Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Peroxidase-AffiniPure Goat Anti-Rat IgG (H+L) antibody


Antibody ID


Target Antigen

Rat IgG (H+L)

Proper Citation

(Jackson ImmunoResearch Labs Cat# 112-035-003, RRID:AB_2338128)


polyclonal antibody


Originating manufacturer of this product


Jackson ImmunoResearch Labs Go To Vendor

Cat Num


5-HT2A receptor-dependent phosphorylation of mGlu2 receptor at Serine 843 promotes mGlu2 receptor-operated Gi/o signaling.

  • Murat S
  • Mol. Psychiatry
  • 2018 Jun 1

Literature context:


The serotonin 5-HT2A and glutamate mGlu2 receptors continue to attract particular attention, given their implication in psychosis associated with schizophrenia and the mechanism of action of atypical antipsychotics and a new class of antipsychotics, respectively. A large body of evidence indicates a functional crosstalk between both receptors in the brain, but the underlying mechanisms are not entirely elucidated. Here, we have explored the influence of 5-HT2A receptor upon the phosphorylation pattern of mGlu2 receptor in light of the importance of specific phosphorylation events in regulating G protein-coupled receptor signaling and physiological outcomes. Among the five mGlu2 receptor-phosphorylated residues identified in HEK-293 cells, the phosphorylation of Ser843 was enhanced upon mGlu2 receptor stimulation by the orthosteric agonist LY379268 only in cells co-expressing the 5-HT2A receptor. Likewise, administration of LY379268 increased mGlu2 receptor phosphorylation at Ser843 in prefrontal cortex of wild-type mice but not 5-HT2A-/- mice. Exposure of HEK-293 cells co-expressing mGlu2 and 5-HT2A receptors to 5-HT also increased Ser843 phosphorylation state to a magnitude similar to that measured in LY379268-treated cells. In both HEK-293 cells and prefrontal cortex, Ser843 phosphorylation elicited by 5-HT2A receptor stimulation was prevented by the mGlu2 receptor antagonist LY341495, while the LY379268-induced effect was abolished by the 5-HT2A receptor antagonist M100907. Mutation of Ser843 into alanine strongly reduced Gi/o signaling elicited by mGlu2 or 5-HT2A receptor stimulation in cells co-expressing both receptors. Collectively, these findings identify mGlu2 receptor phosphorylation at Ser843 as a key molecular event that underlies the functional crosstalk between both receptors.

Funding information:
  • Medical Research Council - G0600705(United Kingdom)

NMDA receptor blockade ameliorates abnormalities of spike firing of subthalamic nucleus neurons in a parkinsonian nonhuman primate.

  • Bhattacharya S
  • J. Neurosci. Res.
  • 2018 Mar 27

Literature context:


N-methyl-D-aspartate receptors (NMDARs) are ion channels comprising tetrameric assemblies of GluN1 and GluN2 receptor subunits that mediate excitatory neurotransmission in the central nervous system. Of the four different GluN2 subunits, the GluN2D subunit-containing NMDARs have been suggested as a target for antiparkinsonian therapy because of their expression pattern in some of the basal ganglia nuclei that show abnormal firing patterns in the parkinsonian state, specifically the subthalamic nucleus (STN). In this study, we demonstrate that blockade of NMDARs altered spike firing in the STN in a male nonhuman primate that had been rendered parkinsonian by treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. In accompanying experiments in male rodents, we found that GluN2D-NMDAR expression in the STN was reduced in acutely or chronically dopamine-depleted animals. Taken together, our data suggest that blockade of NMDARs in the STN may be a viable antiparkinsonian strategy, but that the ultimate success of this approach may be complicated by parkinsonism-associated changes in NMDAR expression in the STN.

Funding information:
  • NIDCR NIH HHS - T32 DE014320(United States)

The soluble form of LOTUS inhibits Nogo receptor-mediated signaling by interfering with the interaction between Nogo receptor type 1 and p75 neurotrophin receptor.

  • Kawakami Y
  • J. Neurosci.
  • 2018 Feb 9

Literature context:


Nogo receptor type 1 (NgR1) is known to inhibit neuronal regeneration in the CNS. We have previously identified lateral olfactory tract usher substance (LOTUS) interacts with NgR1 and inhibits its function by blocking its ligand binding. Therefore, LOTUS is expected to have therapeutic potential for the promotion of neuronal regeneration. However, it remains unknown whether the soluble form of LOTUS (s-LOTUS) also has an inhibitory action on NgR1 function as a candidate for therapeutic agents. Here, we show that s-LOTUS inhibits NgR1-mediated signaling by inhibiting the molecular interaction between NgR1 and its co-receptor p75 neurotrophin receptor (p75NTR). In contrast to the membrane-bound form of LOTUS, s-LOTUS did not block ligand binding to NgR1. However, we identified p75NTR as a novel LOTUS binding partner, and found that s-LOTUS suppressed the interaction between p75NTR and NgR1. s-LOTUS inhibited myelin-associated inhibitor (MAI)-induced RhoA activation in murine cortical neurons. Functional analyses revealed that s-LOTUS inhibited MAI-induced growth cone collapse and neurite outgrowth inhibition in chick DRG neurons. In addition, while olfactory bulb (OB) neurons of lotus-KO mice are sensitive to MAI due to a lack of LOTUS expression, treatment with s-LOTUS inhibited MAI-induced growth cone collapse in these neurons. Finally, we observed that s-LOTUS promoted axonal regeneration in optic nerve crush injury of mice (either sex). These findings suggest that s-LOTUS inhibits NgR1-mediated signaling possibly by interfering with the interaction between NgR1 and p75NTR Thus, s-LOTUS may have potential as a therapeutic agent for neuronal regeneration in the damaged CNS.SIGNIFICANCE STATEMENTNogo receptor type 1 (NgR1) is a well-known receptor to inhibit neuronal regeneration in the CNS. Because the membrane-bound form of LOTUS antagonizes NgR1 through a cis-type molecular interaction between LOTUS and NgR1, the soluble form of LOTUS (s-LOTUS) is expected to be a therapeutic agent for neuronal regeneration. In our present study, we show that s-LOTUS inhibits the interaction between NgR1 and p75NTR, NgR1 ligand-induced RhoA activation, growth cone collapse and neurite outgrowth inhibition, and promotes axonal regeneration. Our results indicate that s-LOTUS inhibits NgR1-mediated signaling through a trans-type molecular interaction between LOTUS and NgR1, and therefore, s-LOTUS may have therapeutic potential for neuronal regeneration.

Funding information:
  • NIGMS NIH HHS - R01-GM083204(United States)

Interferon-γ-Driven iNOS: A Molecular Pathway to Terminal Shock in Arenavirus Hemorrhagic Fever.

  • Remy MM
  • Cell Host Microbe
  • 2017 Sep 13

Literature context:


Arenaviruses such as Lassa virus (LASV) cause hemorrhagic fever. Terminal shock is associated with a systemic cytokine storm, but the mechanisms are ill defined. Here we used HLA-A2-expressing mice infected with a monkey-pathogenic strain of lymphocytic choriomeningitis virus (LCMV-WE), a close relative of LASV, to investigate the pathophysiology of arenavirus hemorrhagic fever (AHF). AHF manifested as pleural effusions, edematous skin swelling, and serum albumin loss, culminating in hypovolemic shock. A characteristic cytokine storm included numerous pro-inflammatory cytokines and nitric oxide (NO) metabolites. Edema formation and terminal shock were abrogated in mice lacking inducible nitric oxide synthase (iNOS), although the cytokine storm persisted. iNOS was upregulated in the liver in a T cell- and interferon-γ (IFN-γ)-dependent fashion. Accordingly, blockade of IFN-γ or depletion of T cells repressed hepatic iNOS and prevented disease despite unchecked high-level viremia. We identify the IFN-γ-iNOS axis as an essential and potentially druggable molecular pathway to AHF-induced shock.

Impact of Reduced ATGL-Mediated Adipocyte Lipolysis on Obesity-Associated Insulin Resistance and Inflammation in Male Mice.

  • Schoiswohl G
  • Endocrinology
  • 2015 Oct 19

Literature context:


Emerging evidence suggests that impaired regulation of adipocyte lipolysis contributes to the proinflammatory immune cell infiltration of metabolic tissues in obesity, a process that is proposed to contribute to the development and exacerbation of insulin resistance. To test this hypothesis in vivo, we generated mice with adipocyte-specific deletion of adipose triglyceride lipase (ATGL), the rate-limiting enzyme catalyzing triacylglycerol hydrolysis. In contrast to previous models, adiponectin-driven Cre expression was used for targeted ATGL deletion. The resulting adipocyte-specific ATGL knockout (AAKO) mice were then characterized for metabolic and immune phenotypes. Lean and diet-induced obese AAKO mice had reduced adipocyte lipolysis, serum lipids, systemic lipid oxidation, and expression of peroxisome proliferator-activated receptor alpha target genes in adipose tissue (AT) and liver. These changes did not increase overall body weight or fat mass in AAKO mice by 24 weeks of age, in part due to reduced expression of genes involved in lipid uptake, synthesis, and adipogenesis. Systemic glucose and insulin tolerance were improved in AAKO mice, primarily due to enhanced hepatic insulin signaling, which was accompanied by marked reduction in diet-induced hepatic steatosis as well as hepatic immune cell infiltration and activation. In contrast, although adipocyte ATGL deletion reduced AT immune cell infiltration in response to an acute lipolytic stimulus, it was not sufficient to ameliorate, and may even exacerbate, chronic inflammatory changes that occur in AT in response to diet-induced obesity.

Funding information:
  • NEI NIH HHS - R01 EY020533(United States)