced bone damage by accelerating DNA repair in osteoblasts. DNA damage responses are partially regulated by the ubiquitin proteasome pathway. In the current study, we examined whether proteasome inhibitors have similar bone-protective effects against radiation damage. MG132 treatment greatly reduced radiation-induced apoptosis in cultured osteoblastic cells. This survival effect was owing to accelerated DNA repair as revealed by γH2AX foci and comet assays and to the up-regulation of Ku70 and DNA-dependent protein kinase, catalytic subunit, essential DNA repair proteins in the nonhomologous end-joining pathway. Administration of bortezomib (Bzb) reversed the loss of trabecular bone structure and strength in mice at 4 wk after focal radiation. Histomorphometry revealed that Bzb significantly increased the number of osteoblasts and activity in the irradiated area and suppressed the number and activity of osteoclasts, regardless of irradiation. Two weeks of Bzb treatment accelerated DNA repair in bone-lining osteoblasts and thus promoted their survival. Meanwhile, it also inhibited bone marrow adiposity. Taken together, we demonstrate a novel role of proteasome inhibitors in treating radiation-induced osteoporosis.-Chandra, A., Wang, L., Young, T., Zhong, L., Tseng, W.-J., Levine, M. A., Cengel, K., Liu, X. S., Zhang, Y., Pignolo, R. J., Qin, L. Proteasome inhibitor bortezomib is a novel therapeutic agent for focal radiation-induced osteoporosis.

Funding information:
  • NCI NIH HHS - P01 CA087971()

High-Content Screening in hPSC-Neural Progenitors Identifies Drug Candidates that Inhibit Zika Virus Infection in Fetal-like Organoids and Adult Brain.

  • Zhou T
  • Cell Stem Cell
  • 2017 Aug 3

Literature context: at# 9661; RRID:AB_2341188 goat anti-


Abstract:

Zika virus (ZIKV) infects fetal and adult human brain and is associated with serious neurological complications. To date, no therapeutic treatment is available to treat ZIKV-infected patients. We performed a high-content chemical screen using human pluripotent stem cell-derived cortical neural progenitor cells (hNPCs) and found that hippeastrine hydrobromide (HH) and amodiaquine dihydrochloride dihydrate (AQ) can inhibit ZIKV infection in hNPCs. Further validation showed that HH also rescues ZIKV-induced growth and differentiation defects in hNPCs and human fetal-like forebrain organoids. Finally, HH and AQ inhibit ZIKV infection in adult mouse brain in vivo. Strikingly, HH suppresses viral propagation when administered to adult mice with active ZIKV infection, highlighting its therapeutic potential. Our approach highlights the power of stem cell-based screens and validation in human forebrain organoids and mouse models in identifying drug candidates for treating ZIKV infection and related neurological complications in fetal and adult patients.

Funding information:
  • NIAID NIH HHS - R21 AI117213()
  • NIDDK NIH HHS - DP2 DK098093()
  • NIDDK NIH HHS - DP3 DK111907()
  • NIDDK NIH HHS - K08 DK101754()
  • NIMH NIH HHS - R01 MH101454()
  • NIMH NIH HHS - R01 MH106056()

Loss of Tuberous Sclerosis Complex1 in Adult Oligodendrocyte Progenitor Cells Enhances Axon Remyelination and Increases Myelin Thickness after a Focal Demyelination.

  • McLane LE
  • J. Neurosci.
  • 2017 Aug 2

Literature context: l Signaling Technology 9661, RRID:AB_2341188), GFP (1:500, Aves Laboratories


Abstract:

Although the mammalian target of rapamycin (mTOR) is an essential regulator of developmental oligodendrocyte differentiation and myelination, oligodendrocyte-specific deletion of tuberous sclerosis complex (TSC), a major upstream inhibitor of mTOR, surprisingly also leads to hypomyelination during CNS development. However, the function of TSC has not been studied in the context of remyelination. Here, we used the inducible Cre-lox system to study the function of TSC in the remyelination of a focal, lysolecithin-demyelinated lesion in adult male mice. Using two different mouse models in which Tsc1 is deleted by Cre expression in oligodendrocyte progenitor cells (OPCs) or in premyelinating oligodendrocytes, we reveal that deletion of Tsc1 affects oligodendroglia differently depending on the stage of the oligodendrocyte lineage. Tsc1 deletion from NG2+ OPCs accelerated remyelination. Conversely, Tsc1 deletion from proteolipid protein (PLP)-positive oligodendrocytes slowed remyelination. Contrary to developmental myelination, there were no changes in OPC or oligodendrocyte numbers in either model. Our findings reveal a complex role for TSC in oligodendrocytes during remyelination in which the timing of Tsc1 deletion is a critical determinant of its effect on remyelination. Moreover, our findings suggest that TSC has different functions in developmental myelination and remyelination.SIGNIFICANCE STATEMENT Myelin loss in demyelinating disorders such as multiple sclerosis results in disability due to loss of axon conductance and axon damage. Encouragingly, the nervous system is capable of spontaneous remyelination, but this regenerative process often fails. Many chronically demyelinated lesions have oligodendrocyte progenitor cells (OPCs) within their borders. It is thus of great interest to elucidate mechanisms by which we might enhance endogenous remyelination. Here, we provide evidence that deletion of Tsc1 from OPCs, but not differentiating oligodendrocytes, is beneficial to remyelination. This finding contrasts with the loss of oligodendroglia and hypomyelination seen with Tsc1 or Tsc2 deletion in the oligodendrocyte lineage during CNS development and points to important differences in the regulation of developmental myelination and remyelination.

Funding information:
  • NINDS NIH HHS - R01 NS082203()

Dystroglycan Maintains Inner Limiting Membrane Integrity to Coordinate Retinal Development.

  • Clements R
  • J. Neurosci.
  • 2017 Aug 30

Literature context: Cell Signaling Technology 9661S RRID:AB_2341188 Collagen IV Goat 1:250 Southern


Abstract:

Proper neural circuit formation requires the precise regulation of neuronal migration, axon guidance, and dendritic arborization. Mutations affecting the function of the transmembrane glycoprotein dystroglycan cause a form of congenital muscular dystrophy that is frequently associated with neurodevelopmental abnormalities. Despite its importance in brain development, the role of dystroglycan in regulating retinal development remains poorly understood. Using a mouse model of dystroglycanopathy (ISPDL79* ) and conditional dystroglycan mutants of both sexes, we show that dystroglycan is critical for the proper migration, axon guidance, and dendritic stratification of neurons in the inner retina. Using genetic approaches, we show that dystroglycan functions in neuroepithelial cells as an extracellular scaffold to maintain the integrity of the retinal inner limiting membrane. Surprisingly, despite the profound disruptions in inner retinal circuit formation, spontaneous retinal activity is preserved. These results highlight the importance of dystroglycan in coordinating multiple aspects of retinal development.SIGNIFICANCE STATEMENT The extracellular environment plays a critical role in coordinating neuronal migration and neurite outgrowth during neural circuit development. The transmembrane glycoprotein dystroglycan functions as a receptor for multiple extracellular matrix proteins and its dysfunction leads to a form of muscular dystrophy frequently associated with neurodevelopmental defects. Our results demonstrate that dystroglycan is required for maintaining the structural integrity of the inner limiting membrane (ILM) in the developing retina. In the absence of functional dystroglycan, ILM degeneration leads to defective migration, axon guidance, and mosaic spacing of neurons and a loss of multiple neuron types during retinal development. These results demonstrate that disorganization of retinal circuit development is a likely contributor to visual dysfunction in patients with dystroglycanopathy.

Funding information:
  • Intramural NIH HHS - ZO1-HL001285(United States)
  • NINDS NIH HHS - P30 NS061800()
  • NINDS NIH HHS - R01 NS091027()
  • NINDS NIH HHS - U54 NS053672()

Engineered Epidermal Progenitor Cells Can Correct Diet-Induced Obesity and Diabetes.

  • Yue J
  • Cell Stem Cell
  • 2017 Aug 3

Literature context: Signaling 9661; RRID:AB_2341188 Anti-insulin Cell signaling 301


Abstract:

Somatic gene therapy is a promising approach for treating otherwise terminal or debilitating diseases. The human skin is a promising conduit for genetic engineering, as it is the largest and most accessible organ, epidermal autografts and tissue-engineered skin equivalents have been successfully deployed in clinical applications, and skin epidermal stem/progenitor cells for generating such grafts are easy to obtain and expand in vitro. Here, we develop skin grafts from mouse and human epidermal progenitors that were engineered by CRISPR-mediated genome editing to controllably release GLP-1 (glucagon-like peptide 1), a critical incretin that regulates blood glucose homeostasis. GLP-1 induction from engineered mouse cells grafted onto immunocompetent hosts increased insulin secretion and reversed high-fat-diet-induced weight gain and insulin resistance. Taken together, these results highlight the clinical potential of developing long-lasting, safe, and versatile gene therapy approaches based on engineering epidermal progenitor cells.

Selective Silencing of Hippocampal Parvalbumin Interneurons Induces Development of Recurrent Spontaneous Limbic Seizures in Mice.

  • Drexel M
  • J. Neurosci.
  • 2017 Aug 23

Literature context: 661, Cell Signaling Technology; RRID:AB_2341188) together with the monoclonal r


Abstract:

Temporal lobe epilepsy (TLE) is the most frequent form of focal epilepsies and is generally associated with malfunctioning of the hippocampal formation. Recently, a preferential loss of parvalbumin (PV) neurons has been observed in the subiculum of TLE patients and in animal models of TLE. To demonstrate a possible causative role of defunct PV neurons in the generation of TLE, we permanently inhibited GABA release selectively from PV neurons of the ventral subiculum by injecting a viral vector expressing tetanus toxin light chain in male mice. Subsequently, mice were subjected to telemetric EEG recording and video monitoring. Eighty-eight percent of the mice presented clusters of spike-wave discharges (C-SWDs; 40.0 ± 9.07/month), and 64% showed spontaneous recurrent seizures (SRSs; 5.3 ± 0.83/month). Mice injected with a control vector presented with neither C-SWDs nor SRSs. No neurodegeneration was observed due to vector injection or SRS. Interestingly, mice that presented with only C-SWDs but no SRSs, developed SRSs upon injection of a subconvulsive dose of pentylenetetrazole after 6 weeks. The initial frequency of SRSs declined by ∼30% after 5 weeks. In contrast to permanent silencing of PV neurons, transient inhibition of GABA release from PV neurons through the designer receptor hM4Di selectively expressed in PV-containing neurons transiently reduced the seizure threshold of the mice but induced neither acute nor recurrent seizures. Our data demonstrate a critical role for perisomatic inhibition mediated by PV-containing interneurons, suggesting that their sustained silencing could be causally involved in the development of TLE.SIGNIFICANCE STATEMENT Development of temporal lobe epilepsy (TLE) generally takes years after an initial insult during which maladaptation of hippocampal circuitries takes place. In human TLE and in animal models of TLE, parvalbumin neurons are selectively lost in the subiculum, the major output area of the hippocampus. The present experiments demonstrate that specific and sustained inhibition of GABA release from parvalbumin-expressing interneurons (mostly basket cells) in sector CA1/subiculum is sufficient to induce hyperexcitability and spontaneous recurrent seizures in mice. As in patients with nonlesional TLE, these mice developed epilepsy without signs of neurodegeneration. The experiments highlight the importance of the potent inhibitory action mediated by parvalbumin cells in the hippocampus and identify a potential mechanism in the development of TLE.

ASCL1 Reorganizes Chromatin to Direct Neuronal Fate and Suppress Tumorigenicity of Glioblastoma Stem Cells.

  • Park NI
  • Cell Stem Cell
  • 2017 Aug 3

Literature context: Cat#9661; RRID:AB_2341188 Anti-GABA


Abstract:

Glioblastomas exhibit a hierarchical cellular organization, suggesting that they are driven by neoplastic stem cells that retain partial yet abnormal differentiation potential. Here, we show that a large subset of patient-derived glioblastoma stem cells (GSCs) express high levels of Achaete-scute homolog 1 (ASCL1), a proneural transcription factor involved in normal neurogenesis. ASCL1hi GSCs exhibit a latent capacity for terminal neuronal differentiation in response to inhibition of Notch signaling, whereas ASCL1lo GSCs do not. Increasing ASCL1 levels in ASCL1lo GSCs restores neuronal lineage potential, promotes terminal differentiation, and attenuates tumorigenicity. ASCL1 mediates these effects by functioning as a pioneer factor at closed chromatin, opening new sites to activate a neurogenic gene expression program. Directing GSCs toward terminal differentiation may provide therapeutic applications for a subset of GBM patients and strongly supports efforts to restore differentiation potential in GBM and other cancers.

Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade.

  • Saha D
  • Cancer Cell
  • 2017 Aug 14

Literature context: tibody Cell Signaling Cat#9661; RRID:AB_2341188 Phospho-Stat1 (Tyr701) antibody


Abstract:

Glioblastoma is an immunosuppressive, fatal brain cancer that contains glioblastoma stem-like cells (GSCs). Oncolytic herpes simplex virus (oHSV) selectively replicates in cancer cells while inducing anti-tumor immunity. oHSV G47Δ expressing murine IL-12 (G47Δ-mIL12), antibodies to immune checkpoints (CTLA-4, PD-1, PD-L1), or dual combinations modestly extended survival of a mouse glioma model. However, the triple combination of anti-CTLA-4, anti-PD-1, and G47Δ-mIL12 cured most mice in two glioma models. This treatment was associated with macrophage influx and M1-like polarization, along with increased T effector to T regulatory cell ratios. Immune cell depletion studies demonstrated that CD4+ and CD8+ T cells as well as macrophages are required for synergistic curative activity. This combination should be translatable to the clinic and other immunosuppressive cancers.

Funding information:
  • NCI NIH HHS - R01 CA160762()
  • NINDS NIH HHS - R01 NS032677()

Protective Role of Complement C3 Against Cytokine-Mediated β-Cell Apoptosis.

  • Dos Santos RS
  • Endocrinology
  • 2017 Aug 1

Literature context: 9661 Rabbit, polyclonal 1:1000 AB_2341188 P-SAPK/JNK NA P-SAPK/JNK (Thr18


Abstract:

Type 1 diabetes is a chronic autoimmune disease characterized by pancreatic islet inflammation and β-cell destruction by proinflammatory cytokines and other mediators. Based on RNA sequencing and protein-protein interaction analyses of human islets exposed to proinflammatory cytokines, we identified complement C3 as a hub for some of the effects of cytokines. The proinflammatory cytokines interleukin-1β plus interferon-γ increase C3 expression in rodent and human pancreatic β-cells, and C3 is detected by histology in and around the islets of diabetic patients. Surprisingly, C3 silencing exacerbates apoptosis under both basal condition and following exposure to cytokines, and it increases chemokine expression upon cytokine treatment. C3 exerts its prosurvival effects via AKT activation and c-Jun N-terminal kinase inhibition. Exogenously added C3 also protects against cytokine-induced β-cell death and partially rescues the deleterious effects of inhibition of endogenous C3. These data suggest that locally produced C3 is an important prosurvival mechanism in pancreatic β-cells under a proinflammatory assault.

IGF1R Expression in Ovarian Granulosa Cells Is Essential for Steroidogenesis, Follicle Survival, and Fertility in Female Mice.

  • Baumgarten SC
  • Endocrinology
  • 2017 Jul 1

Literature context: ved caspase 3 (Asp175) antibody AB_2341188 Cell Signaling, #9661 Rabbit; po


Abstract:

Folliculogenesis is a lengthy process that requires the proliferation and differentiation of granulosa cells (GCs) for preovulatory follicle formation. The most crucial endocrine factor involved in this process is follicle-stimulating hormone (FSH). Interestingly, previous in vitro studies indicated that FSH does not stimulate GC proliferation in the absence of the insulinlike growth factor 1 receptor (IGF1R). To determine the role of the IGF1R in vivo, female mice with a conditional knockdown of the IGF1R in the GCs were produced and had undetectable levels of IGF1R mRNA and protein in the GCs. These animals were sterile, and their ovaries were smaller than those of control animals and contained no antral follicles even after gonadotropin stimulation. The lack of antral follicles correlated with a 90% decrease in serum estradiol levels. In addition, under a superovulation protocol no oocytes were found in the oviducts of these animals. Accordingly, the GCs of the mutant females expressed significantly lower levels of preovulatory markers including aromatase, luteinizing hormone receptor, and inhibin α. In contrast, no alterations in FSH receptor expression were observed in GCs lacking IGF1R. Immunohistochemistry studies demonstrated that ovaries lacking IGF1R had higher levels of apoptosis in follicles from the primary to the large secondary stages. Finally, molecular studies determined that protein kinase B activation was significantly impaired in mutant females when compared with controls. These in vivo findings demonstrate that IGF1R has a crucial role in GC function and, consequently, in female fertility.

TTC19 Plays a Husbandry Role on UQCRFS1 Turnover in the Biogenesis of Mitochondrial Respiratory Complex III.

  • Bottani E
  • Mol. Cell
  • 2017 Jul 6

Literature context: Cat#9661; RRID:AB_2341188 Mouse mono


Abstract:

Loss-of-function mutations in TTC19 (tetra-tricopeptide repeat domain 19) have been associated with severe neurological phenotypes and mitochondrial respiratory chain complex III deficiency. We previously demonstrated the mitochondrial localization of TTC19 and its link with complex III biogenesis. Here we provide detailed insight into the mechanistic role of TTC19, by investigating a Ttc19?/? mouse model that shows progressive neurological and metabolic decline, decreased complex III activity, and increased production of reactive oxygen species. By using both the Ttc19?/? mouse model and a range of human cell lines, we demonstrate that TTC19 binds to the fully assembled complex III dimer, i.e., after the incorporation of the iron-sulfur Rieske protein (UQCRFS1). The in situ maturation of UQCRFS1 produces N-terminal polypeptides, which remain bound to holocomplex III. We show that, in normal conditions, these UQCRFS1 fragments are rapidly removed, but when TTC19 is absent they accumulate within complex III, causing its structural and functional impairment.

Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia.

  • De Biase LM
  • Neuron
  • 2017 Jul 19

Literature context: at# 9661; RRID:AB_2341188 Rat anti-B


Abstract:

Microglia play critical roles in tissue homeostasis and can also modulate neuronal function and synaptic connectivity. In contrast to astrocytes and oligodendrocytes, which arise from multiple progenitor pools, microglia arise from yolk sac progenitors and are widely considered to be equivalent throughout the CNS. However, little is known about basic properties of deep brain microglia, such as those within the basal ganglia (BG). Here, we show that microglial anatomical features, lysosome content, membrane properties, and transcriptomes differ significantly across BG nuclei. Region-specific phenotypes of BG microglia emerged during the second postnatal week and were re-established following genetic or pharmacological microglial ablation and repopulation in the adult, indicating that local cues play an ongoing role in shaping microglial diversity. These findings demonstrate that microglia in the healthy brain exhibit a spectrum of distinct functional states and provide a critical foundation for defining microglial contributions to BG circuit function.

Life-Long Genetic and Functional Access to Neural Circuits Using Self-Inactivating Rabies Virus.

  • Ciabatti E
  • Cell
  • 2017 Jul 13

Literature context: Cat#9661; RRID:AB_2341188 Donkey pol


Abstract:

Neural networks are emerging as the fundamental computational unit of the brain and it is becoming progressively clearer that network dysfunction is at the core of a number of psychiatric and neurodegenerative disorders. Yet, our ability to target specific networks for functional or genetic manipulations remains limited. Monosynaptically restricted rabies virus facilitates the anatomical investigation of neural circuits. However, the inherent cytotoxicity of the rabies largely prevents its implementation in long-term functional studies and the genetic manipulation of neural networks. To overcome this limitation, we developed a self-inactivating ΔG-rabies virus (SiR) that transcriptionally disappears from the infected neurons while leaving permanent genetic access to the traced network. SiR provides a virtually unlimited temporal window for the study of network dynamics and for the genetic and functional manipulation of neural circuits in vivo without adverse effects on neuronal physiology and circuit function.

Basement Membrane Manipulation in Drosophila Wing Discs Affects Dpp Retention but Not Growth Mechanoregulation.

  • Ma M
  • Dev. Cell
  • 2017 Jul 10

Literature context: t# 9661S; RRID:AB_2341188 Rabbit mon


Abstract:

Basement membranes (BMs) are extracellular matrix polymers basally underlying epithelia, where they regulate cell signaling and tissue mechanics. Constriction by the BM shapes Drosophila wing discs, a well-characterized model of tissue growth. Recently, the hypothesis that mechanical factors govern wing growth has received much attention, but it has not been definitively tested. In this study, we manipulated BM composition to cause dramatic changes in tissue tension. We found that increased tissue compression when perlecan was knocked down did not affect adult wing size. BM elimination, decreasing compression, reduced wing size but did not visibly affect Hippo signaling, widely postulated to mediate growth mechanoregulation. BM elimination, in contrast, attenuated signaling by bone morphogenetic protein/transforming growth factor β ligand Dpp, which was not efficiently retained within the tissue and escaped to the body cavity. Our results challenge mechanoregulation of wing growth, while uncovering a function of BMs in preserving a growth-promoting tissue environment.

Funding information:
  • NIDDK NIH HHS - R01DK076233-01(United States)

BET Bromodomain Proteins Function as Master Transcription Elongation Factors Independent of CDK9 Recruitment.

  • Winter GE
  • Mol. Cell
  • 2017 Jul 6

Literature context: at#9661S; RRID:AB_2341188 Rabbit pol


Abstract:

Processive elongation of RNA Polymerase II from a proximal promoter paused state is a rate-limiting event in human gene control. A small number of regulatory factors influence transcription elongation on a global scale. Prior research using small-molecule BET bromodomain inhibitors, such as JQ1, linked BRD4 to context-specific elongation at a limited number of genes associated with massive enhancer regions. Here, the mechanistic characterization of an optimized chemical degrader of BET bromodomain proteins, dBET6, led to the unexpected identification of BET proteins as master regulators of global transcription elongation. In contrast to the selective effect of bromodomain inhibition on transcription, BET degradation prompts a collapse of global elongation that phenocopies CDK9 inhibition. Notably, BRD4 loss does not directly affect CDK9 localization. These studies, performed in translational models of T cell leukemia, establish a mechanism-based rationale for the development of BET bromodomain degradation as cancer therapy.

MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer.

  • Shukla SK
  • Cancer Cell
  • 2017 Jul 10

Literature context: at# 9661; RRID:AB_2341188 Ki-67, Rab


Abstract:

Poor response to cancer therapy due to resistance remains a clinical challenge. The present study establishes a widely prevalent mechanism of resistance to gemcitabine in pancreatic cancer, whereby increased glycolytic flux leads to glucose addiction in cancer cells and a corresponding increase in pyrimidine biosynthesis to enhance the intrinsic levels of deoxycytidine triphosphate (dCTP). Increased levels of dCTP diminish the effective levels of gemcitabine through molecular competition. We also demonstrate that MUC1-regulated stabilization of hypoxia inducible factor-1α (HIF-1α) mediates such metabolic reprogramming. Targeting HIF-1α or de novo pyrimidine biosynthesis, in combination with gemcitabine, strongly diminishes tumor burden. Finally, reduced expression of TKT and CTPS, which regulate flux into pyrimidine biosynthesis, correlates with better prognosis in pancreatic cancer patients on fluoropyrimidine analogs.

Funding information:
  • NCI NIH HHS - P01 CA117969()
  • NCI NIH HHS - P30 CA036727()
  • NCI NIH HHS - P30 CA046934()
  • NCI NIH HHS - P50 CA127297()
  • NCI NIH HHS - R01 CA163649()
  • NCI NIH HHS - R01 CA210439()
  • NCI NIH HHS - R01 CA216853()
  • NCI NIH HHS - U54 CA163120()
  • NIGMS NIH HHS - P30 GM106397()
  • None - 13-20-25-SING()

Type XVII collagen coordinates proliferation in the interfollicular epidermis.

  • Watanabe M
  • Elife
  • 2017 Jul 11

Literature context: chnology, RRID:AB_2341188), FITC-con


Abstract:

Type XVII collagen (COL17) is a transmembrane protein located at the epidermal basement membrane zone. COL17 deficiency results in premature hair aging phenotypes and in junctional epidermolysis bullosa. Here, we show that COL17 plays a central role in regulating interfollicular epidermis (IFE) proliferation. Loss of COL17 leads to transient IFE hypertrophy in neonatal mice owing to aberrant Wnt signaling. The replenishment of COL17 in the neonatal epidermis of COL17-null mice reverses the proliferative IFE phenotype and the altered Wnt signaling. Physical aging abolishes membranous COL17 in IFE basal cells because of inactive atypical protein kinase C signaling and also induces epidermal hyperproliferation. The overexpression of human COL17 in aged mouse epidermis suppresses IFE hypertrophy. These findings demonstrate that COL17 governs IFE proliferation of neonatal and aged skin in distinct ways. Our study indicates that COL17 could be an important target of anti-aging strategies in the skin.

Neonatal Inhibition of DNA Methylation Alters Cell Phenotype in Sexually Dimorphic Regions of the Mouse Brain.

  • Mosley M
  • Endocrinology
  • 2017 Jun 1

Literature context: 661 Rabbit; polyclonal 1:20,000 AB_2341188 Peptide/Protein Target Name of


Abstract:

Many of the best-studied neural sex differences relate to differences in cell number and are due to the hormonal control of developmental cell death. However, several prominent neural sex differences persist even if cell death is eliminated. We hypothesized that these may reflect cell phenotype "decisions" that depend on epigenetic mechanisms, such as DNA methylation. To test this, we treated newborn mice with the DNA methyltransferase (DNMT) inhibitor zebularine, or vehicle, and examined two sexually dimorphic markers at weaning. As expected, control males had more cells immunoreactive for calbindin-D28k (CALB) in the medial preoptic area (mPOA) and fewer cells immunoreactive for estrogen receptor α (ERα) in the ventrolateral portion of the ventromedial nucleus of the hypothalamus (VMHvl) and the mPOA than did females. Neonatal DNMT inhibition markedly increased CALB cell number in both sexes and ERα cell density in males; as a result, the sex differences in ERα in the VMHvl and mPOA were completely eliminated in zebularine-treated animals. Zebularine treatment did not affect developmental cell death or the total density of Nissl-stained cells at weaning. Thus, a neonatal disruption of DNA methylation apparently has long-term effects on the proportion of cells expressing CALB and ERα, and some of these effects are sex specific. We also found that sex differences in CALB in the mPOA and ERα in the VMHvl persist in mice with a neuron-specific depletion of either Dnmt1 or Dnmt3b, indicating that neither DNMT alone is likely to be required for the sexually dimorphic expression of these markers.

Funding information:
  • NIDDK NIH HHS - R01 DK107544()
  • NIMH NIH HHS - R01 MH068482()

Reg2 Expression Is Required for Pancreatic Islet Compensation in Response to Aging and High-Fat Diet-Induced Obesity.

  • Li Q
  • Endocrinology
  • 2017 Jun 1

Literature context: nal 1:1000 WB Cleaved Caspase-3 AB_2341188 Asp175 Anti-Cleaved Caspase-3 C


Abstract:

Maintaining pancreatic β-cell mass and function is essential for normal insulin production and glucose homeostasis. Regenerating islet-derived 2 (Reg2, Reg II, human ortholog Reg1B) gene is normally expressed in pancreatic acinar cells and is significantly induced in response to diabetes, pancreatitis, and high-fat diet (HFD) and during pancreatic regeneration. To evaluate the role of endogenous Reg2 production in normal β-cell function, we characterized Reg2 gene-deficient (Reg2-/-) mice under normal conditions and when subjected to several pathological challenges. At a young age, Reg2 gene deficiency caused no obvious change in normal islet morphology or glucose tolerance. There was no change in the severity of streptozotocin-induced diabetes or caerulein-induced acute pancreatitis in the Reg2-/- mice, indicating that the increased Reg2 expression under those conditions was not essential to protect the islet or acinar cells. However, 13- to 14-month-old Reg2-/- mice developed glucose intolerance associated with significantly decreased islet β-cell ratio and serum insulin level. Similarly, after young mice were fed an HFD for 19 weeks, diminished islet mass expansion and serum insulin level were observed in Reg2-/- vs wild-type mice. This was associated with a decline in the rate of individual β-cell proliferation measured by Ki67 labeling. In both conditions, the β-cells were smaller in gene-deficient vs wild-type mice. Our results indicate that normal expression of Reg2 gene is required for appropriate compensations in pancreatic islet proliferation and expansion in response to obesity and aging.

Bcl-2 Regulates Reactive Oxygen Species Signaling and a Redox-Sensitive Mitochondrial Proton Leak in Mouse Pancreatic β-Cells.

  • Aharoni-Simon M
  • Endocrinology
  • 2017 Jun 5

Literature context:


Abstract:

In pancreatic β-cells, controlling the levels of reactive oxygen species (ROS) is critical to counter oxidative stress, dysfunction and death under nutrient excess. Moreover, the fine-tuning of ROS and redox balance is important in the regulation of normal β-cell physiology. We recently demonstrated that Bcl-2 and Bcl-xL, in addition to promoting survival, suppress β-cell glucose metabolism and insulin secretion. Here, we tested the hypothesis that the nonapoptotic roles of endogenous Bcl-2 extend to the regulation of β-cell ROS and redox balance. We exposed mouse islet cells and MIN6 cells to the Bcl-2/Bcl-xL antagonist Compound 6 and the Bcl-2-specific antagonist ABT-199 and evaluated ROS levels, Ca(2+) responses, respiratory control, superoxide dismutase activity and cell death. Both acute glucose stimulation and the inhibition of endogenous Bcl-2 progressively increased peroxides and stimulated superoxide dismutase activity in mouse islets. Importantly, conditional β-cell knockout of Bcl-2 amplified glucose-induced formation of peroxides. Bcl-2 antagonism also induced a mitochondrial proton leak that was prevented by the antioxidant N-acetyl-L-cysteine and, therefore, secondary to redox changes. We further established that the proton leak was independent of uncoupling protein 2 but partly mediated by the mitochondrial permeability transition pore. Acutely, inhibitor-induced peroxides promoted Ca(2+) influx, whereas under prolonged Bcl inhibition, the elevated ROS was required for induction of β-cell apoptosis. In conclusion, our data reveal that endogenous Bcl-2 modulates moment-to-moment ROS signaling and suppresses a redox-regulated mitochondrial proton leak in β-cells. These noncanonical roles of Bcl-2 may be important for β-cell function and survival under conditions of high metabolic demand.

Funding information:
  • NINDS NIH HHS - R01-NS 07312401(United States)

Sertoli Cells Modulate Testicular Vascular Network Development, Structure, and Function to Influence Circulating Testosterone Concentrations in Adult Male Mice.

  • Rebourcet D
  • Endocrinology
  • 2017 Jun 5

Literature context:


Abstract:

The testicular vasculature forms a complex network, providing oxygenation, micronutrients, and waste clearance from the testis. The vasculature is also instrumental to testis function because it is both the route by which gonadotropins are delivered to the testis and by which T is transported away to target organs. Whether Sertoli cells play a role in regulating the testicular vasculature in postnatal life has never been unequivocally demonstrated. In this study we used models of acute Sertoli cell ablation and acute germ cell ablation to address whether Sertoli cells actively influence vascular structure and function in the adult testis. Our findings suggest that Sertoli cells play a key role in supporting the structure of the testicular vasculature. Ablating Sertoli cells (and germ cells) or germ cells alone results in a similar reduction in testis size, yet only the specific loss of Sertoli cells leads to a reduction in total intratesticular vascular volume, the number of vascular branches, and the numbers of small microvessels; loss of germ cells alone has no effect on the testicular vasculature. These perturbations to the testicular vasculature leads to a reduction in fluid exchange between the vasculature and testicular interstitium, which reduces gonadotropin-stimulated circulating T concentrations, indicative of reduced Leydig cell stimulation and/or reduced secretion of T into the vasculature. These findings describe a new paradigm by which the transport of hormones and other factors into and out of the testis may be influenced by Sertoli cells and highlights these cells as potential targets for enhancing this endocrine relationship.

Funding information:
  • NIDDK NIH HHS - 5R01DK79946(United States)
  • NINDS NIH HHS - R01 NS075346(United States)

Diverse stimuli engage different neutrophil extracellular trap pathways.

  • Kenny EF
  • Elife
  • 2017 Jun 2

Literature context: dy (9661, RRID:AB_2341188), anti-β-a


Abstract:

Neutrophils release neutrophil extracellular traps (NETs) which ensnare pathogens and have pathogenic functions in diverse diseases. We examined the NETosis pathways induced by five stimuli; PMA, the calcium ionophore A23187, nigericin, Candida albicans and Group B Streptococcus. We studied NET production in neutrophils from healthy donors with inhibitors of molecules crucial to PMA-induced NETs including protein kinase C, calcium, reactive oxygen species, the enzymes myeloperoxidase (MPO) and neutrophil elastase. Additionally, neutrophils from chronic granulomatous disease patients, carrying mutations in the NADPH oxidase complex or a MPO-deficient patient were examined. We show that PMA, C. albicans and GBS use a related pathway for NET induction, whereas ionophores require an alternative pathway but that NETs produced by all stimuli are proteolytically active, kill bacteria and composed mainly of chromosomal DNA. Thus, we demonstrate that NETosis occurs through several signalling mechanisms, suggesting that extrusion of NETs is important in host defence.

Funding information:
  • NIGMS NIH HHS - R35 GM118112()

Guanabenz Sensitizes Pancreatic β Cells to Lipotoxic Endoplasmic Reticulum Stress and Apoptosis.

  • Abdulkarim B
  • Endocrinology
  • 2017 Jun 1

Literature context: #9661 Rabbit; polyclonal 1/1000 AB_2341188 BiP BiP antibody Cell Signaling


Abstract:

Deficient as well as excessive/prolonged endoplasmic reticulum (ER) stress signaling can lead to pancreatic β cell failure and the development of diabetes. Saturated free fatty acids (FFAs) such as palmitate induce lipotoxic ER stress in pancreatic β cells. One of the main ER stress response pathways is under the control of the protein kinase R-like endoplasmic reticulum kinase (PERK), leading to phosphorylation of the eukaryotic translation initiation factor 2 (eIF2α). The antihypertensive drug guanabenz has been shown to inhibit eIF2α dephosphorylation and protect cells from ER stress. Here we examined whether guanabenz protects pancreatic β cells from lipotoxicity. Guanabenz induced β cell dysfunction in vitro and in vivo in rodents and led to impaired glucose tolerance. The drug significantly potentiated FFA-induced cell death in clonal rat β cells and in rat and human islets. Guanabenz enhanced FFA-induced eIF2α phosphorylation and expression of the downstream proapoptotic gene C/EBP homologous protein (CHOP), which mediated the sensitization to lipotoxicity. Thus, guanabenz does not protect β cells from ER stress; instead, it potentiates lipotoxic ER stress through PERK/eIF2α/CHOP signaling. These data demonstrate the crucial importance of the tight regulation of eIF2α phosphorylation for the normal function and survival of pancreatic β cells.

Kupffer Cell-Derived Tnf Triggers Cholangiocellular Tumorigenesis through JNK due to Chronic Mitochondrial Dysfunction and ROS.

  • Yuan D
  • Cancer Cell
  • 2017 Jun 12

Literature context: at# 9661; RRID:AB_2341188 Rabbit ant


Abstract:

Intrahepatic cholangiocarcinoma (ICC) is a highly malignant, heterogeneous cancer with poor treatment options. We found that mitochondrial dysfunction and oxidative stress trigger a niche favoring cholangiocellular overgrowth and tumorigenesis. Liver damage, reactive oxygen species (ROS) and paracrine tumor necrosis factor (Tnf) from Kupffer cells caused JNK-mediated cholangiocellular proliferation and oncogenic transformation. Anti-oxidant treatment, Kupffer cell depletion, Tnfr1 deletion, or JNK inhibition reduced cholangiocellular pre-neoplastic lesions. Liver-specific JNK1/2 deletion led to tumor reduction and enhanced survival in Akt/Notch- or p53/Kras-induced ICC models. In human ICC, high Tnf expression near ICC lesions, cholangiocellular JNK-phosphorylation, and ROS accumulation in surrounding hepatocytes are present. Thus, Kupffer cell-derived Tnf favors cholangiocellular proliferation/differentiation and carcinogenesis. Targeting the ROS/Tnf/JNK axis may provide opportunities for ICC therapy.

Funding information:
  • NIDDK NIH HHS - R01 DK107220()

Discovery of Stromal Regulatory Networks that Suppress Ras-Sensitized Epithelial Cell Proliferation.

  • Liu H
  • Dev. Cell
  • 2017 May 22

Literature context: at# 9661; RRID:AB_2341188 Rabbit pol


Abstract:

Mesodermal cells signal to neighboring epithelial cells to modulate their proliferation in both normal and disease states. We adapted a Caenorhabditis elegans organogenesis model to enable a genome-wide mesodermal-specific RNAi screen and discovered 39 factors in mesodermal cells that suppress the proliferation of adjacent Ras pathway-sensitized epithelial cells. These candidates encode components of protein complexes and signaling pathways that converge on the control of chromatin dynamics, cytoplasmic polyadenylation, and translation. Stromal fibroblast-specific deletion of mouse orthologs of several candidates resulted in the hyper-proliferation of mammary gland epithelium. Furthermore, a 33-gene signature of human orthologs was selectively enriched in the tumor stroma of breast cancer patients, and depletion of these factors from normal human breast fibroblasts increased proliferation of co-cultured breast cancer cells. This cross-species approach identified unanticipated regulatory networks in mesodermal cells with growth-suppressive function, exposing the conserved and selective nature of mesodermal-epithelial communication in development and cancer.

Funding information:
  • NCI NIH HHS - P01 CA097189()
  • NCI NIH HHS - T32 CA106196()
  • NIH HHS - P40 OD010440()

Genome Editing in hPSCs Reveals GATA6 Haploinsufficiency and a Genetic Interaction with GATA4 in Human Pancreatic Development.

  • Shi ZD
  • Cell Stem Cell
  • 2017 May 4

Literature context: ogy 9661; RRID:AB_2341188 Phospho-Hi


Abstract:

Human disease phenotypes associated with haploinsufficient gene requirements are often not recapitulated well in animal models. Here, we have investigated the association between human GATA6 haploinsufficiency and a wide range of clinical phenotypes that include neonatal and adult-onset diabetes using CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9-mediated genome editing coupled with human pluripotent stem cell (hPSC) directed differentiation. We found that loss of one GATA6 allele specifically affects the differentiation of human pancreatic progenitors from the early PDX1+ stage to the more mature PDX1+NKX6.1+ stage, leading to impaired formation of glucose-responsive β-like cells. In addition to this GATA6 haploinsufficiency, we also identified dosage-sensitive requirements for GATA6 and GATA4 in the formation of both definitive endoderm and pancreatic progenitor cells. Our work expands the application of hPSCs from studying the impact of individual gene loci to investigation of multigenic human traits, and it establishes an approach for identifying genetic modifiers of human disease.

Funding information:
  • NCI NIH HHS - P30 CA008748()
  • NIDDK NIH HHS - DP2 DK098093()
  • NIDDK NIH HHS - DP3 DK111907()
  • NIDDK NIH HHS - R01 DK096239()

Synergistic interactions with PI3K inhibition that induce apoptosis.

  • Zwang Y
  • Elife
  • 2017 May 31

Literature context: dard immunohistochemistry using cleaved-caspase-3 antibody (Cell Signaling #9661) and scor


Abstract:

Activating mutations involving the PI3K pathway occur frequently in human cancers. However, PI3K inhibitors primarily induce cell cycle arrest, leaving a significant reservoir of tumor cells that may acquire or exhibit resistance. We searched for genes that are required for the survival of PI3K mutant cancer cells in the presence of PI3K inhibition by conducting a genome scale shRNA-based apoptosis screen in a PIK3CA mutant human breast cancer cell. We identified 5 genes (PIM2, ZAK, TACC1, ZFR, ZNF565) whose suppression induced cell death upon PI3K inhibition. We showed that small molecule inhibitors of the PIM2 and ZAK kinases synergize with PI3K inhibition. In addition, using a microscale implementable device to deliver either siRNAs or small molecule inhibitors in vivo, we showed that suppressing these 5 genes with PI3K inhibition induced tumor regression. These observations identify targets whose inhibition synergizes with PI3K inhibitors and nominate potential combination therapies involving PI3K inhibition.

Funding information:
  • NCI NIH HHS - R01 CA130988()
  • NCI NIH HHS - R21 CA177391()
  • NCI NIH HHS - U01 CA176058()

Repression of Interstitial Identity in Nephron Progenitor Cells by Pax2 Establishes the Nephron-Interstitium Boundary during Kidney Development.

  • Naiman N
  • Dev. Cell
  • 2017 May 22

Literature context: at#9661S; RRID:AB_2341188 Goat polyc


Abstract:

The kidney contains the functional units, the nephrons, surrounded by the renal interstitium. Previously we discovered that, once Six2-expressing nephron progenitor cells and Foxd1-expressing renal interstitial progenitor cells form at the onset of kidney development, descendant cells from these populations contribute exclusively to the main body of nephrons and renal interstitial tissues, respectively, indicating a lineage boundary between the nephron and renal interstitial compartments. Currently it is unclear how lineages are regulated during kidney organogenesis. We demonstrate that nephron progenitor cells lacking Pax2 fail to differentiate into nephron cells but can switch fates into renal interstitium-like cell types. These data suggest that Pax2 function maintains nephron progenitor cells by repressing a renal interstitial cell program. Thus, the lineage boundary between the nephron and renal interstitial compartments is maintained by the Pax2 activity in nephron progenitor cells during kidney organogenesis.

Funding information:
  • NIDDK NIH HHS - R01 DK094933()
  • NIDDK NIH HHS - R37 DK054364()
  • NIH HHS - R21 OD021437()

Insulin Signaling Regulates the FoxM1/PLK1/CENP-A Pathway to Promote Adaptive Pancreatic β Cell Proliferation.

  • Shirakawa J
  • Cell Metab.
  • 2017 Apr 4

Literature context: at# 9661, RRID:AB_2341188 alpha Tubu


Abstract:

Investigation of cell-cycle kinetics in mammalian pancreatic β cells has mostly focused on transition from the quiescent (G0) to G1 phase. Here, we report that centromere protein A (CENP-A), which is required for chromosome segregation during the M-phase, is necessary for adaptive β cell proliferation. Receptor-mediated insulin signaling promotes DNA-binding activity of FoxM1 to regulate expression of CENP-A and polo-like kinase-1 (PLK1) by modulating cyclin-dependent kinase-1/2. CENP-A deposition at the centromere is augmented by PLK1 to promote mitosis, while knocking down CENP-A limits β cell proliferation and survival. CENP-A deficiency in β cells leads to impaired adaptive proliferation in response to pregnancy, acute and chronic insulin resistance, and aging in mice. Insulin-stimulated CENP-A/PLK1 protein expression is blunted in islets from patients with type 2 diabetes. These data implicate the insulin-FoxM1/PLK1/CENP-A pathway-regulated mitotic cell-cycle progression as an essential component in the β cell adaptation to delay and/or prevent progression to diabetes.

Funding information:
  • NIDDK NIH HHS - P30 DK036836()
  • NIDDK NIH HHS - R01 DK055523()
  • NIDDK NIH HHS - R01 DK067536()
  • NIDDK NIH HHS - R01 DK103215()
  • NIDDK NIH HHS - UC4 DK104167()

Dual leucine zipper kinase-dependent PERK activation contributes to neuronal degeneration following insult.

  • Larhammar M
  • Elife
  • 2017 Apr 25

Literature context: ng #9661, RRID:AB_2341188), DLK (1:1


Abstract:

The PKR-like endoplasmic reticulum kinase (PERK) arm of the Integrated Stress Response (ISR) is implicated in neurodegenerative disease, although the regulators and consequences of PERK activation following neuronal injury are poorly understood. Here we show that PERK signaling is a component of the mouse MAP kinase neuronal stress response controlled by the Dual Leucine Zipper Kinase (DLK) and contributes to DLK-mediated neurodegeneration. We find that DLK-activating insults ranging from nerve injury to neurotrophin deprivation result in both c-Jun N-terminal Kinase (JNK) signaling and the PERK- and ISR-dependent upregulation of the Activating Transcription Factor 4 (ATF4). Disruption of PERK signaling delays neurodegeneration without reducing JNK signaling. Furthermore, DLK is both sufficient for PERK activation and necessary for engaging the ISR subsequent to JNK-mediated retrograde injury signaling. These findings identify DLK as a central regulator of not only JNK but also PERK stress signaling in neurons, with both pathways contributing to neurodegeneration.

Ribonucleotide Reductase Requires Subunit Switching in Hypoxia to Maintain DNA Replication.

  • Foskolou IP
  • Mol. Cell
  • 2017 Apr 20

Literature context: anti-PARPCell SignalingCat# 9542Rabbit polyclonal anti-Cleaved Caspase-3 (Asp175)Cell SignalingCat# 9661Anti-mouse IgG, HRP-linkedCell S


Abstract:

Cells exposed to hypoxia experience replication stress but do not accumulate DNA damage, suggesting sustained DNA replication. Ribonucleotide reductase (RNR) is the only enzyme capable of de novo synthesis of deoxyribonucleotide triphosphates (dNTPs). However, oxygen is an essential cofactor for mammalian RNR (RRM1/RRM2 and RRM1/RRM2B), leading us to question the source of dNTPs in hypoxia. Here, we show that the RRM1/RRM2B enzyme is capable of retaining activity in hypoxia and therefore is favored over RRM1/RRM2 in order to preserve ongoing replication and avoid the accumulation of DNA damage. We found two distinct mechanisms by which RRM2B maintains hypoxic activity and identified responsible residues in RRM2B. The importance of RRM2B in the response to tumor hypoxia is further illustrated by correlation of its expression with a hypoxic signature in patient samples and its roles in tumor growth and radioresistance. Our data provide mechanistic insight into RNR biology, highlighting RRM2B as a hypoxic-specific, anti-cancer therapeutic target.

Regulation of Alcohol Extinction and Cue-Induced Reinstatement by Specific Projections among Medial Prefrontal Cortex, Nucleus Accumbens, and Basolateral Amygdala.

  • Keistler CR
  • J. Neurosci.
  • 2017 Apr 26

Literature context: gy 9661S; RRID:AB_2341188) using a s


Abstract:

The ability to inhibit drinking is a significant challenge for recovering alcoholics, especially in the presence of alcohol-associated cues. Previous studies have demonstrated that the regulation of cue-guided alcohol seeking is mediated by the basolateral amygdala (BLA), nucleus accumbens (NAc), and medial prefrontal cortex (mPFC). However, given the high interconnectivity between these structures, it is unclear how mPFC projections to each subcortical structure, as well as projections between BLA and NAc, mediate alcohol-seeking behaviors. Here, we evaluate how cortico-striatal, cortico-amygdalar, and amygdalo-striatal projections control extinction and relapse in a rat model of alcohol seeking. Specifically, we used a combinatorial viral technique to express diphtheria toxin receptors in specific neuron populations based on their projection targets. We then used this strategy to create directionally selective ablations of three distinct pathways after acquisition of ethanol self-administration but before extinction and reinstatement. We demonstrate that ablation of mPFC neurons projecting to NAc, but not BLA, blocks cue-induced reinstatement of alcohol seeking and neither pathway is necessary for extinction of responding. Further, we show that ablating BLA neurons that project to NAc disrupts extinction of alcohol approach behaviors and attenuates reinstatement. Together, these data provide evidence that the mPFC→NAc pathway is necessary for cue-induced reinstatement of alcohol seeking, expand our understanding of how the BLA→NAc pathway regulates alcohol behavior, and introduce a new methodology for the manipulation of target-specific neural projections.SIGNIFICANCE STATEMENT The vast majority of recovering alcoholics will relapse at least once and understanding how the brain regulates relapse will be key to developing more effective behavior and pharmacological therapies for alcoholism. Given the high interconnectivity of cortical, striatal, and limbic structures that regulate alcohol intake, it has been difficult to disentangle how separate projections between them may control different aspects of these complex behaviors. Here, we demonstrate a new approach for noninvasively ablating each of these pathways and testing their necessity for both extinction and relapse. We show that inputs to the nucleus accumbens from medial prefrontal cortex and amygdala regulate alcohol-seeking behaviors differentially, adding to our understanding of the neural control of alcoholism.

Funding information:
  • NIAAA NIH HHS - F31 AA024673()
  • NIAAA NIH HHS - P50 AA012870()
  • NIDDK NIH HHS - R01 DK098994()
  • NIMH NIH HHS - R01 MH091861()

Assembly of Excitatory Synapses in the Absence of Glutamatergic Neurotransmission.

  • Sando R
  • Neuron
  • 2017 Apr 19

Literature context: Cat#9661, RRID:AB_2341188 VGlut1 Syn


Abstract:

Synaptic excitation mediates a broad spectrum of structural changes in neural circuits across the brain. Here, we examine the morphologies, wiring, and architectures of single synapses of projection neurons in the murine hippocampus that developed in virtually complete absence of vesicular glutamate release. While these neurons had smaller dendritic trees and/or formed fewer contacts in specific hippocampal subfields, their stereotyped connectivity was largely preserved. Furthermore, loss of release did not disrupt the morphogenesis of presynaptic terminals and dendritic spines, suggesting that glutamatergic neurotransmission is unnecessary for synapse assembly and maintenance. These results underscore the instructive role of intrinsic mechanisms in synapse formation.

Funding information:
  • NIGMS NIH HHS - R01 GM117049()
  • NIMH NIH HHS - R01 MH085776()
  • NINDS NIH HHS - R01 NS087026()

Olfactory receptor accessory proteins play crucial roles in receptor function and gene choice.

  • Sharma R
  • Elife
  • 2017 Mar 6

Literature context: t1:1000Cell Signaling5% milk9661AB_23411885LSD1Rabbit1:800abcam4% Donkey s


Abstract:

Each of the olfactory sensory neurons (OSNs) chooses to express a single G protein-coupled olfactory receptor (OR) from a pool of hundreds. Here, we show the receptor transporting protein (RTP) family members play a dual role in both normal OR trafficking and determining OR gene choice probabilities. Rtp1 and Rtp2 double knockout mice (RTP1,2DKO) show OR trafficking defects and decreased OSN activation. Surprisingly, we discovered a small subset of the ORs are expressed in larger numbers of OSNs despite the presence of fewer total OSNs in RTP1,2DKO. Unlike typical ORs, some overrepresented ORs show robust cell surface expression in heterologous cells without the co-expression of RTPs. We present a model in which developing OSNs exhibit unstable OR expression until they choose to express an OR that exits the ER or undergo cell death. Our study sheds light on the new link between OR protein trafficking and OR transcriptional regulation.

The Chromatin-Associated Phf12 Protein Maintains Nucleolar Integrity and Prevents Premature Cellular Senescence.

  • Graveline R
  • Mol. Cell. Biol.
  • 2017 Mar 1

Literature context: number 42 RRID:AB_331440; Cell Sign


Abstract:

Pf1, also known as Phf12 (plant homeodomain [PHD] zinc finger protein 12), is a member of the PHD zinc finger family of proteins. Pf1 associates with a chromatin-interacting protein complex comprised of MRG15, Sin3B, and histone deacetylase 1 (HDAC1) that functions as a transcriptional modulator. The biological function of Pf1 remains largely elusive. We undertook the generation of Pf1 knockout mice to elucidate its physiological role. We demonstrate that Pf1 is required for mid- to late gestation viability. Pf1 inactivation impairs the proliferative potential of mouse embryonic fibroblasts (MEFs) and is associated with a significant decrease in bromodeoxyuridine incorporation; an increase in senescence-associated β-galactosidase (SA-β-Gal) activity, a marker of cellular senescence; and elevated levels of phosphorylated H2AX (γ-H2A.X), a marker associated with DNA double-strand breaks. Analysis of transcripts differentially expressed in wild-type and Pf1-deficient cells revealed the impact of Pf1 in multiple regulatory arms of the ribosome biogenesis pathways. Strikingly, assessment of the morphology of the nucleoli exposed an abnormal nucleolar structure in Pf1-deficient cells. Finally, proteomic analysis of the Pf1-interacting complexes highlighted proteins involved in ribosome biogenesis. Taken together, our data reveal an unsuspected function for the Pf1-associated chromatin complex in the ribosomal biogenesis and senescence pathways.

Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging.

  • Baar MP
  • Cell
  • 2017 Mar 23

Literature context: Cat#9661; RRID:AB_2341188 Mouse mono


Abstract:

The accumulation of irreparable cellular damage restricts healthspan after acute stress or natural aging. Senescent cells are thought to impair tissue function, and their genetic clearance can delay features of aging. Identifying how senescent cells avoid apoptosis allows for the prospective design of anti-senescence compounds to address whether homeostasis can also be restored. Here, we identify FOXO4 as a pivot in senescent cell viability. We designed a FOXO4 peptide that perturbs the FOXO4 interaction with p53. In senescent cells, this selectively causes p53 nuclear exclusion and cell-intrinsic apoptosis. Under conditions where it was well tolerated in vivo, this FOXO4 peptide neutralized doxorubicin-induced chemotoxicity. Moreover, it restored fitness, fur density, and renal function in both fast aging XpdTTD/TTD and naturally aged mice. Thus, therapeutic targeting of senescent cells is feasible under conditions where loss of health has already occurred, and in doing so tissue homeostasis can effectively be restored.

Funding information:
  • NIA NIH HHS - P01 AG017242()
  • NIA NIH HHS - R37 AG009909()

Spatiotemporal Analysis of a Glycolytic Activity Gradient Linked to Mouse Embryo Mesoderm Development.

  • Bulusu V
  • Dev. Cell
  • 2017 Feb 27

Literature context: Cat#9661; RRID:AB_2341188 Phospho-Hi


Abstract:

How metabolism is rewired during embryonic development is still largely unknown, as it remains a major technical challenge to resolve metabolic activities or metabolite levels with spatiotemporal resolution. Here, we investigated metabolic changes during development of organogenesis-stage mouse embryos, focusing on the presomitic mesoderm (PSM). We measured glycolytic labeling kinetics from 13C-glucose tracing experiments and detected elevated glycolysis in the posterior, more undifferentiated PSM. We found evidence that the spatial metabolic differences are functionally relevant during PSM development. To enable real-time quantification of a glycolytic metabolite with spatiotemporal resolution, we generated a pyruvate FRET-sensor reporter mouse line. We revealed dynamic changes in cytosolic pyruvate levels as cells transit toward a more anterior PSM state. Combined, our approach identifies a gradient of glycolytic activity across the PSM, and we provide evidence that these spatiotemporal metabolic changes are intrinsically linked to PSM development and differentiation.

TREM2 Promotes Microglial Survival by Activating Wnt/β-Catenin Pathway.

  • Zheng H
  • J. Neurosci.
  • 2017 Feb 15

Literature context: antibody (RRID:AB_2341188), phospho-


Abstract:

Triggering Receptor Expressed on Myeloid cells 2 (TREM2), which is expressed on myeloid cells including microglia in the CNS, has recently been identified as a risk factor for Alzheimer's disease (AD). TREM2 transmits intracellular signals through its transmembrane binding partner DNAX-activating protein 12 (DAP12). Homozygous mutations inactivating TREM2 or DAP12 lead to Nasu-Hakola disease; however, how AD risk-conferring variants increase AD risk is not clear. To elucidate the signaling pathways underlying reduced TREM2 expression or loss of function in microglia, we respectively knocked down and knocked out the expression of TREM2 in in vitro and in vivo models. We found that TREM2 deficiency reduced the viability and proliferation of primary microglia, reduced microgliosis in Trem2-/- mouse brains, induced cell cycle arrest at the G1/S checkpoint, and decreased the stability of β-catenin, a key component of the canonical Wnt signaling pathway responsible for maintaining many biological processes, including cell survival. TREM2 stabilized β-catenin by inhibiting its degradation via the Akt/GSK3β signaling pathway. More importantly, treatment with Wnt3a, LiCl, or TDZD-8, which activates the β-catenin-mediated Wnt signaling pathway, rescued microglia survival and microgliosis in Trem2-/- microglia and/or in Trem2-/- mouse brain. Together, our studies demonstrate a critical role of TREM2-mediated Wnt/β-catenin pathway in microglial viability and suggest that modulating this pathway therapeutically may help to combat the impaired microglial survival and microgliosis associated with AD.SIGNIFICANCE STATEMENT Mutations in the TREM2 (Triggering Receptor Expressed on Myeloid cells 2) gene are associated with increased risk for Alzheimer's disease (AD) with effective sizes comparable to that of the apolipoprotein E (APOE) ε4 allele, making it imperative to understand the molecular pathway(s) underlying TREM2 function in microglia. Our findings shed new light on the relationship between TREM2/DNAX-activating protein 12 (DAP12) signaling and Wnt/β-catenin signaling and provide clues as to how reduced TREM2 function might impair microglial survival in AD pathogenesis. We demonstrate that TREM2 promotes microglial survival by activating the Wnt/β-catenin signaling pathway and that it is possible to restore Wnt/β-catenin signaling when TREM2 activity is disrupted or reduced. Therefore, we demonstrate the potential for manipulating the TREM2/β-catenin signaling pathway for the treatment of AD.

Funding information:
  • NIA NIH HHS - P50 AG016574()
  • NIA NIH HHS - R01 AG027924()
  • NIA NIH HHS - R01 AG035355()
  • NIA NIH HHS - R01 AG046205()
  • NINDS NIH HHS - P01 NS074969()

Centrosome Amplification Is Sufficient to Promote Spontaneous Tumorigenesis in Mammals.

  • Levine MS
  • Dev. Cell
  • 2017 Feb 6

Literature context: at# 9661; RRID:AB_2341188 Rabbit pol


Abstract:

Centrosome amplification is a common feature of human tumors, but whether this is a cause or a consequence of cancer remains unclear. Here, we test the consequence of centrosome amplification by creating mice in which centrosome number can be chronically increased in the absence of additional genetic defects. We show that increasing centrosome number elevated tumor initiation in a mouse model of intestinal neoplasia. Most importantly, we demonstrate that supernumerary centrosomes are sufficient to drive aneuploidy and the development of spontaneous tumors in multiple tissues. Tumors arising from centrosome amplification exhibit frequent mitotic errors and possess complex karyotypes, recapitulating a common feature of human cancer. Together, our data support a direct causal relationship among centrosome amplification, genomic instability, and tumor development.

Funding information:
  • NIGMS NIH HHS - R01 GM029513()
  • NIGMS NIH HHS - R01 GM114119()
  • NIGMS NIH HHS - R37 GM029513()

Time-Specific Effects of Spindle Positioning on Embryonic Progenitor Pool Composition and Adult Neural Stem Cell Seeding.

  • Falk S
  • Neuron
  • 2017 Feb 22

Literature context: t#: 9661; RRID:AB_2341188 Dcx Millip


Abstract:

The developmental mechanisms regulating the number of adult neural stem cells (aNSCs) are largely unknown. Here we show that the cleavage plane orientation in murine embryonic radial glia cells (RGCs) regulates the number of aNSCs in the lateral ganglionic eminence (LGE). Randomizing spindle orientation in RGCs by overexpression of Insc or a dominant-negative form of Lgn (dnLgn) reduces the frequency of self-renewing asymmetric divisions while favoring symmetric divisions generating two SNPs. Importantly, these changes during embryonic development result in reduced seeding of aNSCs. Interestingly, no effects on aNSC numbers were observed when Insc was overexpressed in postnatal RGCs or aNSCs. These data suggest a new mechanism for controlling aNSC numbers and show that the role of spindle orientation during brain development is highly time and region dependent.

Divergent Hox Coding and Evasion of Retinoid Signaling Specifies Motor Neurons Innervating Digit Muscles.

  • Mendelsohn AI
  • Neuron
  • 2017 Feb 22

Literature context: t#Asp175, RRID:AB_2341188 guinea pig


Abstract:

The establishment of spinal motor neuron subclass diversity is achieved through developmental programs that are aligned with the organization of muscle targets in the limb. The evolutionary emergence of digits represents a specialized adaptation of limb morphology, yet it remains unclear how the specification of digit-innervating motor neuron subtypes parallels the elaboration of digits. We show that digit-innervating motor neurons can be defined by selective gene markers and distinguished from other LMC neurons by the expression of a variant Hox gene repertoire and by the failure to express a key enzyme involved in retinoic acid synthesis. This divergent developmental program is sufficient to induce the specification of digit-innervating motor neurons, emphasizing the specialized status of digit control in the evolution of skilled motor behaviors. Our findings suggest that the emergence of digits in the limb is matched by distinct mechanisms for specifying motor neurons that innervate digit muscles.

Funding information:
  • NINDS NIH HHS - R01 NS033245()
  • NINDS NIH HHS - R01 NS062822()
  • NINDS NIH HHS - R01 NS080932()

Suppressing N-Acetyl-l-Aspartate Synthesis Prevents Loss of Neurons in a Murine Model of Canavan Leukodystrophy.

  • Sohn J
  • J. Neurosci.
  • 2017 Jan 11

Literature context: dilution, Cell Signaling 9661; RRID:AB_2341188). The sections were then incuba


Abstract:

Canavan disease is a leukodystrophy caused by aspartoacylase (ASPA) deficiency. The lack of functional ASPA, an enzyme enriched in oligodendroglia that cleaves N-acetyl-l-aspartate (NAA) to acetate and l-aspartic acid, elevates brain NAA and causes "spongiform" vacuolation of superficial brain white matter and neighboring gray matter. In children with Canavan disease, neuroimaging shows early-onset dysmyelination and progressive brain atrophy. Neuron loss has been documented at autopsy in some cases. Prior studies have shown that mice homozygous for the Aspa nonsense mutation Nur7 also develop brain vacuolation. We now report that numbers of cerebral cortical and cerebellar neurons are decreased and that cerebral cortex progressively thins in AspaNur7/Nur7 mice. This neuronal pathology is prevented by constitutive disruption of Nat8l, which encodes the neuronal NAA-synthetic enzyme N-acetyltransferase-8-like. SIGNIFICANCE STATEMENT: This is the first demonstration of cortical and cerebellar neuron depletion and progressive cerebral cortical thinning in an animal model of Canavan disease. Genetic suppression of N-acetyl-l-aspartate (NAA) synthesis, previously shown to block brain vacuolation in aspartoacylase-deficient mice, also prevents neuron loss and cerebral cortical atrophy in these mice. These results suggest that lowering the concentration of NAA in the brains of children with Canavan disease would prevent or slow progression of neurological deficits.

Funding information:
  • NINDS NIH HHS - R01 NS094559()
  • NINDS NIH HHS - R21 NS096004()

TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells.

  • Pal D
  • Elife
  • 2017 Jan 16

Literature context:


Abstract:

Many lines of evidence have indicated that both genetic and non-genetic determinants can contribute to intra-tumor heterogeneity and influence cancer outcomes. Among the best described sub-population of cancer cells generated by non-genetic mechanisms are cells characterized by a CD44+/CD24- cell surface marker profile. Here, we report that human CD44+/CD24- cancer cells are genetically highly unstable because of intrinsic defects in their DNA-repair capabilities. In fact, in CD44+/CD24- cells, constitutive activation of the TGF-beta axis was both necessary and sufficient to reduce the expression of genes that are crucial in coordinating DNA damage repair mechanisms. Consequently, we observed that cancer cells that reside in a CD44+/CD24- state are characterized by increased accumulation of DNA copy number alterations, greater genetic diversity and improved adaptability to drug treatment. Together, these data suggest that the transition into a CD44+/CD24- cell state can promote intra-tumor genetic heterogeneity, spur tumor evolution and increase tumor fitness.

Funding information:
  • NCI NIH HHS - P01 CA129243()
  • NCI NIH HHS - P30 CA045508()

α3 Chains of type V collagen regulate breast tumour growth via glypican-1.

  • Huang G
  • Nat Commun
  • 2017 Jan 19

Literature context: 14 (Covance, PRB-155P, 1:100), polyclonal rabbit anti-mouse cleaved caspase 3/Asp175 (Cell Signaling, 9661S, 1:100), p-H3Ser10 (Cell Signal


Abstract:

Pericellular α3(V) collagen can affect the functioning of cells, such as adipocytes and pancreatic β cells. Here we show that α3(V) chains are an abundant product of normal mammary gland basal cells, and that α3(V) ablation in a mouse mammary tumour model inhibits mammary tumour progression by reducing the proliferative potential of tumour cells. These effects are shown to be primarily cell autonomous, from loss of α3(V) chains normally produced by tumour cells, in which they affect growth by enhancing the ability of cell surface proteoglycan glypican-1 to act as a co-receptor for FGF2. Thus, a mechanism is presented for microenvironmental influence on tumour growth. α3(V) chains are produced in both basal-like and luminal human breast tumours, and its expression levels are tightly coupled with those of glypican-1 across breast cancer types. Evidence indicates α3(V) chains as potential targets for inhibiting tumour growth and as markers of oncogenic transformation.

Persistent Morbillivirus Infection Leads to Altered Cortactin Distribution in Histiocytic Sarcoma Cells with Decreased Cellular Migration Capacity.

  • Pfankuche VM
  • PLoS ONE
  • 2016 Dec 2

Literature context: at# 9661, RRID:AB_2341188; Cell Sign


Abstract:

Histiocytic sarcomas represent rare but fatal neoplasms in humans. Based on the absence of a commercially available human histiocytic sarcoma cell line the frequently affected dog displays a suitable translational model. Canine distemper virus, closely related to measles virus, is a highly promising candidate for oncolytic virotherapy. Therapeutic failures in patients are mostly associated with tumour invasion and metastasis often induced by misdirected cytoskeletal protein activities. Thus, the impact of persistent canine distemper virus infection on the cytoskeletal protein cortactin, which is frequently overexpressed in human cancers with poor prognosis, was investigated in vitro in a canine histiocytic sarcoma cell line (DH82). Though phagocytic activity, proliferation and apoptotic rate were unaltered, a significantly reduced migration activity compared to controls (6 hours and 1 day after seeding) accompanied by a decreased number of cortactin mRNA transcripts (1 day) was detected. Furthermore, persistently canine distemper virus infected DH82 cells showed a predominant diffuse intracytoplasmic cortactin distribution at 6 hours and 1 day compared to controls with a prominent membranous expression pattern (p ≤ 0.05). Summarized, persistent canine distemper virus infection induces reduced tumour cell migration associated with an altered intracellular cortactin distribution, indicating cytoskeletal changes as one of the major pathways of virus-associated inhibition of tumour spread.

Funding information:
  • Canadian Institutes of Health Research - MOP-81270(Canada)

Sam68/KHDRBS1-dependent NF-κB activation confers radioprotection to the colon epithelium in γ-irradiated mice.

  • Fu K
  • Elife
  • 2016 Dec 20

Literature context: aspase-3 (RRID:AB_2341188) from Cell


Abstract:

Previously we reported that Src-associated-substrate-during-mitosis-of-68kDa (Sam68/KHDRBS1) is pivotal for DNA damage-stimulated NF-κB transactivation of anti-apoptotic genes (Fu et al., 2016). Here we show that Sam68 is critical for genotoxic stress-induced NF-κB activation in the γ-irradiated colon and animal and that Sam68-dependent NF-κB activation provides radioprotection to colon epithelium in vivo. Sam68 deletion diminishes γ-irradiation-triggered PAR synthesis and NF-κB activation in colon epithelial cells (CECs), thus hampering the expression of anti-apoptotic molecules in situ and facilitating CECs to undergo apoptosis in mice post whole-body γ-irradiation (WBIR). Sam68 knockout mice suffer more severe damage in the colon and succumb more rapidly from acute radiotoxicity than the control mice following WBIR. Our results underscore the critical role of Sam68 in orchestrating genotoxic stress-initiated NF-κB activation signaling in the colon tissue and whole animal and reveal the pathophysiological relevance of Sam68-dependent NF-κB activation in colonic cell survival and recovery from extrinsic DNA damage.

Funding information:
  • NCI NIH HHS - T32 CA009110()
  • NIGMS NIH HHS - R01 GM111682()

IRBIT controls apoptosis by interacting with the Bcl-2 homolog, Bcl2l10, and by promoting ER-mitochondria contact.

  • Bonneau B
  • Elife
  • 2016 Dec 20

Literature context: chnology, RRID:AB_2341188), mouse an


Abstract:

IRBIT is a molecule that interacts with the inositol 1,4,5-trisphosphate (IP3)-binding pocket of the IP3 receptor (IP3R), whereas the antiapoptotic protein, Bcl2l10, binds to another part of the IP3-binding domain. Here we show that Bcl2l10 and IRBIT interact and exert an additive inhibition of IP3R in the physiological state. Moreover, we found that these proteins associate in a complex in mitochondria-associated membranes (MAMs) and that their interplay is involved in apoptosis regulation. MAMs are a hotspot for Ca2+ transfer between endoplasmic reticulum (ER) and mitochondria, and massive Ca2+ release through IP3R in mitochondria induces cell death. We found that upon apoptotic stress, IRBIT is dephosphorylated, becoming an inhibitor of Bcl2l10. Moreover, IRBIT promotes ER mitochondria contact. Our results suggest that by inhibiting Bcl2l10 activity and promoting contact between ER and mitochondria, IRBIT facilitates massive Ca2+ transfer to mitochondria and promotes apoptosis. This work then describes IRBIT as a new regulator of cell death.

Funding information:
  • Howard Hughes Medical Institute - R01 NS036715(United States)
  • NCATS NIH HHS - UL1 TR001105(United States)

Conditional Deletion of the L-Type Calcium Channel Cav1.2 in Oligodendrocyte Progenitor Cells Affects Postnatal Myelination in Mice.

  • Cheli VT
  • J. Neurosci.
  • 2016 Oct 19

Literature context: chnology, RRID:AB_2341188), CC1 (1:3


Abstract:

To determine whether L-type voltage-operated Ca2+ channels (L-VOCCs) are required for oligodendrocyte progenitor cell (OPC) development, we generated an inducible conditional knock-out mouse in which the L-VOCC isoform Cav1.2 was postnatally deleted in NG2-positive OPCs. A significant hypomyelination was found in the brains of the Cav1.2 conditional knock-out (Cav1.2KO) mice specifically when the Cav1.2 deletion was induced in OPCs during the first 2 postnatal weeks. A decrease in myelin proteins expression was visible in several brain structures, including the corpus callosum, cortex, and striatum, and the corpus callosum of Cav1.2KO animals showed an important decrease in the percentage of myelinated axons and a substantial increase in the mean g-ratio of myelinated axons. The reduced myelination was accompanied by an important decline in the number of myelinating oligodendrocytes and in the rate of OPC proliferation. Furthermore, using a triple transgenic mouse in which all of the Cav1.2KO OPCs were tracked by a Cre reporter, we found that Cav1.2KO OPCs produce less mature oligodendrocytes than control cells. Finally, live-cell imaging in early postnatal brain slices revealed that the migration and proliferation of subventricular zone OPCs is decreased in the Cav1.2KO mice. These results indicate that the L-VOCC isoform Cav1.2 modulates oligodendrocyte development and suggest that Ca2+ influx mediated by L-VOCCs in OPCs is necessary for normal myelination. SIGNIFICANCE STATEMENT: Overall, it is clear that cells in the oligodendrocyte lineage exhibit remarkable plasticity with regard to the expression of Ca2+ channels and that perturbation of Ca2+ homeostasis likely plays an important role in the pathogenesis underlying demyelinating diseases. To determine whether voltage-gated Ca2+ entry is involved in oligodendrocyte maturation and myelination, we used a conditional knock-out mouse for voltage-operated Ca2+ channels in oligodendrocyte progenitor cells. Our results indicate that voltage-operated Ca2+ channels can modulate oligodendrocyte development in the postnatal brain and suggest that voltage-gated Ca2+ influx in oligodendroglial cells is critical for normal myelination. These findings could lead to novel approaches to intervene in neurodegenerative diseases in which myelin is lost or damaged.

Biallelic Variants in UBA5 Link Dysfunctional UFM1 Ubiquitin-like Modifier Pathway to Severe Infantile-Onset Encephalopathy.

  • Muona M
  • Am. J. Hum. Genet.
  • 2016 Sep 1

Literature context:


Abstract:

The ubiquitin fold modifier 1 (UFM1) cascade is a recently identified evolutionarily conserved ubiquitin-like modification system whose function and link to human disease have remained largely uncharacterized. By using exome sequencing in Finnish individuals with severe epileptic syndromes, we identified pathogenic compound heterozygous variants in UBA5, encoding an activating enzyme for UFM1, in two unrelated families. Two additional individuals with biallelic UBA5 variants were identified from the UK-based Deciphering Developmental Disorders study and one from the Northern Finland Intellectual Disability cohort. The affected individuals (n = 9) presented in early infancy with severe irritability, followed by dystonia and stagnation of development. Furthermore, the majority of individuals display postnatal microcephaly and epilepsy and develop spasticity. The affected individuals were compound heterozygous for a missense substitution, c.1111G>A (p.Ala371Thr; allele frequency of 0.28% in Europeans), and a nonsense variant or c.164G>A that encodes an amino acid substitution p.Arg55His, but also affects splicing by facilitating exon 2 skipping, thus also being in effect a loss-of-function allele. Using an in vitro thioester formation assay and cellular analyses, we show that the p.Ala371Thr variant is hypomorphic with attenuated ability to transfer the activated UFM1 to UFC1. Finally, we show that the CNS-specific knockout of Ufm1 in mice causes neonatal death accompanied by microcephaly and apoptosis in specific neurons, further suggesting that the UFM1 system is essential for CNS development and function. Taken together, our data imply that the combination of a hypomorphic p.Ala371Thr variant in trans with a loss-of-function allele in UBA5 underlies a severe infantile-onset encephalopathy.

Funding information:
  • Wellcome Trust - 100140(United Kingdom)

Ghrelin Promotes Functional Angiogenesis in a Mouse Model of Critical Limb Ischemia Through Activation of Proangiogenic MicroRNAs.

  • Katare R
  • Endocrinology
  • 2016 Feb 2

Literature context:


Abstract:

Current therapeutic strategies for the treatment of critical limb ischemia (CLI) have only limited success. Recent in vitro evidence in the literature, using cell lines, proposes that the peptide hormone ghrelin may have angiogenic properties. In this study, we aim to investigate if ghrelin could promote postischemic angiogenesis in a mouse model of CLI and, further, identify the mechanistic pathway(s) that underpin ghrelin's proangiogenic properties. CLI was induced in male CD1 mice by femoral artery ligation. Animals were then randomized to receive either vehicle or acylated ghrelin (150 μg/kg sc) for 14 consecutive days. Subsequently, synchrotron radiation microangiography was used to assess hindlimb perfusion. Subsequent tissue samples were collected for molecular and histological analysis. Ghrelin treatment markedly improved limb perfusion by promoting the generation of new capillaries and arterioles (internal diameter less than 50 μm) within the ischemic hindlimb that were both structurally and functionally normal; evident by robust endothelium-dependent vasodilatory responses to acetylcholine. Molecular analysis revealed that ghrelin's angiogenic properties were linked to activation of prosurvival Akt/vascular endothelial growth factor/Bcl-2 signaling cascade, thus reducing the apoptotic cell death and subsequent fibrosis. Further, ghrelin treatment activated proangiogenic (miR-126 and miR-132) and antifibrotic (miR-30a) microRNAs (miRs) while inhibiting antiangiogenic (miR-92a and miR-206) miRs. Importantly, in vitro knockdown of key proangiogenic miRs (miR-126 and miR-132) inhibited the angiogenic potential of ghrelin. These results therefore suggest that clinical use of ghrelin for the early treatment of CLI may be a promising and potent inducer of reparative vascularization through modulation of key molecular factors.

Funding information:
  • BLRD VA - I01 BX001062(United States)
  • NICHD NIH HHS - R03 HD057380(United States)

Neural crest requires Impdh2 for development of the enteric nervous system, great vessels, and craniofacial skeleton.

  • Lake JI
  • Dev. Biol.
  • 2016 Jan 1

Literature context: ng #9661, RRID:AB_2341188) or for SO


Abstract:

Mutations that impair the proliferation of enteric neural crest-derived cells (ENCDC) cause Hirschsprung disease, a potentially lethal birth defect where the enteric nervous system (ENS) is absent from distal bowel. Inosine 5' monophosphate dehydrogenase (IMPDH) activity is essential for de novo GMP synthesis, and chemical inhibition of IMPDH induces Hirschsprung disease-like pathology in mouse models by reducing ENCDC proliferation. Two IMPDH isoforms are ubiquitously expressed in the embryo, but only IMPDH2 is required for life. To further understand the role of IMPDH2 in ENS and neural crest development, we characterized a conditional Impdh2 mutant mouse. Deletion of Impdh2 in the early neural crest using the Wnt1-Cre transgene produced defects in multiple neural crest derivatives including highly penetrant intestinal aganglionosis, agenesis of the craniofacial skeleton, and cardiac outflow tract and great vessel malformations. Analysis using a Rosa26 reporter mouse suggested that some or all of the remaining ENS in Impdh2 conditional-knockout animals was derived from cells that escaped Wnt1-Cre mediated DNA recombination. These data suggest that IMPDH2 mediated guanine nucleotide synthesis is essential for normal development of the ENS and other neural crest derivatives.

Endogenous IGFBP-3 Mediates Intrinsic Apoptosis Through Modulation of Nur77 Phosphorylation and Nuclear Export.

  • Agostini-Dreyer A
  • Endocrinology
  • 2015 Nov 17

Literature context:


Abstract:

In nontransformed bovine mammary epithelial cells, the intrinsic apoptosis inducer anisomycin (ANS) induces IGFBP-3 expression and nuclear localization and knockdown of IGFBP-3 attenuates ANS-induced apoptosis. Others have shown in prostate cancer cells that exogenous IGFBP-3 induces apoptosis by facilitating nuclear export of the orphan nuclear receptor Nur77 and its binding partner, retinoid X receptor-α (RXRα). The goal of the present work was to determine whether endogenous IGFBP-3 plays a role in ANS-induced apoptosis by facilitating nuclear transport of Nur77 and/or RXRα in nontransformed cells. Knockdown of Nur77 with siRNA decreased ANS-induced cleavage of caspase-3 and -7 and their downstream target, PARP, indicating a role for Nur77 in ANS-induced apoptosis. In cells transfected with IGFBP-3, IGFBP-3 associated with RXRα but not Nur77 under basal conditions, however, IGFBP-3 co-precipitated with phosphorylated forms of both proteins in ANS-treated cells. Indirect immunofluorescence and cell fractionation techniques showed that ANS induced phosphorylation and transport of Nur77 from the nucleus to the cytoplasm and these effects were attenuated by knockdown of IGFBP-3. These data suggest that endogenous IGFBP-3 plays a role in intrinsic apoptosis by facilitating phosphorylation and nuclear export of Nur77 to the cytoplasm where it exerts its apoptotic effect. Whether this mechanism involves a physical association between endogenous IGFBP-3 and Nur77 or RXRα remains to be determined.

Funding information:
  • NICHD NIH HHS - 5P30HD024064(United States)
  • NINDS NIH HHS - U24 NS050606(United States)

Characterization and changes in neurotrophin receptor p75-Expressing motor neurons in SOD1(G93A) G1H mice [corrected].

  • Smith KS
  • J. Comp. Neurol.
  • 2015 Aug 1

Literature context:


Abstract:

Mice with high numbers of the Cu/Zn superoxide dismutase-1 G93A transgene (SOD1(G93A) G1H) have become the most commonly used animal model to study amyotrophic lateral sclerosis. This study investigated changes in size, numbers, and cell stress/death markers of motor neuron numbers in G1H mice that re-express the common p75 neurotrophin receptor (p75NTR). SOD1(G93A) G1H mice and age-matched C57BL/6J controls at 60, 80, 100, 120 days and end stage/140 days were analyzed for p75NTR, choline acetyltransferase (ChAT), activating transcription factor 3 (ATF3), and cleaved caspase-3. In addition, motor neuron counts and soma sizes were recorded. Motor neurons re-expressing p75NTR in SOD1(G93A) G1H mice were first observed at 80 days, and this continued to 140 days, peaking at 100-120 days at ∼5%. The soma area of motor neurons re-expressing p75NTR was always 600-800 µm(2) , suggesting that these are alpha motor neurons, which was confirmed after examination of somas post injection of a retrogradely transported antibody to p75NTR in 110-day-old SOD1(G93A) G1H mice. In motor neurons not re-expressing p75NTR, the frequency of small soma 200-400 µm2 motor neurons increased, whereas the larger 600-900 µm2 motor neurons decreased with progression, indicating that large motor neurons were dying off and shrinking in the process. There was minimal coexpression of p75NTR with ATF3, a marker for cell stress, but 85% coexpressed the apoptotic marker cleaved caspase-3. These findings indicate that in SOD1(G93A) G1H mice, p75NTR re-expression is detectable from 80 days in a small population of large motor neurons that represent 5% of the total motor neurons. Furthermore, p75NTR re-expression occurs in larger alpha motor neurons that express cleaved caspsase-3 and are destined to die.

Estrogen Receptor-β Up-Regulates IGF1R Expression and Activity to Inhibit Apoptosis and Increase Growth of Medulloblastoma.

  • Cookman CJ
  • Endocrinology
  • 2015 Jul 20

Literature context:


Abstract:

Medulloblastoma (Med) is the most common malignant brain tumor in children. The role of ESR2 [estrogen receptor (ER)-β] in promoting Med growth was comprehensively examined in three in vivo models and human cell lines. In a novel Med ERβ-null knockout model developed by crossing Esr2(-/-) mice with cerebellar granule cell precursor specific Ptch1 conditional knockout mice, the tumor growth rate was significantly decreased in males and females. The absence of Esr2 resulted in increased apoptosis, decreased B-cell lymphoma 2 (BCL2), and IGF-1 receptor (IGF1R) expression, and decreased levels of active MAPKs (ERK1/2) and protein kinase B (AKT). Treatment of Med in Ptch1(+/-) Trp53(-/-) mice with the antiestrogen chemotherapeutic drug Faslodex significantly increased symptom-free survival, which was associated with increased apoptosis and decreased BCL2 and IGF1R expression and signaling. Similar effects were also observed in nude mice bearing D283Med xenografts. In vitro studies in human D283Med cells metabolically stressed by glutamine withdrawal found that 17β-estradiol and the ERβ selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile dose dependently protected Med cells from caspase-3-dependent cell death. Those effects were associated with increased phosphorylation of IGF1R, long-term increases in ERK1/2 and AKT signaling, and increased expression of IGF-1, IGF1R, and BCL2. Results of pharmacological experiments revealed that the cytoprotective actions of estradiol were dependent on ERβ and IGF1R receptor tyrosine kinase activity and independent of ERα and G protein-coupled estrogen receptor 1 (G protein coupled receptor 30). The presented results demonstrate that estrogen promotes Med growth through ERβ-mediated increases in IGF1R expression and activity, which induce cytoprotective mechanisms that decrease apoptosis.

Funding information:
  • NIDCD NIH HHS - DC 00716(United States)

A mouse model suggests two mechanisms for thyroid alterations in infantile cystinosis: decreased thyroglobulin synthesis due to endoplasmic reticulum stress/unfolded protein response and impaired lysosomal processing.

  • Gaide Chevronnay HP
  • Endocrinology
  • 2015 Jun 18

Literature context:


Abstract:

Thyroid hormones are released from thyroglobulin (Tg) in lysosomes, which are impaired in infantile/nephropathic cystinosis. Cystinosis is a lysosomal cystine storage disease due to defective cystine exporter, cystinosin. Cystinotic children develop subclinical and then overt hypothyroidism. Why hypothyroidism is the most frequent and earliest endocrine complication of cystinosis is unknown. We here defined early alterations in Ctns(-/-) mice thyroid and identified subcellular and molecular mechanisms. At 9 months, T4 and T3 plasma levels were normal and TSH was moderately increased (∼4-fold). By histology, hyperplasia and hypertrophy of most follicles preceded colloid exhaustion. Increased immunolabeling for thyrocyte proliferation and apoptotic shedding indicated accelerated cell turnover. Electron microscopy revealed endoplasmic reticulum (ER) dilation, apical lamellipodia indicating macropinocytic colloid uptake, and lysosomal cystine crystals. Tg accumulation in dilated ER contrasted with mRNA down-regulation. Increased expression of ER chaperones, glucose-regulated protein of 78 kDa and protein disulfide isomerase, associated with alternative X-box binding protein-1 splicing, revealed unfolded protein response (UPR) activation by ER stress. Decreased Tg mRNA and ER stress suggested reduced Tg synthesis. Coordinated increase of UPR markers, activating transcription factor-4 and C/EBP homologous protein, linked ER stress to apoptosis. Hormonogenic cathepsins were not altered, but lysosome-associated membrane protein-1 immunolabeling disclosed enlarged vesicles containing iodo-Tg and impaired lysosomal fusion. Isopycnic fractionation showed iodo-Tg accumulation in denser lysosomes, suggesting defective lysosomal processing and hormone release. In conclusion, Ctns(-/-) mice showed the following alterations: 1) compensated primary hypothyroidism and accelerated thyrocyte turnover; 2) impaired Tg production linked to ER stress/UPR response; and 3) altered endolysosomal trafficking and iodo-Tg processing. The Ctns(-/-) thyroid is useful to study disease progression and evaluate novel therapies.

Funding information:
  • Wellcome Trust - 087618/Z/08/Z(United Kingdom)

Oxytocin treatment prevents the cardiomyopathy observed in obese diabetic male db/db mice.

  • Plante E
  • Endocrinology
  • 2015 Apr 21

Literature context:


Abstract:

Oxytocin (OT) is involved in the regulation of energy metabolism and in the activation of cardioprotective mechanisms. We evaluated whether chronic treatment with OT could prevent the metabolic and cardiac abnormalities associated with diabetes and obesity using the db/db mice model. Four-week-old male db/db mice and their lean nondiabetic littermates (db/+) serving as controls were treated with OT (125 ng/kg · h) or saline vehicle for a period of 12 weeks. Compared with db/+ mice, the saline-treated db/db mice developed obesity, hyperglycemia, and hyperinsulinemia. These mice also exhibited a deficient cardiac OT/natriuretic system and developed systolic and diastolic dysfunction resulting from cardiomyocyte hypertrophy, fibrosis, and apoptosis. These abnormalities were associated with increased reactive oxygen species (ROS) production, inflammation, and suppressed 5'-adenosine monophosphate kinase signaling pathway. The db/db mice displayed reduced serum levels of adiponectin and adipsin and elevated resistin. OT treatment increased circulating OT levels, significantly reduced serum resistin, body fat accumulation (19%; P<.001), fasting blood glucose levels by (23%; P<.001), and improved glucose tolerance and insulin sensitivity. OT also normalized cardiac OT receptors, atrial natriuretic peptide, and brain natriuretic peptide, expressions and prevented systolic and diastolic dysfunction as well as cardiomyocyte hypertrophy, fibrosis, and apoptosis. Furthermore, OT reduced cardiac oxidative stress and inflammation and normalized the 5'-adenosine monophosphate-activated protein kinase signaling pathway. The complete normalization of cardiac structure and function by OT treatment in db/db mice contrasted with only partial improvement of hyperglycemia and hyperinsulinemia. These results indicate that chronic treatment with OT partially improves glucose and fat metabolism and reverses abnormal cardiac structural remodeling, preventing cardiac dysfunction in db/db mice.

Funding information:
  • Doris Duke Charitable Foundation - T32 AI007387(United States)

CXCR4 promotes renal tubular cell survival in male diabetic rats: implications for ligand inactivation in the human kidney.

  • Siddiqi FS
  • Endocrinology
  • 2015 Mar 21

Literature context:


Abstract:

Binding of the receptor CXCR4 to its ligand stromal cell-derived factor 1 (SDF-1) promotes cell survival and is under the influence of a number of regulatory processes including enzymatic ligand inactivation by endopeptidases such as matrix metalloproteinase 9 (MMP-9). In light of the pivotal role that the SDF-1/CXCR4 axis plays in renal development and in the pathological growth of renal cells, we explored the function of this pathway in diabetic rats and in biopsies from patients with diabetic nephropathy, hypothesizing that the pro-survival effects of CXCR4 in resident cells would attenuate renal injury. Renal CXCR4 expression was observed to be increased in diabetic rats, whereas antagonism of the receptor unmasked albuminuria and accelerated tubular epithelial cell death. In cultured cells, CXCR4 blockade promoted tubular cell apoptosis, up-regulated Bcl-2-associated death promoter, and prevented high glucose/SDF-1-augmented phosphorylation of the pro-survival kinase, Akt. Although CXCR4 expression was also increased in biopsy tissue from patients with diabetic nephropathy, serine 339 phosphorylation of the receptor, indicative of ligand engagement, was unaffected. Coincident with these changes in receptor expression but not activity, MMP-9 was also up-regulated in diabetic nephropathy biopsies. Supporting a ligand-inactivating effect of the endopeptidase, exposure of cultured cells to recombinant MMP-9 abrogated SDF-1 induced Akt phosphorylation. These observations demonstrate a potentially reno-protective role for CXCR4 in diabetes that is impeded in its actions in the human kidney by the coincident up-regulation of ligand-inactivating endopeptidases. Therapeutically intervening in this interplay may limit tubulointerstitial injury, the principal determinant of renal decline in diabetes.

Funding information:
  • NEI NIH HHS - R01 EY022030-03(United States)

IGF-I stimulates CCN5/WISP2 gene expression in pancreatic β-cells, which promotes cell proliferation and survival against streptozotocin.

  • Chowdhury S
  • Endocrinology
  • 2014 May 21

Literature context:


Abstract:

IGF-I is normally produced from hepatocytes and other sources, stimulates protein synthesis, cell survival, and proliferation through receptor-mediated activation of phosphatidylinositol 3-kinase and MAPK, and targets specific molecules within the pancreatic islet cells. The current study was designed to identify novel targets that may mediate its pro-islet actions. Whole-genome cDNA microarray analysis in IGF-I-overexpressing islets identified 82 genes specifically up- or down-regulated. Prominent among them was CCN5/WISP2 whose expression was increased 3- and 2-fold at the mRNA and protein levels. Dual-labeled immunofluorescence revealed that CCN5 expression was low in the β-cells of wild-type islets but was significantly induced in response to IGF-I overexpression. In vitro treatment of mouse islets with IGF-I increased both CCN5 mRNA and protein levels significantly. To define the role of CCN5 in islet cell biology, we stably overexpressed its cDNA in insulinoma MIN6 cells and detected a 2-fold increase in the proliferation of MIN6-CCN5 compared with that in control cells, which correlated with significant elevations in the levels of cyclin D1 and the phosphorylation of Akt and Erk2. Moreover, MIN6-CCN5 cells were found to be resistant to streptozotocin-induced cell death. Using confocal microscopy and subcellular fractionation, we found that overexpressed CCN5 exhibited cytoplasmic accumulation upon stimulation by high glucose. Our results indicate that CCN5, which is minimally expressed in islet β-cells, is strongly and directly induced by IGF-I. CCN5 overexpression stimulates the proliferation of insulinoma cells, activates Akt kinase, and inhibits streptozotocin-induced apoptosis, suggesting that increased CCN5 expression contributes to IGF-I-stimulated islet cell growth and/or survival.

Funding information:
  • NIMH NIH HHS - T32 MH067631(United States)

Effect of bisphosphonates on the rapidly growing male murine skeleton.

  • Zhu ED
  • Endocrinology
  • 2014 Apr 24

Literature context:


Abstract:

Bisphosphonates are effective for preventing and treating skeletal disorders associated with hyperresorption. Their safety and efficacy has been studied in adults where the growth plate is fused and there is no longitudinal bone growth and little appositional growth. Although bisphosphonate use in the pediatric population was pioneered for compassionate use in the treatment of osteogenesis imperfecta, they are being increasingly used for the treatment and prevention of bone loss in children at risk of hyperresorptive bone loss. However, the effect of these agents on the growing skeleton in disorders other than osteogenesis imperfecta has not been systematically compared. Studies were, therefore, undertaken to examine the consequences of bisphosphonate administration on the growth plate and skeletal microarchitecture during a period of rapid growth. C57Bl6/J male mice were treated from 18 to 38 days of age with vehicle, alendronate, pamidronate, zoledronate, or clodronate at doses selected to replicate those used in humans. Treatment with alendronate, pamidronate, and zoledronate, but not clodronate, led to a decrease in the number of chondrocytes per column in the hypertrophic chondrocyte layer. This was not associated with altered hypertrophic chondrocyte apoptosis or vascular invasion at the growth plate. The effects of pamidronate on trabecular microarchitecture were less beneficial than those of alendronate and zoledronate. Pamidronate did not increase cortical thickness or cortical area/total area relative to control mice. These studies suggest that bisphosphonate administration does not adversely affect skeletal growth. Long-term investigations are required to determine whether the differences observed among the agents examined impact biomechanical integrity of the growing skeleton.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/I001735/1(United Kingdom)

17β-estradiol replacement reverses age-related lung disease in estrogen-deficient C57BL/6J mice.

  • Glassberg MK
  • Endocrinology
  • 2014 Feb 22

Literature context:


Abstract:

The role that estrogens play in the aging lung is poorly understood. Remodeling of the aging lung with thickening of the alveolar walls and reduction in the number of peripheral airways is well recognized. The present study was designed to address whether estrogen deficiency would affect age-associated changes in the lungs of female C57BL/6J mice. Lungs isolated from old mice (24 months old, estrogen-deficient) demonstrated decreased lung volume and decreased alveolar surface area. There was no difference in alveolar number in the lungs of old and young mice (6 months old, estrogen-replete). Estrogen replacement restored lung volume, alveolar surface area, and alveolar wall thickness to that of a young mouse. Estrogen receptor-α (ERα) protein expression increased without a change in ERβ protein expression in the lung tissue isolated from old mice. In the lungs of old mice, the number of apoptotic cells was increased as well as the activation of matrix metalloproteinase-2 and ERK. Young mice had the highest serum 17β-estradiol levels that decreased with age. Our data suggest that in the aging female mouse lung, estrogen deficiency and an increase of ERα expression lead to the development of an emphysematous phenotype. Estrogen replacement partially prevents these age-associated changes in the lung architecture by restoration of interalveolar septa. Understanding the role of estrogens in the remodeling of the lung during aging may facilitate interventions and therapies for aging-related lung disease in women.

Funding information:
  • NINDS NIH HHS - NS16333(United States)

TGF-β superfamily member Nodal stimulates human β-cell proliferation while maintaining cellular viability.

  • Boerner BP
  • Endocrinology
  • 2013 Nov 21

Literature context:


Abstract:

In an effort to expand human islets and enhance allogeneic islet transplant for the treatment of type 1 diabetes, identifying signaling pathways that stimulate human β-cell proliferation is paramount. TGF-β superfamily members, in particular activin-A, are likely involved in islet development and may contribute to β-cell proliferation. Nodal, another TGF-β member, is present in both embryonic and adult rodent islets. Nodal, along with its coreceptor, Cripto, are pro-proliferative factors in certain cell types. Although Nodal stimulates apoptosis of rat insulinoma cells (INS-1), Nodal and Cripto signaling have not been studied in the context of human islets. The current study investigated the effects of Nodal and Cripto on human β-cell proliferation, differentiation, and viability. In the human pancreas and isolated human islets, we observed Nodal mRNA and protein expression, with protein expression observed in β and α-cells. Cripto expression was absent from human islets. Furthermore, in cultured human islets, exogenous Nodal stimulated modest β-cell proliferation and inhibited α-cell proliferation with no effect on cellular viability, apoptosis, or differentiation. Nodal stimulated the phosphorylation of mothers against decapentaplegic (SMAD)-2, with no effect on AKT or MAPK signaling, suggesting phosphorylated SMAD signaling was involved in β-cell proliferation. Cripto had no effect on human islet cell proliferation, differentiation, or viability. In conclusion, Nodal stimulates human β-cell proliferation while maintaining cellular viability. Nodal signaling warrants further exploration to better understand and enhance human β-cell proliferative capacity.

Funding information:
  • NIBIB NIH HHS - P41 EB015896(United States)

GSK-3β function in bone regulates skeletal development, whole-body metabolism, and male life span.

  • Gillespie JR
  • Endocrinology
  • 2013 Oct 23

Literature context:


Abstract:

Glycogen synthase kinase 3 β (GSK-3β) is an essential negative regulator or "brake" on many anabolic-signaling pathways including Wnt and insulin. Global deletion of GSK-3β results in perinatal lethality and various skeletal defects. The goal of our research was to determine GSK-3β cell-autonomous effects and postnatal roles in the skeleton. We used the 3.6-kb Col1a1 promoter to inactivate the Gsk3b gene (Col1a1-Gsk3b knockout) in skeletal cells. Mutant mice exhibit decreased body fat and postnatal bone growth, as well as delayed development of several skeletal elements. Surprisingly, the mutant mice display decreased circulating glucose and insulin levels despite normal expression of GSK-3β in metabolic tissues. We showed that these effects are due to an increase in global insulin sensitivity. Most of the male mutant mice died after weaning. Prior to death, blood glucose changed from low to high, suggesting a possible switch from insulin sensitivity to resistance. These male mice die with extremely large bladders that are preceded by damage to the urogenital tract, defects that are also seen type 2 diabetes. Our data suggest that skeletal-specific deletion of GSK-3β affects global metabolism and sensitizes male mice to developing type 2 diabetes.

Funding information:
  • NINDS NIH HHS - R03 NS087359(United States)

Prepubertal mouse testis growth and maturation and androgen production are acutely sensitive to di-n-butyl phthalate.

  • Moody S
  • Endocrinology
  • 2013 Sep 26

Literature context:


Abstract:

Phthalates are plasticizers with widespread industrial, domestic, and medical applications. Epidemiological data indicating increased incidence of testicular dysgenesis in boys exposed to phthalates in utero are reinforced by studies demonstrating that phthalates impair fetal rodent testis development. Because humans are exposed to phthalates continuously from gestation through adulthood, it is imperative to understand what threat phthalates pose at other life stages. To determine the impact during prepuberty, we assessed the consequences of oral administration of 1 to 500 mg di-n-butyl phthalate (DBP)/kg/d in corn oil to wild-type (C57BL/6J) male mice from 4 to 14 days of age. Dose-dependent effects on testis growth correlated with reduced Sertoli cell proliferation. Histological and immunohistochemical analyses identified delayed spermatogenesis and impaired Sertoli cell maturation after exposure to 10 to 500 mg DBP/kg/d. Interference with the hypothalamic-pituitary-gonadal axis was indicated in mice fed 500 mg DBP/kg/d, which had elevated circulating inhibin but no change in serum FSH. Increased immunohistochemical staining for inhibin-α was apparent at doses of 10 to 500 mg DBP/kg/d. Serum testosterone and testicular androgen activity were lower in the 500 mg DBP/kg/d group; however, reduced anogenital distance in all DBP-treated mice suggested impaired androgen action at earlier time points. Long-term effects were evident, with smaller anogenital distance and indications of disrupted spermatogenesis in adult mice exposed prepubertally to doses from 1 mg DBP/kg/d. These data demonstrate the acute sensitivity of the prepubertal mouse testis to DBP at doses 50- to 500-fold lower than those used in rat and identify the upregulation of inhibin as a potential mechanism of DBP action.

Funding information:
  • NIDCD NIH HHS - R03 DC012125(United States)

Cell death atlas of the postnatal mouse ventral forebrain and hypothalamus: effects of age and sex.

  • Ahern TH
  • J. Comp. Neurol.
  • 2013 Aug 1

Literature context:


Abstract:

Naturally occurring cell death is essential to the development of the mammalian nervous system. Although the importance of developmental cell death has been appreciated for decades, there is no comprehensive account of cell death across brain areas in the mouse. Moreover, several regional sex differences in cell death have been described for the ventral forebrain and hypothalamus, but it is not known how widespread the phenomenon is. We used immunohistochemical detection of activated caspase-3 to identify dying cells in the brains of male and female mice from postnatal day (P) 1 to P11. Cell death density, total number of dying cells, and regional volume were determined in 16 regions of the hypothalamus and ventral forebrain (the anterior hypothalamus, arcuate nucleus, anteroventral periventricular nucleus, medial preoptic nucleus, paraventricular nucleus, suprachiasmatic nucleus, and ventromedial nucleus of the hypothalamus; the basolateral, central, and medial amygdala; the lateral and principal nuclei of the bed nuclei of the stria terminalis; the caudate-putamen; the globus pallidus; the lateral septum; and the islands of Calleja). All regions showed a significant effect of age on cell death. The timing of peak cell death varied between P1 to P7, and the average rate of cell death varied tenfold among regions. Several significant sex differences in cell death and/or regional volume were detected. These data address large gaps in the developmental literature and suggest interesting region-specific differences in the prevalence and timing of cell death in the hypothalamus and ventral forebrain.

Hypothalamic inflammation without astrogliosis in response to high sucrose intake is modulated by neonatal nutrition in male rats.

  • Fuente-Martín E
  • Endocrinology
  • 2013 Jul 24

Literature context:


Abstract:

Hypothalamic inflammation and gliosis are proposed to participate in the pathogenesis of high-fat diet-induced obesity. Because other factors and nutrients also induce weight gain and adiposity, we analyzed the inflammatory and glial responses to a sucrose (S)-enriched diet. Neonatal overnutrition (NON) exacerbates weight gain in response to metabolic challenges; thus, we compared the inflammatory response of male Wistar rats with NON (4 pups/litter) and controls (12 pups/litter) to increased S intake. At weaning rats received water or a 33% sucrose solution and normal chow ad libitum for 2 months. Sucrose increased serum IL-1β and -6 and hypothalamic IL-6 mRNA levels in NON and TNFα mRNA levels in control and NON rats, whereas NON alone had no effect. The astrocyte marker glial fibrillary acidic protein was increased by NON but decreased by S. This was associated with hypothalamic nuclei specific changes in glial fibrillary acidic protein-positive cell number and morphology. Sucrose increased the number of microglia and phosphorylation of inhibitor of -κB and c-Jun N-terminal kinase in control but not NON rats, with no effect on microglia activation markers. Proteins highly expressed in astrocytes (glutamate, glucose, and lactate transporters) were increased by NON but not S, with no increase in vimentin expression in astrocytes, further suggesting that S-induced adiposity is not associated with hypothalamic astrogliosis. Hence, activation of hypothalamic inflammatory processes and gliosis depend not only on weight gain but also on the diet inducing this weight gain and the early nutritional status. These diverse inflammatory processes could indicate a differential disposition to obesity-induced pathologies.

Funding information:
  • NINDS NIH HHS - R01 NS090390(United States)

ERα-targeted therapy in ovarian cancer cells by a novel estradiol-platinum(II) hybrid.

  • Brasseur K
  • Endocrinology
  • 2013 Jul 24

Literature context:


Abstract:

As we previously showed, we have synthesized a new family of 17β-estradiol-platinum(II) hybrids. Earlier studies revealed the VP-128 hybrid to show high efficiency compared with cisplatin toward hormone-dependent breast cancer cells. In the present research, we have studied the antitumor activity of VP-128 in vitro and in vivo against ovarian cancer. In nude mice with ovarian xenografts, VP-128 displayed selective activity toward hormone-dependent tumors and showed higher efficiency than cisplatin to inhibit tumor growth. Similarly, in vitro, transient transfection of estrogen receptor (ER)-α in ERα-negative A2780 cells increased their sensitivity to VP-128-induced apoptosis, confirming the selectivity of VP-128 toward hormone-dependent tumor cells. In agreement, Western blot analysis revealed that VP-128 induced higher caspase-9, caspase-3, and poly (ADP-ribose) polymerase cleavage compared with cisplatin. The activation of caspase-independent apoptosis was also observed in ERα-negative A2780 cells, in which VP-128 rapidly induced the translocation of apoptosis-inducing factor to the nucleus. Conversely, subcellular localization of apoptosis-inducing factor was not modified in ERα-positive Ovcar-3 cells. We also discovered that VP-128 induces autophagy in ovarian cancer cells because of the formation of acidic vesicular organelles (AVOs) and increase of Light Chain 3B-II protein responsible for the formation of autophagosomes; pathways related to autophagy (AKT and mammalian target of rapamycin) were also down-regulated, supporting this mechanism. Finally, the inhibition of autophagy using chloroquine increased VP-128 efficiency, indicating a possible combination therapy. Altogether these results highlight the beneficial value of VP-128 for the treatment of hormone-dependent ovarian cancers and provide preliminary proof of concept for the efficient targeting of ERα- by 17β-estradiol-Pt(II)-linked chemotherapeutic hybrids in these tumors.

Funding information:
  • NIDDK NIH HHS - P30 DK079310(United States)

Food-entrained patterns in orexin cells reveal subregion differential activation.

  • Jiménez A
  • Brain Res.
  • 2013 Jun 4

Literature context:


Abstract:

Rats under a restricted feeding schedule develop food anticipatory activity 2-3h prior food access, characterized by increased arousal, foraging and exploratory behavior. This anticipatory behavior is not observed when rodents are allowed ad libitum food access and reappears for several cycles when food-entrained animals are fasted. Previously we reported that food entrainment also produces increased expression of c-Fos protein in the dorsomedial nucleus (DMH), in the perifornical area (PeF) and in the lateral hypothalamic area (LH) anticipating food intake. These hypothalamic structures contain abundant orexin (ORX) producing neurons and promote arousal, reward and metabolic balance, thus we explored the participation of the orexinergic system in food-entrainment by evaluating in food entrained rats (RF) the expression of c-Fos in ORX cells in anticipation, during and after food access, and in rats exhibiting persistent activation in fasting after interruption of the food-entrainment protocol (RF-Fast). Data were compared with ad libitum controls and with a 22-h fasted group. RF rats exhibited a food-entrained rhythm of c-Fos in ORX cells in the DMH, LH and PeF with highest levels at the time of meal delivery and after food ingestion. In RF-Fast rats the food-entrained pattern of ORX cells persisted in the PeF and LH and partially in the DMH, which in addition exhibited an earlier activation. We conclude that ORX cells in PeF and LH exhibit self sustained oscillations driven by food-entrainment, whereas the DMH may mediate arousal mechanisms that elicit anticipatory activity.

Funding information:
  • NIDA NIH HHS - R01-DA027305(United States)
  • NINDS NIH HHS - U24 NS051872(United States)

High-fat diet feeding causes rapid, non-apoptotic cleavage of caspase-3 in astrocytes.

  • Guyenet SJ
  • Brain Res.
  • 2013 May 28

Literature context:


Abstract:

Astrocytes respond to multiple forms of central nervous system (CNS) injury by entering a reactive state characterized by morphological changes and a specific pattern of altered protein expression. Termed astrogliosis, this response has been shown to strongly influence the injury response and functional recovery of CNS tissues. This pattern of CNS inflammation and injury associated with astrogliosis has recently been found to occur in the energy homeostasis centers of the hypothalamus during diet-induced obesity (DIO) in rodent models, but the characterization of the astrocyte response remains incomplete. Here, we report that astrocytes in the mediobasal hypothalamus respond robustly and rapidly to purified high-fat diet (HFD) feeding by cleaving caspase-3, a protease whose cleavage is often associated with apoptosis. Although obesity develops in HFD-fed rats by day 14, caspase-3 cleavage occurs by day 3, prior to the development of obesity, suggesting the possibility that it could play a causal role in the hypothalamic neuropathology and fat gain observed in DIO. Caspase-3 cleavage is not associated with an increase in the rate of apoptosis, as determined by TUNEL staining, suggesting it plays a non-apoptotic role analogous to the response to excitotoxic neuron injury. Our results indicate that astrocytes in the mediobasal hypothalamus respond rapidly and robustly to HFD feeding, activating caspase-3 in the absence of apoptosis, a process that has the potential to influence the course of DIO.

Funding information:
  • NIBIB NIH HHS - R01 EB007057(United States)

Fezf1 and Fezf2 are required for olfactory development and sensory neuron identity.

  • Eckler MJ
  • J. Comp. Neurol.
  • 2011 Jul 1

Literature context:


Abstract:

The murine olfactory system consists of main and accessory systems that perform distinct and overlapping functions. The main olfactory epithelium (MOE) is primarily involved in the detection of volatile odorants, while neurons in the vomeronasal organ (VNO), part of the accessory olfactory system, are important for pheromone detection. During development, the MOE and VNO both originate from the olfactory pit; however, the mechanisms regulating development of these anatomically distinct organs from a common olfactory primordium are unknown. Here we report that two closely related zinc-finger transcription factors, FEZF1 and FEZF2, regulate the identity of MOE sensory neurons and are essential for the survival of VNO neurons respectively. Fezf1 is predominantly expressed in the MOE while Fezf2 expression is restricted to the VNO. In Fezf1-deficient mice, olfactory neurons fail to mature and also express markers of functional VNO neurons. In Fezf2-deficient mice, VNO neurons degenerate prior to birth. These results identify Fezf1 and Fezf2 as important regulators of olfactory system development and sensory neuron identity.

Funding information:
  • Howard Hughes Medical Institute - (United States)

cGMP-dependent cone photoreceptor degeneration in the cpfl1 mouse retina.

  • Trifunović D
  • J. Comp. Neurol.
  • 2010 Sep 1

Literature context:


Abstract:

Inherited retinal degeneration affecting both rod and cone photoreceptors constitutes one of the leading causes of blindness in the developed world. Such degeneration is at present untreatable, and the underlying neurodegenerative mechanisms are unknown, even though certain genetic causes have been established. The rd1 mouse is one of the best characterized animal models for rod photoreceptor degeneration, whereas the cpfl1 mouse is a recently discovered model for cone cell death. Because both animal models are affected by functionally similar mutations in the rod and cone phosphodiesterase 6 genes, respectively, we asked whether the mechanisms of photoreceptor degeneration in these two mouse lines share common pathways. In the present study, we followed the temporal progression of photoreceptor degeneration in the cpfl1 retina, correlated it with specific metabolic markers, and compared it with the wild-type and the rd1 situation. Similar to corresponding rd1 observations, cpfl1 cone photoreceptor cell death was associated with an accumulation of cyclic guanosine monophosphate (cGMP), activity of calpains, and phosphorylation of vasodilator-stimulated protein (VASP). Cone degeneration progressed rapidly, with a peak in cell death around postnatal day 24. Furthermore, cpfl1 cone photoreceptor migration during early postnatal development was delayed significantly compared with the corresponding wild-type retina. The finding that rod and cone photoreceptor degeneration was associated with the same metabolic markers suggests that in both cell types similar degenerative mechanisms are active. This raises the possibility that equivalent neuroprotective strategies may be used to prevent both rod and cone photoreceptor degeneration.

Funding information:
  • NEI NIH HHS - PN2EY018228(United States)

Inherited neuroaxonal dystrophy in dogs causing lethal, fetal-onset motor system dysfunction and cerebellar hypoplasia.

  • Fyfe JC
  • J. Comp. Neurol.
  • 2010 Sep 15

Literature context:


Abstract:

Neuroaxonal dystrophy in brainstem, spinal cord tracts, and spinal nerves accompanied by cerebellar hypoplasia was observed in a colony of laboratory dogs. Fetal akinesia was documented by ultrasonographic examination. At birth, affected puppies exhibited stereotypical positioning of limbs, scoliosis, arthrogryposis, pulmonary hypoplasia, and respiratory failure. Regional hypoplasia in the central nervous system was apparent grossly, most strikingly as underdeveloped cerebellum and spinal cord. Histopathologic abnormalities included swollen axons and spheroids in brainstem and spinal cord tracts; reduced cerebellar foliation, patchy loss of Purkinje cells, multifocal thinning of the external granular cell layer, and loss of neurons in the deep cerebellar nuclei; spheroids and loss of myelinated axons in spinal roots and peripheral nerves; increased myocyte apoptosis in skeletal muscle; and fibrofatty connective tissue proliferation around joints. Breeding studies demonstrated that the canine disorder is a fully penetrant, simple autosomal recessive trait. The disorder demonstrated a type and distribution of lesions homologous to that of human infantile neuroaxonal dystrophy (INAD), most commonly caused by mutations of phospholipase A2 group VI gene (PLA2G6), but alleles of informative markers flanking the canine PLA2G6 locus did not associate with the canine disorder. Thus, fetal-onset neuroaxonal dystrophy in dogs, a species with well-developed genome mapping resources, provides a unique opportunity for additional disease gene discovery and understanding of this pathology.

Funding information:
  • NIGMS NIH HHS - 5R01GM72649(United States)

Chemical stress induces the unfolded protein response in olfactory sensory neurons.

  • Sammeta N
  • J. Comp. Neurol.
  • 2010 May 15

Literature context:


Abstract:

More than any other neuron, olfactory sensory neurons are exposed to environmental insults. Surprisingly, their only documented response to damaging stress is apoptosis and subsequent replacement by new neurons. However, they expressed unfolded protein response genes, a transcriptionally regulated defense mechanism activated by many types of insults. The unfolded protein response transcripts Xbp1, spliced Xbp1, Chop (Ddit3), and BiP (Hspa5) were decreased when external access of stressors was reduced by blocking a nostril (naris occlusion). These transcripts and Nrf2 (Nfe2l2) were increased by systemic application of tunicamycin or the selective olfactotoxic chemical methimazole. Methimazole's effects overcame naris occlusion, and the unfolded protein response was independent of odor-evoked neuronal activity. Chemical stress is therefore a major and chronic activator of the unfolded protein response in olfactory sensory neurons. Stress-dependent repression of the antiapoptotic gene Bcl2 was absent, however, suggesting a mechanism for disconnecting the UPR from apoptosis and tolerating a chronic unfolded protein response. Environmental stressors also affect both the sustentacular cells that support the neurons and the respiratory epithelia, because naris occlusion decreased expression of the xenobiotic chemical transformation enzyme Cyp2a5 in sustentacular cells, and both naris occlusion and methimazole altered the abundance of the antibacterial lectin Reg3g in respiratory epithelia.

Fate of marginal neuroblasts in the vomeronasal epithelium of adult mice.

  • De La Rosa-Prieto C
  • J. Comp. Neurol.
  • 2009 Dec 10

Literature context:


Abstract:

Chemical stimuli are sensed through the olfactory and vomeronasal epithelia, and the sensory cells of both systems undergo neuronal turnover during adulthood. In the vomeronasal epithelium, stem cells adjacent to the basal lamina divide and migrate to replace two classes of sensory neurons: apical neurons that express G(i2alpha)-linked V1R vomeronasal receptors and project to the anterior accessory olfactory bulb, and basal neurons that express G(oalpha)-linked V2R receptors and project to the posterior accessory olfactory bulb. Most of the dividing cells are present in the margins of the epithelium and only migrate locally. Previous studies have suggested that these marginal cells may participate in growth, sensory cell replacement or become apoptotic before maturation; however, the exact fate of these cells have remained unclear. In this work we investigated the fate of these marginal cells by analyzing markers of neurogenesis (bromodeoxyuridine incorporation), apoptosis (caspase-3), and neuronal maturation (olfactory marker protein and Neurotrace Nissl stain). Our data reveal a pool of dividing cells in the epithelial margins that predominantly give rise to mature neurons and only rarely undergo apoptosis. Newly generated cells are several times more numerous than apoptotic cells. These marginal neuroblasts could therefore constitute a net neural addition zone during adulthood.

Funding information:
  • PHS HHS - 18163(United States)

Strong P2X4 purinergic receptor-like immunoreactivity is selectively associated with degenerating neurons in transgenic rodent models of amyotrophic lateral sclerosis.

  • Casanovas A
  • J. Comp. Neurol.
  • 2008 Jan 1

Literature context:


Abstract:

The distribution of the P2X family of ATP receptors was analyzed in a rat model for amyotrophic lateral sclerosis (ALS) expressing mutated human superoxide dismutase (mSOD1(G93A)). We showed that strong P2X(4) immunoreactivity was selectively associated with degenerating motoneurons (MNs) in spinal cord ventral horn. Degenerating P2X(4)-positive MNs did not display apoptotic features such as chromatin condensation, positive TUNEL reaction, or active caspase 3 immunostaining. In contrast, these neurons showed other signs of abnormality, such as loss of the neuronal marker NeuN and recruitment of microglial cells with neuronophagic activity. Similar changes were observed in MNs from the cerebral cortex and brainstem in mSOD1(G93A) in both rat and mice. In addition, P2X(4) immunostaining demonstrated the existence of neuronal degeneration in the locus coeruleus, reticular formation, and Purkinje cells of the cerebellar cortex. It is suggested that abnormal trafficking and proteolytic processing of the P2X(4) receptor protein may underlie these changes.

Funding information:
  • NIGMS NIH HHS - R01 GM110041(United States)

Survival and death of mature avian motoneurons in organotypic slice culture: trophic requirements for survival and different types of degeneration.

  • Brunet N
  • J. Comp. Neurol.
  • 2007 Apr 10

Literature context:


Abstract:

We have developed an organotypic culture technique that uses slices of chick embryo spinal cord, in which trophic requirements for long-term survival of mature motoneurons (MNs) were studied. Slices were obtained from E16 chick embryos and maintained for up to 28 days in vitro (DIV) in a basal medium. Under these conditions, most MNs died. To promote MN survival, 14 different trophic factors were assayed. Among these 14, glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor were the most effective. GDNF was able to promote MN survival for at least 28 DIV. K(+) depolarization or caspase inhibition prevented MN death but also induced degenerative-like changes in rescued MNs. Agents that elevate cAMP levels promoted the survival of a proportion of MNs for at least 7 DIV. Examination of dying MNs revealed that, in addition to cells exhibiting a caspase-3-dependent apoptotic pattern, some MNs died by a caspase-3-independent mechanism and displayed autophagic vacuoles, an extremely convoluted nucleus, and a close association with microglia. This organotypic spinal cord slice culture may provide a convenient model for testing conditions that promote survival of mature-like MNs that are affected in late-onset MN disease such as amyotrophic lateral sclerosis.

Funding information:
  • Wellcome Trust - 098362/Z/12/Z(United Kingdom)

Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanisms of mitochondriopathy and cell death.

  • Martin LJ
  • J. Comp. Neurol.
  • 2007 Jan 1

Literature context:


Abstract:

The mechanisms of human mutant superoxide dismutase-1 (mSOD1) toxicity to motor neurons (MNs) are unresolved. We show that MNs in G93A-mSOD1 transgenic mice undergo slow degeneration lacking similarity to apoptosis structurally and biochemically. It is characterized by somal and mitochondrial swelling and formation of DNA single-strand breaks prior to double-strand breaks occurring in nuclear and mitochondrial DNA. p53 and p73 are activated in degenerating MNs, but without nuclear import. The MN death is independent of activation of caspases-1, -3, and -8 or apoptosis-inducing factor within MNs, with a blockade of apoptosis possibly mediated by Aven up-regulation. MN swelling is associated with compromised Na,K-ATPase activity and aggregation. mSOD1 mouse MNs accumulate mitochondria from the axon terminals and generate higher levels of superoxide, nitric oxide, and peroxynitrite than MNs in control mice. Nitrated and aggregated cytochrome c oxidase subunit-I and alpha-synuclein as well as nitrated SOD2 accumulate in mSOD1 mouse spinal cord. Mitochondria in mSOD1 mouse MNs accumulate NADPH diaphorase and inducible nitric oxide synthase (iNOS)-like immunoreactivity, and iNOS gene deletion extends significantly the life span of G93A-mSOD1 mice. Prior to MN loss, spinal interneurons degenerate. These results identify novel mechanisms for mitochondriopathy and MN degeneration in amyotrophic lateral sclerosis (ALS) mice involving blockade of apoptosis, accumulation of MN mitochondria with enhanced toxic potential from distal terminals, NOS localization in MN mitochondria and peroxynitrite damage, and early degeneration of alpha-synuclein(+) interneurons. The data support roles for oxidative stress, protein nitration and aggregation, and excitotoxicity as participants in the process of MN degeneration caused by mSOD1.

Funding information:
  • NHGRI NIH HHS - R01 HG004069-03(United States)

Examination of granule layer cell count, cell density, and single-pulse BrdU incorporation in rat organotypic hippocampal slice cultures with respect to culture medium, septotemporal position, and time in vitro.

  • Sadgrove MP
  • J. Comp. Neurol.
  • 2006 Jul 20

Literature context:


Abstract:

Adult neurogenesis in the dentate gyrus is assuming an increasingly important role in supporting hippocampal-dependent learning and the modulation of mood and anxiety. Moreover, injury to the developing postnatal dentate gyrus has profound effects on neurogenesis and hippocampal learning throughout life. Organotypic hippocampal slice cultures represent an attractive model for studying neurogenesis both in the early postnatal and adult hippocampus, as they retain much of their anatomical and functional circuitry in vitro. Ongoing neurogenesis has been recently demonstrated in organotypic hippocampal slice cultures. However, cell proliferation, one of the critical components of neurogenesis, has yet to be characterized in this culture system. We examined single-pulse S-phase bromo-deoxyuridine (BrdU) labeling in the dentate granule layer with respect to the septotemporal position of origin of the slice culture, the medium the cultures were grown in, and the time the cultures were maintained in vitro up to 14 days, when they are believed to have matured to a near adult state. Using single 10-microm sections through a culture as our reference volume, we report significant effects of septotemporal position on the number of granule layer cells and the number of cells in S-phase, as estimated by short-survival (2 hours) BrdU studies. We report a declining rate of BrdU incorporation, evidence of significant structural changes within the granule cell layer, and differences in cell death between culture media over the first 14 days in vitro. We report caution with the use of BrdU cell density and changes in cell number to indirectly estimate proliferation.

Funding information:
  • European Research Council - 260392(International)
  • NIMH NIH HHS - MH69853(United States)