Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

DyLight 405-AffiniPure Donkey Anti-Chicken IgY (IgG) (H+L) (min X Bov,Gt,GP,Sy Hms,Hrs,Hu,Ms,Rb,Rat,Shp Sr Prot) antibody


Antibody ID


Target Antigen

Chicken IgY (IgG) (H+L)

Proper Citation

(Jackson ImmunoResearch Labs Cat# 703-475-155, RRID:AB_2340373)


polyclonal antibody


Originating manufacturer of this product


Jackson ImmunoResearch Labs Go To Vendor

Cat Num


VIP-immunoreactive interneurons within circuits of the mouse basolateral amygdala.

  • Rhomberg T
  • J. Neurosci.
  • 2018 Jun 28

Literature context: 703-475-155 128385 Donkey 1:500 RRID:AB_2340373 DyL405 anti-goat Jackson Immuno


In cortical structures, principal cell activity is tightly regulated by different GABAergic interneurons (INs). In particular, vasoactive intestinal polypeptide-expressing (VIP+) INs innervate preferentially other INs, providing a structural basis for temporal disinhibition of principal cells. However, relatively little is known about VIP+ INs in the amygdaloid basolateral complex (BLA). In this study, we report that VIP+ INs have a variable density in the distinct subdivisions of the mouse BLA. Based on different anatomical, neurochemical and electrophysiological criteria, VIP+ INs could be identified as interneuron-selective INs and basket cells expressing CB1 cannabinoid receptors. Whole-cell recordings of VIP+ interneuron-selective INs revealed 3 different spiking patterns, which did not associate with the expression of calretinin. Genetic targeting combined with optogenetics and in vitro recordings allowed us to identify several types of BLA INs innervated by VIP+ INs, including other interneuron-selective INs, basket and neurogliaform cells. Moreover, light stimulation of VIP+ basket cell axon terminals, characterized by CB1 sensitivity, evoked IPSPs in ∼20% of principal neurons. Finally, we show that VIP+ INs receive a dense innervation from both GABAergic, although only 10% from other VIP+ INs, and distinct glutamatergic inputs, identified by their expression of different vesicular glutamate transporters.In conclusion, our study provides a wide-range analysis of single-cell properties of VIP+ INs in the mouse BLA and of their intrinsic and extrinsic connectivity. Our results reinforce the knowledge that VIP+ INs are structurally and functionally heterogeneous and that this heterogeneity could mediate different roles in amygdala-dependent functions.Significance statement:We provide the first comprehensive analysis of the distribution of VIP+ interneurons across the entire mouse BLA, as well as of their morphological and physiological properties. VIP+ interneurons in the neocortex preferentially target other interneurons to form a disinhibitory network that facilitates principal cell firing. Our study is the first to demonstrate the presence of such a disinhibitory circuitry in the BLA. We observed structural and functional heterogeneity of these INs and characterized their input/output connectivity. We also identified several types of BLA interneurons postsynaptic to VIP+ INs, whose inhibition may provide a temporal window for principal cell firing and facilitate associative plasticity, e.g. in fear learning. Disinhibition, thus, is emerging as a general mechanism, not limited to the neocortex.

Funding information:
  • NIGMS NIH HHS - GM055962(United States)

An Essential Postdevelopmental Role for Lis1 in Mice.

  • Hines TJ
  • eNeuro
  • 2018 Feb 7

Literature context: son ImmunoResearch 703-475-155, RRID:AB_2340373).


LIS1 mutations cause lissencephaly (LIS), a severe developmental brain malformation. Much less is known about its role in the mature nervous system. LIS1 regulates the microtubule motor cytoplasmic dynein 1 (dynein), and as LIS1 and dynein are both expressed in the adult nervous system, Lis1 could potentially regulate dynein-dependent processes such as axonal transport. We therefore knocked out Lis1 in adult mice using tamoxifen-induced, Cre-ER-mediated recombination. When an actin promoter was used to drive Cre-ER expression (Act-Cre-ER), heterozygous Lis1 knockout (KO) caused no obvious change in viability or behavior, despite evidence of widespread recombination by a Cre reporter three weeks after tamoxifen exposure. In contrast, homozygous Lis1 KO caused the rapid onset of neurological symptoms in both male and female mice. One tamoxifen-dosing regimen caused prominent recombination in the midbrain/hindbrain, PNS, and cardiac/skeletal muscle within a week; these mice developed severe symptoms in that time frame and were killed. A different tamoxifen regimen resulted in delayed recombination in midbrain/hindbrain, but not in other tissues, and also delayed the onset of symptoms. This indicates that Lis1 loss in the midbrain/hindbrain causes the severe phenotype. In support of this, brainstem regions known to house cardiorespiratory centers showed signs of axonal dysfunction in KO animals. Transport defects, neurofilament (NF) alterations, and varicosities were observed in axons in cultured DRG neurons from KO animals. Because no symptoms were observed when a cardiac specific Cre-ER promoter was used, we propose a vital role for Lis1 in autonomic neurons and implicate defective axonal transport in the KO phenotype.

Heterophilic Type II Cadherins Are Required for High-Magnitude Synaptic Potentiation in the Hippocampus.

  • Basu R
  • Neuron
  • 2017 Sep 27

Literature context: mmunoResearch Cat# 703-475-155, RRID:AB_2340373 Goat anti-rabbit-HRP Jackson Im


Hippocampal CA3 neurons form synapses with CA1 neurons in two layers, stratum oriens (SO) and stratum radiatum (SR). Each layer develops unique synaptic properties but molecular mechanisms that mediate these differences are unknown. Here, we show that SO synapses normally have significantly more mushroom spines and higher-magnitude long-term potentiation (LTP) than SR synapses. Further, we discovered that these differences require the Type II classic cadherins, cadherins-6, -9, and -10. Though cadherins typically function via trans-cellular homophilic interactions, our results suggest presynaptic cadherin-9 binds postsynaptic cadherins-6 and -10 to regulate mushroom spine density and high-magnitude LTP in the SO layer. Loss of these cadherins has no effect on the lower-magnitude LTP typically observed in the SR layer, demonstrating that cadherins-6, -9, and -10 are gatekeepers for high-magnitude LTP. Thus, Type II cadherins may uniquely contribute to the specificity and strength of synaptic changes associated with learning and memory.

Funding information:
  • NEI NIH HHS - R01 EY022073()

Dynamic Palmitoylation Targets MAP6 to the Axon to Promote Microtubule Stabilization during Neuronal Polarization.

  • Tortosa E
  • Neuron
  • 2017 May 17

Literature context: -475-155, RRID:AB_2340373), anti-mou


Microtubule-associated proteins (MAPs) are main candidates to stabilize neuronal microtubules, playing an important role in establishing axon-dendrite polarity. However, how MAPs are selectively targeted to specific neuronal compartments remains poorly understood. Here, we show specific localization of microtubule-associated protein 6 (MAP6)/stable tubule-only polypeptide (STOP) throughout neuronal maturation and its role in axonal development. In unpolarized neurons, MAP6 is present at the Golgi complex and in secretory vesicles. As neurons mature, MAP6 is translocated to the proximal axon, where it binds and stabilizes microtubules. Further, we demonstrate that dynamic palmitoylation, mediated by the family of α/β Hydrolase domain-containing protein 17 (ABHD17A-C) depalmitoylating enzymes, controls shuttling of MAP6 between membranes and microtubules and is required for MAP6 retention in axons. We propose a model in which MAP6's palmitoylation mediates microtubule stabilization, allows efficient organelle trafficking, and controls axon maturation in vitro and in situ.

Diazepam Binding Inhibitor Promotes Stem Cell Expansion Controlling Environment-Dependent Neurogenesis.

  • Dumitru I
  • Neuron
  • 2017 Apr 5

Literature context: -475-155; RRID:AB_2340373 Cy3 conjug


Plasticity of adult neurogenesis supports adaptation to environmental changes. The identification of molecular mediators that signal these changes to neural progenitors in the niche has remained elusive. Here we report that diazepam binding inhibitor (DBI) is crucial in supporting an adaptive mechanism in response to changes in the environment. We provide evidence that DBI is expressed in stem cells in all neurogenic niches of the postnatal brain. Focusing on the hippocampal subgranular zone (SGZ) and employing multiple genetic manipulations in vivo, we demonstrate that DBI regulates the balance between preserving the stem cell pool and neurogenesis. Specifically, DBI dampens GABA activity in stem cells, thereby sustaining the proproliferative effect of physical exercise and enriched environment. Our data lend credence to the notion that the modulatory effect of DBI constitutes a general mechanism that regulates postnatal neurogenesis.

Purinergic regulation of vascular tone in the retrotrapezoid nucleus is specialized to support the drive to breathe.

  • Hawkins VE
  • Elife
  • 2017 Apr 7

Literature context: ht 1:200 (RRID:AB_2340373) or Cy5 1:


Cerebral blood flow is highly sensitive to changes in CO2/H+ where an increase in CO2/H+ causes vasodilation and increased blood flow. Tissue CO2/H+ also functions as the main stimulus for breathing by activating chemosensitive neurons that control respiratory output. Considering that CO2/H+-induced vasodilation would accelerate removal of CO2/H+ and potentially counteract the drive to breathe, we hypothesize that chemosensitive brain regions have adapted a means of preventing vascular CO2/H+-reactivity. Here, we show in rat that purinergic signaling, possibly through P2Y2/4 receptors, in the retrotrapezoid nucleus (RTN) maintains arteriole tone during high CO2/H+ and disruption of this mechanism decreases the CO2ventilatory response. Our discovery that CO2/H+-dependent regulation of vascular tone in the RTN is the opposite to the rest of the cerebral vascular tree is novel and fundamentally important for understanding how regulation of vascular tone is tailored to support neural function and behavior, in this case the drive to breathe.

Funding information:
  • NHLBI NIH HHS - F32 HL126381()
  • NHLBI NIH HHS - P01 HL095488()
  • NHLBI NIH HHS - R01 HL104101()
  • NHLBI NIH HHS - R01 HL121706()
  • NHLBI NIH HHS - R01 HL131181()
  • NIDDK NIH HHS - R37 DK053832()

The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.

  • Larson ED
  • J. Neurosci.
  • 2015 Dec 2

Literature context:


Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response.