X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Biotin-SP-AffiniPure Donkey Anti-Rabbit IgG (H+L) antibody

RRID:AB_2340593

Localization, distribution, and connectivity of neuropeptide Y in the human and porcine retinas-A comparative study.

  • Christiansen AT
  • J. Comp. Neurol.
  • 2018 Aug 15

Literature context:


Abstract:

Neuropeptide Y (NPY) is a peptide neurotransmitter abundantly expressed in the mammalian retina. Since its discovery, NPY has been studied in retinas of several species, but detailed characterization of morphology, cell-type, and connectivity has never been conducted in larger mammals including humans and pigs. As the pig due to size and cellular composition is a well-suited animal for retinal research, we chose to compare the endogenous NPY system of the human retina to that of pigs to support future research in this field. In the present study, using immunohistochemistry, confocal microscopy and 3D reconstructions, we found NPY to be expressed in GABAergic and calretinin-immunoreactive (-ir) amacrine cells of both species as well as parvalbumin-ir amacrine cells of humans. Furthermore, we identified at least two different types of medium- to wide-field NPY-ir amacrine cells. Finally, we detected likely synaptic appositions between the NPY-ir amacrine cells and melanopsin- and nonmelanopsin-ir ganglion cells, GABAergic and dopaminergic amacrine cells, rod bipolar cells, and horizontal cells, suggesting that NPY-ir cells play diverse roles in modulation of both image and non-image forming retinal signaling. These findings extend existing knowledge on NPY and NPY-expressing cells in the human and porcine retina showing a high degree of comparability. The extensive distribution and connectivity of NPY-ir cells described in the present study further highlights the potential importance of NPY signaling in retinal function.

Funding information:
  • NIA NIH HHS - R01 AG012423(United States)

Control of Feeding Behavior by Cerebral Ventricular Volume Transmission of Melanin-Concentrating Hormone.

  • Noble EE
  • Cell Metab.
  • 2018 Jul 3

Literature context:


Abstract:

Classical mechanisms through which brain-derived molecules influence behavior include neuronal synaptic communication and neuroendocrine signaling. Here we provide evidence for an alternative neural communication mechanism that is relevant for food intake control involving cerebroventricular volume transmission of the neuropeptide melanin-concentrating hormone (MCH). Results reveal that the cerebral ventricles receive input from approximately one-third of MCH-producing neurons. Moreover, MCH cerebrospinal fluid (CSF) levels increase prior to nocturnal feeding and following chemogenetic activation of MCH-producing neurons. Utilizing a dual viral vector approach, additional results reveal that selective activation of putative CSF-projecting MCH neurons increases food intake. In contrast, food intake was reduced following immunosequestration of MCH endogenously present in CSF, indicating that neuropeptide transmission through the cerebral ventricles is a physiologically relevant signaling pathway for energy balance control. Collectively these results suggest that neural-CSF volume transmission signaling may be a common neurobiological mechanism for the control of fundamental behaviors.

Funding information:
  • NHLBI NIH HHS - P50HL084936(United States)
  • NIDDK NIH HHS - F31 DK107333()
  • NIDDK NIH HHS - F32 DK111158()
  • NIDDK NIH HHS - R01 DK083452()
  • NIDDK NIH HHS - R01 DK104897()

β3 -adrenoceptor stimulation of perivascular adipocytes leads to increased fat cell-derived nitric oxide and vascular relaxation in small arteries.

  • Bussey CE
  • Br. J. Pharmacol.
  • 2018 Jul 6

Literature context:


Abstract:

BACKGROUND AND PURPOSE: In response to norepinephrine healthy perivascular adipose tissue (PVAT) exerts an anticontractile effect on adjacent small arterial tissue. Organ bath solution transfer experiments have demonstrated the release of PVAT-derived relaxing factors that mediate this function. The present studies were designed to investigate the mechanism responsible for the norepinephrine-induced PVAT anticontractile effect. EXPERIMENTAL APPROACH: In vitro rat small arterial contractile function was assessed using wire myography in the presence and absence of PVAT and the effects of sympathomimetic stimulation on the PVAT environment explored using Western blotting and assays of organ bath buffer. KEY RESULTS: PVAT elicited an anticontractile effect in response to norepinephrine but not phenylephrine stimulation. In arteries surrounded by intact PVAT, the β3 -adrenoceptor agonist, CL-316,243 reduced the vasoconstrictor effect of phenylephrine but not norepinephrine. Kv 7 channel inhibition using XE 991 reversed the norepinephrine-induced anticontractile effect in exogenously applied PVAT studies. Adrenergic stimulation of PVAT with norepinephrine and CL-316,243, but not phenylephrine was associated with increased adipocyte-derived nitric oxide production and the contractile response to norepinephrine was augmented following incubation of exogenous PVAT with L-NMMA. PVAT from eNOS-/- mice had no anticontractile effect. Assays of adipocyte cAMP demonstrated an increase with norepinephrine stimulation implicating Gαs signalling in this process. CONCLUSIONS AND IMPLICATIONS: We have shown that adipocyte-located β3 -adrenoceptor stimulation leads to activation of Gαs signaling pathways with increased cAMP and the release of adipocyte-derived nitric oxide. This process is dependent upon Kv 7 channel function. We conclude that adipocyte-derived nitric oxide plays a central role in anticontractile activity when rodent PVAT is stimulated by norepinephrine.

Funding information:
  • NCRR NIH HHS - R24 RR017718(United States)

Genetic Modulation of HSPA1A Accelerates Kindling Progression and Exerts Pro-convulsant Effects.

  • von Rüden EL
  • Neuroscience
  • 2018 Jun 30

Literature context:


Abstract:

Strong evidence exists that Toll-like receptor (TLR)-mediated effects on microglia functional states can promote ictogenesis and epileptogenesis. So far, research has focused on the role of high-mobility group box protein 1 as an activator of TLRs. However, the development of targeting strategies might need to consider a role of additional receptor ligands. Considering the fact that heat shock protein A1 (hsp70) has been confirmed as a TLR 2 and 4 ligand, we have explored the consequences of its overexpression in a mouse kindling paradigm. The genetic modulation enhanced seizure susceptibility with lowered seizure thresholds prior to kindling. In contrast to wildtype (WT) mice, HSPA1A transgenic (TG) mice exhibited generalized seizures very early during the kindling paradigm. Along with an increased seizure severity, seizure duration proved to be prolonged in TG mice during this phase. Toward the end of the stimulation phase seizure parameters of WT mice reached comparable levels. However, a difference between genotypes was still evident when comparing seizure parameters during the post-kindling threshold determination. Surprisingly, HSPA1A overexpression did not affect microglia activation in the hippocampus. In conclusion, the findings demonstrate that hsp70 can exert pro-convulsant effects promoting ictogenesis in naïve animals. The pronounced impact on the response to subsequent stimulations gives first evidence that genetic HSPA1A upregulation may also contribute to epileptogenesis. Thus, strategies inhibiting hsp70 or its expression might be of interest for prevention of seizures and epilepsy. However, conclusions about a putative pro-epileptogenic effect of hsp70 require further investigations in models with development of spontaneous recurrent seizures.

Funding information:
  • NHLBI NIH HHS - R01 HL045638(United States)

VIP-immunoreactive interneurons within circuits of the mouse basolateral amygdala.

  • Rhomberg T
  • J. Neurosci.
  • 2018 Jun 28

Literature context:


Abstract:

In cortical structures, principal cell activity is tightly regulated by different GABAergic interneurons (INs). In particular, vasoactive intestinal polypeptide-expressing (VIP+) INs innervate preferentially other INs, providing a structural basis for temporal disinhibition of principal cells. However, relatively little is known about VIP+ INs in the amygdaloid basolateral complex (BLA). In this study, we report that VIP+ INs have a variable density in the distinct subdivisions of the mouse BLA. Based on different anatomical, neurochemical and electrophysiological criteria, VIP+ INs could be identified as interneuron-selective INs and basket cells expressing CB1 cannabinoid receptors. Whole-cell recordings of VIP+ interneuron-selective INs revealed 3 different spiking patterns, which did not associate with the expression of calretinin. Genetic targeting combined with optogenetics and in vitro recordings allowed us to identify several types of BLA INs innervated by VIP+ INs, including other interneuron-selective INs, basket and neurogliaform cells. Moreover, light stimulation of VIP+ basket cell axon terminals, characterized by CB1 sensitivity, evoked IPSPs in ∼20% of principal neurons. Finally, we show that VIP+ INs receive a dense innervation from both GABAergic, although only 10% from other VIP+ INs, and distinct glutamatergic inputs, identified by their expression of different vesicular glutamate transporters.In conclusion, our study provides a wide-range analysis of single-cell properties of VIP+ INs in the mouse BLA and of their intrinsic and extrinsic connectivity. Our results reinforce the knowledge that VIP+ INs are structurally and functionally heterogeneous and that this heterogeneity could mediate different roles in amygdala-dependent functions.Significance statement:We provide the first comprehensive analysis of the distribution of VIP+ interneurons across the entire mouse BLA, as well as of their morphological and physiological properties. VIP+ interneurons in the neocortex preferentially target other interneurons to form a disinhibitory network that facilitates principal cell firing. Our study is the first to demonstrate the presence of such a disinhibitory circuitry in the BLA. We observed structural and functional heterogeneity of these INs and characterized their input/output connectivity. We also identified several types of BLA interneurons postsynaptic to VIP+ INs, whose inhibition may provide a temporal window for principal cell firing and facilitate associative plasticity, e.g. in fear learning. Disinhibition, thus, is emerging as a general mechanism, not limited to the neocortex.

Funding information:
  • NIGMS NIH HHS - GM055962(United States)

Synaptotagmin 4 Regulates Pancreatic β Cell Maturation by Modulating the Ca2+ Sensitivity of Insulin Secretion Vesicles.

  • Huang C
  • Dev. Cell
  • 2018 May 7

Literature context:


Abstract:

Islet β cells from newborn mammals exhibit high basal insulin secretion and poor glucose-stimulated insulin secretion (GSIS). Here we show that β cells of newborns secrete more insulin than adults in response to similar intracellular Ca2+ concentrations, suggesting differences in the Ca2+ sensitivity of insulin secretion. Synaptotagmin 4 (Syt4), a non-Ca2+ binding paralog of the β cell Ca2+ sensor Syt7, increased by ∼8-fold during β cell maturation. Syt4 ablation increased basal insulin secretion and compromised GSIS. Precocious Syt4 expression repressed basal insulin secretion but also impaired islet morphogenesis and GSIS. Syt4 was localized on insulin granules and Syt4 levels inversely related to the number of readily releasable vesicles. Thus, transcriptional regulation of Syt4 affects insulin secretion; Syt4 expression is regulated in part by Myt transcription factors, which repress Syt4 transcription. Finally, human SYT4 regulated GSIS in EndoC-βH1 cells, a human β cell line. These findings reveal the role that altered Ca2+ sensing plays in regulating β cell maturation.

Funding information:
  • Cancer Research UK - 12183(United Kingdom)
  • NIDDK NIH HHS - R01 DK050203()
  • NIDDK NIH HHS - R01 DK090570()

Preoptic leptin signaling modulates energy balance independent of body temperature regulation.

  • Yu S
  • Elife
  • 2018 May 15

Literature context:


Abstract:

The adipokine leptin acts on the brain to regulate energy balance but specific functions in many brain areas remain poorly understood. Among these, the preoptic area (POA) is well known to regulate core body temperature by controlling brown fat thermogenesis, and we have previously shown that glutamatergic, long-form leptin receptor (Lepr)-expressing neurons in the POA are stimulated by warm ambient temperature and suppress energy expenditure and food intake. Here we further investigate the role of POA leptin signaling in body weight regulation and its relationship to body temperature regulation in mice. We show that POA Lepr signaling modulates energy expenditure in response to internal energy state, and thus contributes to body weight homeostasis. However, POA leptin signaling is not involved in ambient temperature-dependent metabolic adaptations. Our study reveals a novel cell population through which leptin regulates body weight.

Funding information:
  • ADA Foundation - ADA1-17-PDF-138()
  • American Heart Association - AHA053298N; AHA17GRNT32960003()
  • Intramural NIH HHS - ZIA AR041155-05(United States)
  • National Institute of Diabetes and Digestive and Kidney Diseases - 1DK117281()
  • National Institute of Diabetes and Digestive and Kidney Diseases - 1HL122829()
  • National Institute of Diabetes and Digestive and Kidney Diseases - DK047348()
  • National Institute of Diabetes and Digestive and Kidney Diseases - DK099598()
  • National Institute of Diabetes and Digestive and Kidney Diseases - DK101379()
  • National Institute of Diabetes and Digestive and Kidney Diseases - DK105032()
  • National Institute of Diabetes and Digestive and Kidney Diseases - P20GM103528()
  • National Institute of Diabetes and Digestive and Kidney Diseases - P30DK072476()
  • National Institute of Diabetes and Digestive and Kidney Diseases - R01DK092587()
  • U.S. Department of Agriculture - USDA/CRIS3092-5-001-059()

Nav1.1-Overexpressing Interneuron Transplants Restore Brain Rhythms and Cognition in a Mouse Model of Alzheimer's Disease.

  • Martinez-Losa M
  • Neuron
  • 2018 Apr 4

Literature context:


Abstract:

Inhibitory interneurons regulate the oscillatory rhythms and network synchrony that are required for cognitive functions and disrupted in Alzheimer's disease (AD). Network dysrhythmias in AD and multiple neuropsychiatric disorders are associated with hypofunction of Nav1.1, a voltage-gated sodium channel subunit predominantly expressed in interneurons. We show that Nav1.1-overexpressing, but not wild-type, interneuron transplants derived from the embryonic medial ganglionic eminence (MGE) enhance behavior-dependent gamma oscillatory activity, reduce network hypersynchrony, and improve cognitive functions in human amyloid precursor protein (hAPP)-transgenic mice, which simulate key aspects of AD. Increased Nav1.1 levels accelerated action potential kinetics of transplanted fast-spiking and non-fast-spiking interneurons. Nav1.1-deficient interneuron transplants were sufficient to cause behavioral abnormalities in wild-type mice. We conclude that the efficacy of interneuron transplantation and the function of transplanted cells in an AD-relevant context depend on their Nav1.1 levels. Disease-specific molecular optimization of cell transplants may be required to ensure therapeutic benefits in different conditions.

Funding information:
  • NCRR NIH HHS - C06 RR018928()
  • NIA NIH HHS - F32 AG043301()
  • NIA NIH HHS - R01 AG030207()
  • NIA NIH HHS - R01 AG036884()
  • NIA NIH HHS - R01 AG047313()
  • NIA NIH HHS - R01 AG051390()
  • NIA NIH HHS - R01 AG054214()
  • NIAID NIH HHS - R01 AI059738-05(United States)
  • NINDS NIH HHS - P30 NS065780()
  • NINDS NIH HHS - R01 NS041787()
  • NINDS NIH HHS - U54 NS100717()

A systems level analysis of epileptogenesis-associated proteome alterations.

  • Keck M
  • Neurobiol. Dis.
  • 2018 Apr 18

Literature context:


Abstract:

Despite intense research efforts, the knowledge about the mechanisms of epileptogenesis and epilepsy is still considered incomplete and limited. However, an in-depth understanding of molecular pathophysiological processes is crucial for the rational selection of innovative biomarkers and target candidates. Here, we subjected proteomic data from different phases of a chronic rat epileptogenesis model to a comprehensive systems level analysis. Weighted Gene Co-expression Network analysis identified several modules of interconnected protein groups reflecting distinct molecular aspects of epileptogenesis in the hippocampus and the parahippocampal cortex. Characterization of these modules did not only further validate the data but also revealed regulation of molecular processes not described previously in the context of epilepsy development. The data sets also provide valuable information about temporal patterns, which should be taken into account for development of preventive strategies in particular when it comes to multi-targeting network pharmacology approaches. In addition, principal component analysis suggests candidate biomarkers, which might inform the design of novel molecular imaging approaches aiming to predict epileptogenesis during different phases or confirm epilepsy manifestation. Further studies are necessary to distinguish between molecular alterations, which correlate with epileptogenesis versus those reflecting a mere consequence of the status epilepticus.

Impact of Early Consumption of High-Fat Diet on the Mesolimbic Dopaminergic System.

  • Naneix F
  • eNeuro
  • 2018 Mar 28

Literature context:


Abstract:

Increasing evidence suggest that consumption of high-fat diet (HFD) can impact the maturation of brain circuits, such as during adolescence, which could account for behavioral alterations associated with obesity. In the present study, we used behavioral sensitization to amphetamine to investigate the effect of periadolescent HFD exposure (pHFD) in rats on the functionality of the dopamine (DA) system, a central actor in food reward processing. pHFD does not affect responding to an acute injection, however, a single exposure to amphetamine is sufficient to induce locomotor sensitization in pHFD rats. This is paralleled by rapid neurobiological adaptations within the DA system. In pHFD-exposed animals, a single amphetamine exposure induces an increase in bursting activity of DA cells in the ventral tegmental area (VTA) as well as higher DA release and greater expression of (tyrosine hydroxylase, TH) in the nucleus accumbens (NAc). Post-synaptically, pHFD animals display an increase in NAc D2 receptors and c-Fos expression after amphetamine injection. These findings highlight the vulnerability of DA system to the consumption of HFD during adolescence that may support deficits in reward-related processes observed in obesity.

Injured adult motor and sensory axons regenerate into appropriate organotypic domains of neural progenitor grafts.

  • Dulin JN
  • Nat Commun
  • 2018 Jan 8

Literature context:


Abstract:

Neural progenitor cell (NPC) transplantation has high therapeutic potential in neurological disorders. Functional restoration may depend on the formation of reciprocal connections between host and graft. While it has been reported that axons extending out of neural grafts in the brain form contacts onto phenotypically appropriate host target regions, it is not known whether adult, injured host axons regenerating into NPC grafts also form appropriate connections. We report that spinal cord NPCs grafted into the injured adult rat spinal cord self-assemble organotypic, dorsal horn-like domains. These clusters are extensively innervated by regenerating adult host sensory axons and are avoided by corticospinal axons. Moreover, host axon regeneration into grafts increases significantly after enrichment with appropriate neuronal targets. Together, these findings demonstrate that injured adult axons retain the ability to recognize appropriate targets and avoid inappropriate targets within neural progenitor grafts, suggesting that restoration of complex circuitry after SCI may be achievable.

Funding information:
  • NIDCD NIH HHS - R21DC005846(United States)
  • NINDS NIH HHS - R01 NS042291()
  • NINDS NIH HHS - R56 NS042291()

Injury Induces Endogenous Reprogramming and Dedifferentiation of Neuronal Progenitors to Multipotency.

  • Lin B
  • Cell Stem Cell
  • 2017 Dec 7

Literature context:


Abstract:

Adult neurogenesis in the olfactory epithelium is often depicted as a unidirectional pathway during homeostasis and repair. We challenge the unidirectionality of this model by showing that epithelial injury unlocks the potential for Ascl1+ progenitors and Neurog1+ specified neuronal precursors to dedifferentiate into multipotent stem/progenitor cells that contribute significantly to tissue regeneration in the murine olfactory epithelium (OE). We characterize these dedifferentiating cells using several lineage-tracing strains and single-cell mRNA-seq, and we show that Sox2 is required for initiating dedifferentiation and that inhibition of Ezh2 promotes multipotent progenitor expansion. These results suggest that the apparent hierarchy of neuronal differentiation is not irreversible and that lineage commitment can be overridden following severe tissue injury. We elucidate a previously unappreciated pathway for endogenous tissue repair by a highly regenerative neuroepithelium and introduce a system to study the mechanisms underlying plasticity in the OE that can be adapted for other tissues.

Funding information:
  • NIDCD NIH HHS - F30 DC013962()
  • NIDCD NIH HHS - F31 DC014398()
  • NIDCD NIH HHS - F31 DC014637()
  • NIDCD NIH HHS - R01 DC002167()
  • NIDCD NIH HHS - R21 DC015889()
  • NIGMS NIH HHS - 8 P20 GM103414-10(United States)

Increased acetylcholine and glutamate efflux in the prefrontal cortex following intranasal orexin-A (hypocretin-1).

  • Calva CB
  • J. Neurochem.
  • 2017 Dec 19

Literature context:


Abstract:

Orexin/hypocretin neurons of the lateral hypothalamus and perifornical area are integrators of physiological function. Previous work from our laboratory and others has shown the importance of orexin transmission in cognition. Age-related reductions in markers of orexin function further suggest that this neuropeptide may be a useful target for the treatment of age-related cognitive dysfunction. Intranasal administration of orexin-A (OxA) has shown promise as a therapeutic option for cognitive dysfunction. However, the neurochemical mechanisms of intranasal OxA administration are not fully understood. Here, we use immunohistochemistry and in vivo microdialysis to define the effects of acute intranasal OxA administration on: (i) activation of neuronal populations in the cortex, basal forebrain, and brainstem and (ii) acetylcholine (ACh) and glutamate efflux in the prefrontal cortex (PFC) of Fischer 344/Brown Norway F1 rats. Acute intranasal administration of OxA significantly increased c-Fos expression, a marker for neuronal activation, in the PFC and in subpopulations of basal forebrain cholinergic neurons. Subsequently, we investigated the effects of acute intranasal OxA on neurotransmitter efflux in the PFC and found that intranasal OxA significantly increased both ACh and glutamate efflux in this region. These findings were independent from any changes in c-Fos expression in orexin neurons, suggesting that these effects are not resultant from direct activation of orexin neurons. In total, these data indicate that intranasal OxA may enhance cognition through activation of distinct neuronal populations in the cortex and basal forebrain and through increased neurotransmission of ACh and glutamate in the PFC.

Funding information:
  • NIA NIH HHS - R01 AG050518()
  • NIDDK NIH HHS - R01 DK53813(United States)

The Gain-of-Function Integrin β3 Pro33 Variant Alters the Serotonin System in the Mouse Brain.

  • Dohn MR
  • J. Neurosci.
  • 2017 Nov 15

Literature context:


Abstract:

Engagement of integrins by the extracellular matrix initiates signaling cascades that drive a variety of cellular functions, including neuronal migration and axonal pathfinding in the brain. Multiple lines of evidence link the ITGB3 gene encoding the integrin β3 subunit with the serotonin (5-HT) system, likely via its modulation of the 5-HT transporter (SERT). The ITGB3 coding polymorphism Leu33Pro (rs5918, PlA2) produces hyperactive αvβ3 receptors that influence whole-blood 5-HT levels and may influence the risk for autism spectrum disorder (ASD). Using a phenome-wide scan of psychiatric diagnoses, we found significant, male-specific associations between the Pro33 allele and attention-deficit hyperactivity disorder and ASDs. Here, we used knock-in (KI) mice expressing an Itgb3 variant that phenocopies the human Pro33 variant to elucidate the consequences of constitutively enhanced αvβ3 signaling to the 5-HT system in the brain. KI mice displayed deficits in multiple behaviors, including anxiety, repetitive, and social behaviors. Anatomical studies revealed a significant decrease in 5-HT synapses in the midbrain, accompanied by decreases in SERT activity and reduced localization of SERTs to integrin adhesion complexes in synapses of KI mice. Inhibition of focal adhesion kinase (FAK) rescued SERT function in synapses of KI mice, demonstrating that constitutive active FAK signaling downstream of the Pro32Pro33 integrin αvβ3 suppresses SERT activity. Our studies identify a complex regulation of 5-HT homeostasis and behaviors by integrin αvβ3, revealing an important role for integrins in modulating risk for neuropsychiatric disorders.SIGNIFICANCE STATEMENT The integrin β3 Leu33Pro coding polymorphism has been associated with autism spectrum disorders (ASDs) within a subgroup of patients with elevated blood 5-HT levels, linking integrin β3, 5-HT, and ASD risk. We capitalized on these interactions to demonstrate that the Pro33 coding variation in the murine integrin β3 recapitulates the sex-dependent neurochemical and behavioral attributes of ASD. Using state-of-the-art techniques, we show that presynaptic 5-HT function is altered in these mice, and that the localization of 5-HT transporters to specific compartments within the synapse, disrupted by the integrin β3 Pro33 mutation, is critical for appropriate reuptake of 5-HT. Our studies provide fundamental insight into the genetic network regulating 5-HT neurotransmission in the CNS that is also associated with ASD risk.

Short-Term High-Fat Diet Increases Leptin Activation of CART Neurons and Advances Puberty in Female Mice.

  • Venancio JC
  • Endocrinology
  • 2017 Nov 1

Literature context:


Abstract:

Leptin is a permissive factor for puberty initiation, participating as a metabolic cue in the activation of the kisspeptin (Kiss1)-gonadotropin-releasing hormone neuronal circuitry; however, it has no direct effect on Kiss1 neurons. Leptin acts on hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons, participating in the regulation of energy homeostasis. We investigated the influence of a short-term high-fat diet (HFD) on the effect of leptin on puberty timing. Kiss1-hrGFP female mice received a HFD or regular diet (RD) after weaning at postnatal day (PN)21 and were studied at PN28 and PN32. The HFD increased body weight and plasma leptin concentrations and decreased the age at vaginal opening (HFD, 32 ± 0.53 days; RD, 38 ± 0.67 days). Similar colocalization of neurokinin B and dynorphin in Kiss1-hrGFP neurons of the arcuate nucleus (ARC) was observed between the HFD and RD groups. The HFD increased CART expression in the ARC and Kiss1 messenger RNA expression in the anteroventral periventricular (AVPV)/anterior periventricular (Pe). The HFD also increased the number of ARC CART neurons expressing leptin-induced phosphorylated STAT3 (signal transducer and activator of transcription 3) at PN32. Close apposition of CART fibers to Kiss1-hrGFP neurons was observed in the ARC of both RD- and HFD-fed mice. In conclusion, these data reinforce the notion that a HFD increases kisspeptin expression in the AVPV/Pe and advances puberty initiation. Furthermore, we have demonstrated that the HFD-induced earlier puberty is associated with an increase in CART expression in the ARC. Therefore, these data indicate that CART neurons in the ARC can mediate the effect of leptin on Kiss1 neurons in early puberty induced by a HFD.

Funding information:
  • NEI NIH HHS - R01 EY05665(United States)

The Possible Role of TASK Channels in Rank-Ordered Recruitment of Motoneurons in the Dorsolateral Part of the Trigeminal Motor Nucleus.

  • Okamoto K
  • eNeuro
  • 2017 Oct 31

Literature context:


Abstract:

Because a rank-ordered recruitment of motor units occurs during isometric contraction of jaw-closing muscles, jaw-closing motoneurons (MNs) may be recruited in a manner dependent on their soma sizes or input resistances (IRs). In the dorsolateral part of the trigeminal motor nucleus (dl-TMN) in rats, MNs abundantly express TWIK (two-pore domain weak inwardly rectifying K channel)-related acid-sensitive-K(+) channel (TASK)-1 and TASK3 channels, which determine the IR and resting membrane potential. Here we examined how TASK channels are involved in IR-dependent activation/recruitment of MNs in the rat dl-TMN by using multiple methods. The real-time PCR study revealed that single large MNs (>35 μm) expressed TASK1 and TASK3 mRNAs more abundantly compared with single small MNs (15-20 μm). The immunohistochemistry revealed that TASK1 and TASK3 channels were complementarily distributed in somata and dendrites of MNs, respectively. The density of TASK1 channels seemed to increase with a decrease in soma diameter while there were inverse relationships between the soma size of MNs and IR, resting membrane potential, or spike threshold. Dual whole-cell recordings obtained from smaller and larger MNs revealed that the recruitment of MNs depends on their IRs in response to repetitive stimulation of the presumed Ia afferents. 8-Bromoguanosine-cGMP decreased IRs in small MNs, while it hardly changed those in large MNs, and subsequently decreased the difference in spike-onset latency between the smaller and larger MNs, causing a synchronous activation of MNs. These results suggest that TASK channels play critical roles in rank-ordered recruitment of MNs in the dl-TMN.

Glycinergic Input to the Mouse Basal Forebrain Cholinergic Neurons.

  • Bardóczi Z
  • J. Neurosci.
  • 2017 Sep 27

Literature context:


Abstract:

The basal forebrain (BF) receives afferents from brainstem ascending pathways, which has been implicated first by Moruzzi and Magoun (1949) to induce forebrain activation and cortical arousal/waking behavior; however, it is very little known about how brainstem inhibitory inputs affect cholinergic functions. In the current study, glycine, a major inhibitory neurotransmitter of brainstem neurons, and gliotransmitter of local glial cells, was tested for potential interaction with BF cholinergic (BFC) neurons in male mice. In the BF, glycine receptor α subunit-immunoreactive (IR) sites were localized in choline acetyltransferase (ChAT)-IR neurons. The effect of glycine on BFC neurons was demonstrated by bicuculline-resistant, strychnine-sensitive spontaneous IPSCs (sIPSCs; 0.81 ± 0.25 × 10-1 Hz) recorded in whole-cell conditions. Potential neuronal as well as glial sources of glycine were indicated in the extracellular space of cholinergic neurons by glycine transporter type 1 (GLYT1)- and GLYT2-IR processes found in apposition to ChAT-IR cells. Ultrastructural analyses identified synapses of GLYT2-positive axon terminals on ChAT-IR neurons, as well as GLYT1-positive astroglial processes, which were localized in the vicinity of synapses of ChAT-IR neurons. The brainstem raphe magnus was determined to be a major source of glycinergic axons traced retrogradely from the BF. Our results indicate a direct effect of glycine on BFC neurons. Furthermore, the presence of high levels of plasma membrane glycine transporters in the vicinity of cholinergic neurons suggests a tight control of extracellular glycine in the BF.SIGNIFICANCE STATEMENT Basal forebrain cholinergic (BFC) neurons receive various activating inputs from specific brainstem areas and channel this information to the cortex via multiple projections. So far, very little is known about inhibitory brainstem afferents to the BF. The current study established glycine as a major regulator of BFC neurons by (1) identifying glycinergic neurons in the brainstem projecting to the BF, (2) showing glycine receptor α subunit-immunoreactive (IR) sites in choline acetyltransferase (ChAT)-IR neurons, (3) demonstrating glycine transporter type 2 (GLYT2)-positive axon terminals synapsing on ChAT-IR neurons, and (4) localizing GLYT1-positive astroglial processes in the vicinity of synapses of ChAT-IR neurons. The effect of glycine on BFC neurons was demonstrated by bicuculline-resistant, strychnine-sensitive spontaneous IPSCs recorded in whole-cell conditions.

Cellular Localization of Acid-Sensing Ion Channel 1 in Rat Nucleus Tractus Solitarii.

  • Lin LH
  • Cell. Mol. Neurobiol.
  • 2017 Aug 22

Literature context:


Abstract:

By determining its cellular localization in the nucleus tractus solitarii (NTS), we sought anatomical support for a putative physiological role for acid-sensing ion channel Type 1 (ASIC1) in chemosensitivity. Further, we sought to determine the effect of a lesion that produces gliosis in the area. In rats, we studied ASIC1 expression in control tissue with that in tissue with gliosis, which is associated with acidosis, after saporin lesions. We hypothesized that saporin would increase ASIC1 expression in areas of gliosis. Using fluorescent immunohistochemistry and confocal microscopy, we found that cells and processes containing ASIC1-immunoreactivity (IR) were present in the NTS, the dorsal motor nucleus of vagus, and the area postrema. In control tissue, ASIC1-IR predominantly colocalized with IR for the astrocyte marker, glial fibrillary acidic protein (GFAP), or the microglial marker, integrin αM (OX42). The subpostremal NTS was the only NTS region where neurons, identified by protein gene product 9.5 (PGP9.5), contained ASIC1-IR. ASIC1-IR increased significantly (157 ± 8.6% of control, p < 0.001) in the NTS seven days after microinjection of saporin. As we reported previously, GFAP-IR was decreased in the center of the saporin injection site, but GFAP-IR was increased in the surrounding areas where OX42-IR, indicative of activated microglia, was also increased. The over-expressed ASIC1-IR colocalized with GFAP-IR and OX42-IR in those reactive astrocytes and microglia. Our results support the hypothesis that ASIC1 would be increased in activated microglia and in reactive astrocytes after injection of saporin into the NTS.

Differential neuronal and glial expression of nuclear factor I proteins in the cerebral cortex of adult mice.

  • Chen KS
  • J. Comp. Neurol.
  • 2017 Aug 1

Literature context:


Abstract:

The nuclear factor I (NFI) family of transcription factors plays an important role in the development of the cerebral cortex in humans and mice. Disruption of nuclear factor IA (NFIA), nuclear factor IB (NFIB), or nuclear factor IX (NFIX) results in abnormal development of the corpus callosum, lateral ventricles, and hippocampus. However, the expression or function of these genes has not been examined in detail in the adult brain, and the cell type-specific expression of NFIA, NFIB, and NFIX is currently unknown. Here, we demonstrate that the expression of each NFI protein shows a distinct laminar pattern in the adult mouse neocortex and that their cell type-specific expression differs depending on the family member. NFIA expression was more frequently observed in astrocytes and oligodendroglia, whereas NFIB expression was predominantly localized to astrocytes and neurons. NFIX expression was most commonly observed in neurons. The NFI proteins were equally distributed within microglia, and the ependymal cells lining the ventricles of the brain expressed all three proteins. In the hippocampus, the NFI proteins were expressed during all stages of neural stem cell differentiation in the dentate gyrus, with higher expression intensity in neuroblast cells as compared to quiescent stem cells and mature granule neurons. These findings suggest that the NFI proteins may play distinct roles in cell lineage specification or maintenance, and establish the basis for further investigation of their function in the adult brain and their emerging role in disease.

The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting.

  • Mani BK
  • Mol Metab
  • 2017 Jul 29

Literature context:


Abstract:

OBJECTIVE: Ghrelin is a stomach-derived hormone that affects food intake and regulates blood glucose. The best-characterized actions of ghrelin are mediated by its binding to and activation of the growth hormone secretagogue receptor (GHSR; ghrelin receptor). Adequate examination of the identity, function, and relevance of specific subsets of GHSR-expressing neurons has been hampered by the absence of a suitable Cre recombinase (Cre)-expressing mouse line with which to manipulate gene expression in a targeted fashion within GHSR-expressing neurons. The present study aims to characterize the functional significance and neurocircuitry of GHSR-expressing neurons in the mediobasal hypothalamus (MBH), as they relate to ghrelin-induced food intake and fasting-associated rebound hyperphagia, using a novel mouse line in which Cre expression is controlled by the Ghsr promoter. METHODS: A Ghsr-IRES-Cre mouse line that expresses Cre directed by the Ghsr promoter was generated. The line was validated by comparing Cre activity in reporter mice to the known brain distribution pattern of GHSR. Next, the requirement of MBH GHSR-expressing neuronal activity in mediating food intake in response to administered ghrelin and in response to fasting was assessed after stereotaxic delivery of inhibitory designer receptor exclusively activated by designer drugs (DREADD) virus to the MBH. In a separate cohort of Ghsr-IRES-Cre mice, stereotaxic delivery of stimulatory DREADD virus to the MBH was performed to assess the sufficiency of MBH GHSR-expressing neuronal activity on food intake. Finally, the distribution of MBH GHSR-expressing neuronal axonal projections was assessed in the DREADD virus-injected animals. RESULTS: The pattern of Cre activity in the Ghsr-IRES-Cre mouse line mostly faithfully reproduced the known GHSR expression pattern. DREADD-assisted inhibition of MBH GHSR neuronal activity robustly suppressed the normal orexigenic response to ghrelin and fasting-associated rebound food intake. DREADD-assisted stimulation of MBH GHSR neuronal activity was sufficient to induce food intake. Axonal projections of GHSR-expressing MBH neurons were observed in a subset of hypothalamic and extra-hypothalamic regions. CONCLUSIONS: These results suggest that 1) activation of GHSR-expressing neurons in the MBH is required for the normal feeding responses following both peripheral administration of ghrelin and fasting, 2) activation of MBH GHSR-expressing neurons is sufficient to induce feeding, and 3) axonal projections to a subset of hypothalamic and/or extra-hypothalamic regions likely mediate these responses. The Ghsr-IRES-Cre line should serve as a valuable tool to further our understanding of the functional significance of ghrelin-responsive/GHSR-expressing neurons and the neuronal circuitry within which they act.

Melanopsin expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity.

  • Hannibal J
  • J. Comp. Neurol.
  • 2017 Jun 1

Literature context:


Abstract:

Intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin belong to a heterogenic population of RGCs which regulate the circadian clock, masking behavior, melatonin suppression, the pupillary light reflex, and sleep/wake cycles. The different functions seem to be associated to different subtypes of melanopsin cells. In rodents, subtype classification has associated subtypes to function. In primate and human retina such classification has so far, not been applied. In the present study using antibodies against N- and C-terminal parts of human melanopsin, confocal microscopy and 3D reconstruction of melanopsin immunoreactive (-ir) RGCs, we applied the criteria used in mouse on human melanopsin-ir RGCs. We identified M1, displaced M1, M2, and M4 cells. We found two other subtypes of melanopsin-ir RGCs, which were named "gigantic M1 (GM1)" and "gigantic displaced M1 (GDM1)." Few M3 cells and no M5 subtypes were labeled. Total cell counts from one male and one female retina revealed that the human retina contains 7283 ± 237 melanopsin-ir (0.63-0.75% of the total number of RGCs). The melanopsin subtypes were unevenly distributed. Most significant was the highest density of M4 cells in the nasal retina. We identified input to the melanopsin-ir RGCs from AII amacrine cells and directly from rod bipolar cells via ribbon synapses in the innermost ON layer of the inner plexiform layer (IPL) and from dopaminergic amacrine cells and GABAergic processes in the outermost OFF layer of the IPL. The study characterizes a heterogenic population of human melanopsin-ir RGCs, which most likely are involved in different functions.

Palatable food self-administration and reinstatement are not affected by dual orexin receptor antagonism.

  • Khoo SY
  • Prog. Neuropsychopharmacol. Biol. Psychiatry
  • 2017 Jun 27

Literature context:


Abstract:

The orexins are widely regarded potential therapeutic targets for a range of disorders of appetitive motivation, including obesity. The motivational activator theory, the first coherent account of the orexin system's role in appetitive motivation, predicts that orexin release motivates appetitive behaviour when the reinforcer is highly salient, available under a high unit-cost or when reward seeking is cue-driven. The present study tested the effect of intracerebroventricular (i.c.v.) administration of the highly potent and commercially available dual orexin receptor antagonist, TCS 1102, on self-administration and reinstatement of palatable food seeking in hungry and sated rats. TCS 1102 was also tested on FR1, FR5, FR10 and PR schedules. Orexin neuron activation was measured by c-Fos/orexin-A immunohistochemistry after cue-induced reinstatement, an extinction test, or a home-cage control. No effect of i.c.v. TCS 1102 was observed on self-administration at any fixed or progressive ratio schedule of reinforcement or reinstatement in hungry or sated rats. Although there was robust recruitment of orexin neurons during behavioural testing conditions, there was no specific activation of these neurons during cue-induced reinstatement when compared to extinction testing conditions. These results suggest that orexin antagonism may not be a useful therapeutic target for obesity as it does not appear to regulate food-seeking, and that the conditions determining orexin involvement as a motivational activator may be less clear than currently understood.

Loss of Action via Neurotensin-Leptin Receptor Neurons Disrupts Leptin and Ghrelin-Mediated Control of Energy Balance.

  • Brown JA
  • Endocrinology
  • 2017 May 1

Literature context:


Abstract:

The hormones ghrelin and leptin act via the lateral hypothalamic area (LHA) to modify energy balance, but the underlying neural mechanisms remain unclear. We investigated how leptin and ghrelin engage LHA neurons to modify energy balance behaviors and whether there is any crosstalk between leptin and ghrelin-responsive circuits. We demonstrate that ghrelin activates LHA neurons expressing hypocretin/orexin (OX) to increase food intake. Leptin mediates anorectic actions via separate neurons expressing the long form of the leptin receptor (LepRb), many of which coexpress the neuropeptide neurotensin (Nts); we refer to these as NtsLepRb neurons. Because NtsLepRb neurons inhibit OX neurons, we hypothesized that disruption of the NtsLepRb neuronal circuit would impair both NtsLepRb and OX neurons from responding to their respective hormonal cues, thus compromising adaptive energy balance. Indeed, mice with developmental deletion of LepRb specifically from NtsLepRb neurons exhibit blunted adaptive responses to leptin and ghrelin that discoordinate the mesolimbic dopamine system and ingestive and locomotor behaviors, leading to weight gain. Collectively, these data reveal a crucial role for LepRb in the proper formation of LHA circuits, and that NtsLepRb neurons are important neuronal hubs within the LHA for hormone-mediated control of ingestive and locomotor behaviors.

Funding information:
  • NIDDK NIH HHS - F30 DK107163()
  • NIDDK NIH HHS - F31 DK107081()
  • NIDDK NIH HHS - P30 DK034933()
  • NIDDK NIH HHS - R00 DK090101()
  • NIDDK NIH HHS - R01 DK103808()

Spatial distribution of synapses on tyrosine hydroxylase-expressing juxtaglomerular cells in the mouse olfactory glomerulus.

  • Kiyokage E
  • J. Comp. Neurol.
  • 2017 Apr 1

Literature context:


Abstract:

Olfactory sensory axons converge in specific glomeruli where they form excitatory synapses onto dendrites of mitral/tufted (M/T) and juxtaglomerular (JG) cells, including periglomerular (PG), external tufted (ET), and superficial-short axon cells. JG cells consist of heterogeneous subpopulations with different neurochemical, physiological, and morphological properties. Among JG cells, previous electron microscopic (EM) studies have shown that the majority of synaptic inputs to tyrosine hydroxylase (TH)-immunoreactive neurons were asymmetrical synapses from olfactory nerve (ON) terminals. However, recent physiological results revealed that 70% of dopaminergic/γ-aminobutyric acid (GABA)ergic neurons received polysynaptic inputs via ET cells, whereas the remaining 30% received monosynaptic ON inputs. To understand the discrepancies between EM and physiological data, we used serial EM analysis combined with confocal laser scanning microscope images to examine the spatial distribution of synapses on dendrites using mice expressing enhanced green fluorescent protein under the control of the TH promoter. The majority of synaptic inputs to TH-expressing JG cells were from ON terminals, and they preferentially targeted distal dendrites from the soma. On the other hand, the numbers of non-ON inputs were fewer and targeted proximal dendrites. Furthermore, individual TH-expressing JG cells formed serial synapses, such as M/T→TH→another presumed M/T or ON→TH→presumed M/T, but not reciprocal synapses. Serotonergic fibers also associated with somatic regions of TH neurons, displaying non-ON profiles. Thus, fewer proximal non-ON synapses provide more effective inputs than large numbers of distal ON synapses and may occur on the physiologically characterized population of dopaminergic-GABAergic neurons (70%) that receive their most effective inputs indirectly via an ON→ET→TH circuit. J. Comp. Neurol. 525:1059-1074, 2017. © 2017 Wiley Periodicals, Inc.

Funding information:
  • NIMH NIH HHS - R01 MH066332(United States)
  • NINDS NIH HHS - NS067017(United States)

GABAergic Neurons of the Central Amygdala Promote Cataplexy.

  • Mahoney CE
  • J. Neurosci.
  • 2017 Apr 12

Literature context:


Abstract:

Narcolepsy is characterized by chronic sleepiness and cataplexy-sudden muscle paralysis triggered by strong, positive emotions. This condition is caused by a lack of orexin (hypocretin) signaling, but little is known about the neural mechanisms that mediate cataplexy. The amygdala regulates responses to rewarding stimuli and contains neurons active during cataplexy. In addition, lesions of the amygdala reduce cataplexy. Because GABAergic neurons of the central nucleus of the amygdala (CeA) target brainstem regions known to regulate muscle tone, we hypothesized that these cells promote emotion-triggered cataplexy. We injected adeno-associated viral vectors coding for Cre-dependent DREADDs or a control vector into the CeA of orexin knock-out mice crossed with vGAT-Cre mice, resulting in selective expression of the excitatory hM3 receptor or the inhibitory hM4 receptor in GABAergic neurons of the CeA. We measured sleep/wake behavior and cataplexy after injection of saline or the hM3/hM4 ligand clozapine-N-oxide (CNO) under baseline conditions and under conditions that should elicit positive emotions. In mice expressing hM3, CNO approximately doubled the amount of cataplexy in the first 3 h after dosing under baseline conditions. Rewarding stimuli (chocolate or running wheels) also increased cataplexy, but CNO produced no further increase. In mice expressing hM4, CNO reduced cataplexy in the presence of chocolate or running wheels. These results demonstrate that GABAergic neurons of the CeA are sufficient and necessary for the production of cataplexy in mice, and they likely are a key part of the mechanism through which positive emotions trigger cataplexy.SIGNIFICANCE STATEMENT Cataplexy is one of the major symptoms of narcolepsy, but little is known about how strong, positive emotions trigger these episodes of muscle paralysis. Prior research shows that amygdala neurons are active during cataplexy and cataplexy is reduced by lesions of the amygdala. We found that cataplexy is substantially increased by selective activation of GABAergic neurons in the central nucleus of the amygdala (CeA). We also demonstrate that inhibition of these neurons reduces reward-promoted cataplexy. These results build upon prior work to establish the CeA as a crucial element in the neural mechanisms of cataplexy. These results demonstrate the importance of the CeA in regulating responses to rewarding stimuli, shedding light on the broader neurobiology of emotions and motor control.

Immunohistochemical localization of cocaine- and amphetamine-regulated transcript peptide (CARTp) in the brain of the pigeon (Columba livia) and zebra finch (Taeniopygia guttata).

  • Gutierrez-Ibanez C
  • J. Comp. Neurol.
  • 2016 Dec 15

Literature context:


Abstract:

Cocaine- and amphetamine-regulated transcript peptides (CARTp) are neuropeptides that act as neurotransmitters in the brain of vertebrates. The expression of CARTp has been characterized in teleosts, amphibians, and several mammalian species, but comparative data in reptiles and birds are nonexistent. In this study, we show the distribution of immunoreactivity against CART peptides (CARTp-ir) in the brains of two bird species: the pigeon (Columba livia) and zebra finch (Taeniopygia guttata). We found CARTp-ir cells and terminals in the brains of both, but no major differences between the two species. As in mammals, teleost fish, and amphibians, CARTp-ir terminals and cells were abundant in subpallial regions, particularly the striatum and nucleus accumbens. We also found CARTp-ir cells and terminals in the hypothalamus, and a large number of CARTp-ir terminals in the substantia nigra, ventral tegmental area, periaqueductal gray, parabrachial nucleus, and dorsal vagal complex. However, in contrast to other vertebrates, CARTp-ir was not found in the olfactory bulb. In addition there was almost no CARTp-ir in the pallium or the hippocampal formation, and little CARTp-ir in the cerebellum. The conserved expression of CARTp in the subpallium, hypothalamus, and dorsal vagal complex of birds suggests that some of the functions of CARTp, such as regulation of food intake and interactions with the social control network and mesolimbic reward system, are conserved among vertebrates. J. Comp. Neurol. 524:3747-3773, 2016. © 2016 Wiley Periodicals, Inc.

Funding information:
  • NIMH NIH HHS - U01 MH105960(United States)

Excitatory and inhibitory innervation of the mouse orofacial motor nuclei: A stereological study.

  • Faunes M
  • J. Comp. Neurol.
  • 2016 Mar 1

Literature context:


Abstract:

Neurons in the trigeminal (Mo5), facial (Mo7), ambiguus (Amb), and hypoglossal (Mo12) motor nuclei innervate jaw, facial, pharynx/larynx/esophagus, and tongue muscles, respectively. They are essential for movements subserving feeding, exploration of the environment, and social communication. These neurons are largely controlled by sensory afferents and premotor neurons of the reticular formation, where central pattern generator circuits controlling orofacial movements are located. To provide a description of the orofacial nuclei of the adult mouse and to ascertain the influence of excitatory and inhibitory afferents upon them, we used stereology to estimate the number of motoneurons as well as of varicosities immunopositive for glutamate (VGluT1+, VGluT2+) and GABA/glycine (known as VIAAT+ or VGAT+) vesicular transporters in the Mo5, Mo7, Amb, and Mo12. Mo5, Mo7, Amb, and Mo12 contain ∼1,000, ∼3,000, ∼600, and ∼1,700 cells, respectively. VGluT1+, VGluT2+, and VIAAT+ varicosities respectively represent: 28%, 41%, and 31% in Mo5; 2%, 49%, and 49% in Mo7; 12%, 42%, and 46% in Amb; and 4%, 54%, and 42% in Mo12. The Mo5 jaw-closing subdivision shows the highest VGluT1+ innervation. Noticeably, the VGluT2+ and VIAAT+ varicosity density in Mo7 is 5-fold higher than in Mo5 and 10-fold higher than in Amb and Mo12. The high density of terminals in Mo7 likely reflects the convergence and integration of numerous inputs to motoneurons subserving the wide range of complex behaviors to which this nucleus contributes. Also, somatic versus neuropil location of varicosities suggests that most of these afferents are integrated in the dendritic trees of Mo7 neurons.

Funding information:
  • European Research Council - 293549(International)

Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats.

  • Li AJ
  • Endocrinology
  • 2015 Aug 18

Literature context:


Abstract:

Hindbrain catecholamine neurons are required for elicitation of feeding responses to glucose deficit, but the forebrain circuitry required for these responses is incompletely understood. Here we examined interactions of catecholamine and orexin neurons in eliciting glucoprivic feeding. Orexin neurons, located in the perifornical lateral hypothalamus (PeFLH), are heavily innervated by hindbrain catecholamine neurons, stimulate food intake, and increase arousal and behavioral activation. Orexin neurons may therefore contribute importantly to appetitive responses, such as food seeking, during glucoprivation. Retrograde tracing results showed that nearly all innervation of the PeFLH from the hindbrain originated from catecholamine neurons and some raphe nuclei. Results also suggested that many catecholamine neurons project collaterally to the PeFLH and paraventricular hypothalamic nucleus. Systemic administration of the antiglycolytic agent, 2-deoxy-D-glucose, increased food intake and c-Fos expression in orexin neurons. Both responses were eliminated by a lesion of catecholamine neurons innervating orexin neurons using the retrogradely transported immunotoxin, anti-dopamine-β-hydroxylase saporin, which is specifically internalized by dopamine-β-hydroxylase-expressing catecholamine neurons. Using designer receptors exclusively activated by designer drugs in transgenic rats expressing Cre recombinase under the control of tyrosine hydroxylase promoter, catecholamine neurons in cell groups A1 and C1 of the ventrolateral medulla were activated selectively by peripheral injection of clozapine-N-oxide. Clozapine-N-oxide injection increased food intake and c-Fos expression in PeFLH orexin neurons as well as in paraventricular hypothalamic nucleus neurons. In summary, catecholamine neurons are required for the activation of orexin neurons during glucoprivation. Activation of orexin neurons may contribute to appetitive responses required for glucoprivic feeding.

Funding information:
  • NINDS NIH HHS - R01 NS065020(United States)

Reprogramming Mouse Cells With a Pancreatic Duct Phenotype to Insulin-Producing β-Like Cells.

  • Yamada T
  • Endocrinology
  • 2015 Jun 18

Literature context:


Abstract:

Reprogramming technology has opened the possibility of converting one cell type into another by forced expression of transgenes. Transduction of adenoviral vectors encoding 3 pancreatic transcription factors, Pdx1, Ngn3, and MafA, into mouse pancreas results in direct reprogramming of exocrine cells to insulin-producing β-like cells. We hypothesized that cultured adult pancreatic duct cells could be reprogrammed to become insulin-producing β-cells by adenoviral-mediated expression of this same combination of factors. Exocrine were isolated from adult mouse insulin 1 promoter (MIP)-green fluorescent protein (GFP) transgenic mice to allow new insulin-expressing cells to be detected by GFP fluorescence. Cultured cells were transduced by an adenoviral vector carrying a polycistronic construct Ngn3/Pdx1/MafA/mCherry (Ad-M3C) or mCherry sequence alone as a control vector. In addition, the effects of glucagon-like peptide-1 (GLP-1) receptor agonist, exendin-4 (Ex-4) on the reprogramming process were examined. GFP(+) cells appeared 2 days after Ad-M3C transduction; the reprogramming efficiency was 8.6 ± 2.6% by day 4 after transduction. Ad-M3C also resulted in increased expression of β-cell markers insulin 1 and 2, with enhancement by Ex-4. Expression of other β-cell markers, neuroD and GLP-1 receptor, were also significantly up-regulated. The amount of insulin release into the media and insulin content of the cells were significantly higher in the Ad-M3C-transduced cells; this too was enhanced by Ex-4. The transduced cells did not secrete insulin in response to increased glucose, indicating incomplete differentiation to β-cells. Thus, cultured murine adult pancreatic cells with a duct phenotype can be directly reprogrammed to insulin-producing β-like cells by adenoviral delivery of 3 pancreatic transcription factors.

Funding information:
  • Medical Research Council - G1002033(United Kingdom)

The suprachiasmatic nucleus changes the daily activity of the arcuate nucleus α-MSH neurons in male rats.

  • Guzmán-Ruiz M
  • Endocrinology
  • 2014 Feb 22

Literature context:


Abstract:

Timing of metabolic processes is crucial for balanced physiology; many studies have shown the deleterious effects of untimely food intake. The basis for this might be an interaction between the arcuate nucleus (ARC) as the main integration site for metabolic information and the suprachiasmatic nucleus (SCN) as the master clock. Here we show in male rats that the SCN influences ARC daily neuronal activity by imposing a daily rhythm on the α-MSH neurons with a peak in neuronal activity at the end of the dark phase. Bilateral SCN lesions showed a complete disappearance of ARC neuronal rhythms and unilateral SCN lesions showed a decreased activation in the ARC at the lesioned side. Moreover light exposure during the dark phase inhibited ARC and α-MSH neuronal activity. The daily inhibition of ARC neuronal activity occurred in light-dark conditions as well as in dark-dark conditions, demonstrating the inhibitory effect to be mediated by increased SCN (subjective) day neuronal activity. Injections into the SCN with the neuronal tracer cholera toxin B showed that α-MSH neurons receive direct projections from the SCN. The present study demonstrates that the SCN activates and possibly also inhibits depending on the moment of the circadian cycle ARC α-MSH neurons via direct neuronal input. The persistence of these activity patterns in fasted animals demonstrates that this SCN-ARC interaction is not necessarily satiety associated but may support physiological functions associated with changes in the sleep-wake cycle.

Funding information:
  • NCI NIH HHS - P50 CA083639(United States)
  • NCRR NIH HHS - P51RR165(United States)