X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Peroxidase-AffiniPure Goat Anti-Mouse IgG, Light Chain* Specific (min X Bov,Gt,Hrs,Hu,Rb,Rat,Shp Ig) antibody

RRID:AB_2338512

Antibody ID

AB_2338512

Target Antigen

Mouse IgG, Light Chain* Specific

Vendor

Jackson ImmunoResearch Labs Go To Vendor

Cat Num

115-035-174

Proper Citation

(Jackson ImmunoResearch Labs Cat# 115-035-174, RRID:AB_2338512)

Clonality

polyclonal antibody

Comments

Originating manufacturer of this product

The Temporal Dynamics of Arc Expression Regulate Cognitive Flexibility.

  • Wall MJ
  • Neuron
  • 2018 Jun 27

Literature context: muno- Research Cat#115-035-174, RRID:AB_2338512 Chemicals, Peptides, and Recomb


Abstract:

Neuronal activity regulates the transcription and translation of the immediate-early gene Arc/Arg3.1, a key mediator of synaptic plasticity. Proteasome-dependent degradation of Arc tightly limits its temporal expression, yet the significance of this regulation remains unknown. We disrupted the temporal control of Arc degradation by creating an Arc knockin mouse (ArcKR) where the predominant Arc ubiquitination sites were mutated. ArcKR mice had intact spatial learning but showed specific deficits in selecting an optimal strategy during reversal learning. This cognitive inflexibility was coupled to changes in Arc mRNA and protein expression resulting in a reduced threshold to induce mGluR-LTD and enhanced mGluR-LTD amplitude. These findings show that the abnormal persistence of Arc protein limits the dynamic range of Arc signaling pathways specifically during reversal learning. Our work illuminates how the precise temporal control of activity-dependent molecules, such as Arc, regulates synaptic plasticity and is crucial for cognition.

Funding information:
  • NICHD NIH HHS - R21 HD065269(United States)
  • NIGMS NIH HHS - R25 GM109442()
  • NINDS NIH HHS - R00 NS076364()
  • NINDS NIH HHS - R01 NS085093()

Mutant p53 Gains Its Function via c-Myc Activation upon CDK4 Phosphorylation at Serine 249 and Consequent PIN1 Binding.

  • Liao P
  • Mol. Cell
  • 2017 Dec 21

Literature context: mmunoResearch Cat# 115-035-174; RRID:AB_2338512 Peroxidase IgG Fraction Monoclo


Abstract:

TP53 missense mutations significantly influence the development and progression of various human cancers via their gain of new functions (GOF) through different mechanisms. Here we report a unique mechanism underlying the GOF of p53-R249S (p53-RS), a p53 mutant frequently detected in human hepatocellular carcinoma (HCC) that is highly related to hepatitis B infection and aflatoxin B1. A CDK inhibitor blocks p53-RS's nuclear translocation in HCC, whereas CDK4 interacts with p53-RS in the G1/S phase of the cells, phosphorylates it, and enhances its nuclear localization. This is coupled with binding of a peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) to p53-RS, but not the p53 form with mutations of four serines/threonines previously shown to be crucial for PIN1 binding. As a result, p53-RS interacts with c-Myc and enhances c-Myc-dependent rDNA transcription key for ribosomal biogenesis. These results unveil a CDK4-PIN1-p53-RS-c-Myc pathway as a novel mechanism for the GOF of p53-RS in HCC.

Funding information:
  • NHLBI NIH HHS - R00HL-091133(United States)

Very Long Chain Fatty Acids Are Functionally Involved in Necroptosis.

  • Parisi LR
  • Cell Chem Biol
  • 2017 Dec 21

Literature context: Immunoresearch Lab 115-035-174; RRID:AB_2338512 Bacterial and Virus Strains


Abstract:

Necroptosis is a form of regulated cell death that is linked to various human diseases. Distinct membrane-related, thus lipid-dependent, alterations take place during necroptosis. However, little is known about the roles of specific lipids in this process. We used an untargeted LC-MS-based approach to reveal that distinct lipid species are regulated at the molecular level during necroptosis. We found that ceramides and very long chain fatty acids accumulate during this process. Intrigued by the specificity of very long chain fatty acid accumulation, we focused on characterizing their involvement during necroptosis. Biochemical characterizations suggested that activated fatty acid biosynthesis and elongation could be responsible for these accumulations. We further showed that inhibition of fatty acid biosynthesis and depletion of very long chain fatty acids prevented loss of plasma membrane integrity and cell death, strongly suggesting that very long chain fatty acids are functionally involved in necroptosis.

Postinjury Induction of Activated ErbB2 Selectively Hyperactivates Denervated Schwann Cells and Promotes Robust Dorsal Root Axon Regeneration.

  • Han SB
  • J. Neurosci.
  • 2017 Nov 8

Literature context: esearch, 115-035-174; 1:10,000, RRID:AB_2338512) for 30 min after washing three


Abstract:

Following nerve injury, denervated Schwann cells (SCs) convert to repair SCs, which enable regeneration of peripheral axons. However, the repair capacity of SCs and the regenerative capacity of peripheral axons are limited. In the present studies we examined a potential therapeutic strategy to enhance the repair capacity of SCs, and tested its efficacy in enhancing regeneration of dorsal root (DR) axons, whose regenerative capacity is particularly weak. We used male and female mice of a doxycycline-inducible transgenic line to induce expression of constitutively active ErbB2 (caErbB2) selectively in SCs after DR crush or transection. Two weeks after injury, injured DRs of induced animals contained far more SCs and SC processes. These SCs had not redifferentiated and continued to proliferate. Injured DRs of induced animals also contained far more axons that regrew along SC processes past the transection or crush site. Remarkably, SCs and axons in uninjured DRs remained quiescent, indicating that caErbB2 enhanced regeneration of injured DRs, without aberrantly activating SCs and axons in intact nerves. We also found that intraspinally expressed glial cell line-derived neurotrophic factor (GDNF), but not the removal of chondroitin sulfate proteoglycans, greatly enhanced the intraspinal migration of caErbB2-expressing SCs, enabling robust penetration of DR axons into the spinal cord. These findings indicate that SC-selective, post-injury activation of ErbB2 provides a novel strategy to powerfully enhance the repair capacity of SCs and axon regeneration, without substantial off-target damage. They also highlight that promoting directed migration of caErbB2-expressing SCs by GDNF might be useful to enable axon regrowth in a non-permissive environment.SIGNIFICANCE STATEMENT Repair of injured peripheral nerves remains a critical clinical problem. We currently lack a therapy that potently enhances axon regeneration in patients with traumatic nerve injury. It is extremely challenging to substantially increase the regenerative capacity of damaged nerves without deleterious off-target effects. It was therefore of great interest to discover that caErbB2 markedly enhances regeneration of damaged dorsal roots, while evoking little change in intact roots. To our knowledge, these findings are the first demonstration that repair capacity of denervated SCs can be efficaciously enhanced without altering innervated SCs. Our study also demonstrates that oncogenic ErbB2 signaling can be activated in SCs but not impede transdifferentiation of denervated SCs to regeneration-promoting repair SCs.

MLKL, the Protein that Mediates Necroptosis, Also Regulates Endosomal Trafficking and Extracellular Vesicle Generation.

  • Yoon S
  • Immunity
  • 2017 Jul 18

Literature context: -035-174, RRID:AB_2338512 Peroxidase


Abstract:

Activation of the pseudokinase mixed lineage kinase domain-like (MLKL) upon its phosphorylation by the protein kinase RIPK3 triggers necroptosis, a form of programmed cell death in which rupture of cellular membranes yields release of intracellular components. We report that MLKL also associated with endosomes and controlled the transport of endocytosed proteins, thereby enhancing degradation of receptors and ligands, modulating their induced signaling and facilitating the generation of extracellular vesicles. This role was exerted on two quantitative grades: a constitutive one independent of RIPK3, and an enhanced one, triggered by RIPK3, where the association of MLKL with the endosomes was enhanced, and it was found to bind endosomal sorting complexes required for transport (ESCRT) proteins and the flotillins and to be excluded, together with them, from cells within vesicles. We suggest that release of phosphorylated MLKL within extracellular vesicles serves as a mechanism for self-restricting the necroptotic activity of this protein.

Mov10 suppresses retroelements and regulates neuronal development and function in the developing brain.

  • Skariah G
  • BMC Biol.
  • 2017 Jun 29

Literature context: PA, USA (RRID:AB_2338512) respectiv


Abstract:

BACKGROUND: Moloney leukemia virus 10 (Mov10) is an RNA helicase that mediates access of the RNA-induced silencing complex to messenger RNAs (mRNAs). Until now, its role as an RNA helicase and as a regulator of retrotransposons has been characterized exclusively in cell lines. We investigated the role of Mov10 in the mouse brain by examining its expression over development and attempting to create a Mov10 knockout mouse. Loss of both Mov10 copies led to early embryonic lethality. RESULTS: Mov10 was significantly elevated in postnatal murine brain, where it bound retroelement RNAs and mRNAs. Mov10 suppressed retroelements in the nucleus by directly inhibiting complementary DNA synthesis, while cytosolic Mov10 regulated cytoskeletal mRNAs to influence neurite outgrowth. We verified this important function by observing reduced dendritic arborization in hippocampal neurons from the Mov10 heterozygote mouse and shortened neurites in the Mov10 knockout Neuro2A cells. Knockdown of Fmrp also resulted in shortened neurites. Mov10, Fmrp, and Ago2 bound a common set of mRNAs in the brain. Reduced Mov10 in murine brain resulted in anxiety and increased activity in a novel environment, supporting its important role in the development of normal brain circuitry. CONCLUSIONS: Mov10 is essential for normal neuronal development and brain function. Mov10 preferentially binds RNAs involved in actin binding, neuronal projection, and cytoskeleton. This is a completely new and critically important function for Mov10 in neuronal development and establishes a precedent for Mov10 being an important candidate in neurological disorders that have underlying cytoarchitectural causes like autism and Alzheimer's disease.

Funding information:
  • NHLBI NIH HHS - R01 HL126845()

p27Kip1 promotes invadopodia turnover and invasion through the regulation of the PAK1/Cortactin pathway.

  • Jeannot P
  • Elife
  • 2017 Mar 13

Literature context: _2340819, RRID:AB_2339149, RRID:AB_2338512).siRNA control (D-001810-10-05)


Abstract:

p27Kip1 (p27) is a cyclin-CDK inhibitor and negative regulator of cell proliferation. p27 also controls other cellular processes including migration and cytoplasmic p27 can act as an oncogene. Furthermore, cytoplasmic p27 promotes invasion and metastasis, in part by promoting epithelial to mesenchymal transition. Herein, we find that p27 promotes cell invasion by binding to and regulating the activity of Cortactin, a critical regulator of invadopodia formation. p27 localizes to invadopodia and limits their number and activity. p27 promotes the interaction of Cortactin with PAK1. In turn, PAK1 promotes invadopodia turnover by phosphorylating Cortactin, and expression of Cortactin mutants for PAK-targeted sites abolishes p27's effect on invadopodia dynamics. Thus, in absence of p27, cells exhibit increased invadopodia stability due to impaired PAK1-Cortactin interaction, but their invasive capacity is reduced compared to wild-type cells. Overall, we find that p27 directly promotes cell invasion by facilitating invadopodia turnover via the Rac1/PAK1/Cortactin pathway.

Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Pro-inflammatory "FADDosome" Complex upon TRAIL Stimulation.

  • Henry CM
  • Mol. Cell
  • 2017 Feb 16

Literature context: -035-174, RRID:AB_2338512 Peroxidase


Abstract:

TRAIL is a potent inducer of apoptosis and has been studied almost exclusively in this context. However, TRAIL can also induce NFκB-dependent expression of multiple pro-inflammatory cytokines and chemokines. Surprisingly, whereas inhibition of caspase activity blocked TRAIL-induced apoptosis, but not cytokine production, knock down or deletion of caspase-8 suppressed both outcomes, suggesting that caspase-8 participates in TRAIL-induced inflammatory signaling in a scaffold role. Consistent with this, introduction of a catalytically inactive caspase-8 mutant into CASP-8 null cells restored TRAIL-induced cytokine production, but not cell death. Furthermore, affinity precipitation of the native TRAIL receptor complex revealed that pro-caspase-8 was required for recruitment of RIPK1, via FADD, to promote NFκB activation and pro-inflammatory cytokine production downstream. Thus, caspase-8 can serve in two distinct roles in response to TRAIL receptor engagement, as a scaffold for assembly of a Caspase-8-FADD-RIPK1 "FADDosome" complex, leading to NFκB-dependent inflammation, or as a protease that promotes apoptosis.

Funding information:
  • Worldwide Cancer Research - 14-0323()

The novel SH3 domain protein Dlish/CG10933 mediates fat signaling in Drosophila by binding and regulating Dachs.

  • Zhang Y
  • Elife
  • 2016 Oct 3

Literature context: Labs Cat# 115-035-174 Lot# RRID:AB_2338512), peroxidase-goat anti-mouse Ig


Abstract:

Much of the Hippo and planar cell polarity (PCP) signaling mediated by the Drosophila protocadherin Fat depends on its ability to change the subcellular localization, levels and activity of the unconventional myosin Dachs. To better understand this process, we have performed a structure-function analysis of Dachs, and used this to identify a novel and important mediator of Fat and Dachs activities, a Dachs-binding SH3 protein we have named Dlish. We found that Dlish is regulated by Fat and Dachs, that Dlish also binds Fat and the Dachs regulator Approximated, and that Dlish is required for Dachs localization, levels and activity in both wild type and fat mutant tissue. Our evidence supports dual roles for Dlish. Dlish tethers Dachs to the subapical cell cortex, an effect partly mediated by the palmitoyltransferase Approximated under the control of Fat. Conversely, Dlish promotes the Fat-mediated degradation of Dachs.

Funding information:
  • NICHD NIH HHS - T32 HD007516(United States)

Fibroblast growth factor 21 and thyroid hormone show mutual regulatory dependency but have independent actions in vivo.

  • Domouzoglou EM
  • Endocrinology
  • 2014 May 21

Literature context:


Abstract:

Thyroid hormone (TH) regulates fibroblast growth factor 21 (FGF21) levels in the liver and in the adipose tissue. In contrast, peripheral FGF21 administration leads to decreased circulating levels of TH. These data suggest that FGF21 and TH could interact to regulate metabolism. In the present study, we confirmed that TH regulates adipose and hepatic FGF21 expression and serum levels in mice. We next investigated the influence of TH administration on key serum metabolites, gene expression in the liver and brown adipose tissue, and energy expenditure in FGF21 knockout mice. Surprisingly, we did not observe any significant differences in the effects of TH on FGF21 knockout mice compared with those in wild-type animals, indicating that TH acts independently of FGF21 for the specific outcomes studied. Furthermore, exogenous FGF21 administration to hypothyroid mice led to similar changes in serum and liver lipid metabolites and gene expression in both hypothyroid and euthyroid mice. Thus, it appears that FGF21 and TH have similar actions to decrease serum and liver lipids despite having some divergent regulatory effects. Whereas TH leads to up-regulation in the liver and down-regulation in brown adipose tissue of genes involved in the lipid synthesis pathway (eg, fatty acid synthase (FASN) and SPOT14), FGF21 leads to the opposite changes in expression of these genes. In conclusion, TH and FGF21 act independently on the outcomes studied, despite their ability to regulate each other's circulating levels. Thus, TH and FGF21 may modulate the availability of each other in critical metabolic states.

Funding information:
  • Canadian Institutes of Health Research - 83338-2(Canada)