X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Alexa Fluor 488-AffiniPure Goat Anti-Chicken IgY (IgG) (H+L) (min X Bov,Gt,GP,Sy Hms,Hrs,Hu,Ms,Rb,Rat,Shp Sr Prot) antibody

RRID:AB_2337390

Antibody ID

AB_2337390

Target Antigen

Chicken IgY(IgG) (H+L)

Proper Citation

(Jackson ImmunoResearch Labs Cat# 103-545-155, RRID:AB_2337390)

Clonality

polyclonal antibody

Comments

Originating manufacturer of this product

Vendor

Jackson ImmunoResearch Labs Go To Vendor

Cat Num

103-545-155

Publications that use this research resource

Hippocampal NF-κB accounts for stress-induced anxiety behaviors via enhancing nNOS-CAPON-Dexras1 coupling.

  • Zhu LJ
  • J. Neurochem.
  • 2018 Jun 2

Literature context:


Abstract:

Anxiety disorders are associated with a high social burden worldwide. Recently, increasing evidence suggests that nuclear factor kappa B (NF-κB) has significant implications for psychiatric diseases, including anxiety and depressive disorders. However, the molecular mechanisms underlying the role of NF-κB in stress-induced anxiety behaviors are poorly understood. In this study, we show that chronic mild stress (CMS) and glucocorticoids dramatically increased the expression of NF-κB subunits p50 and p65, phosphorylation and acetylation of p65, and the level of nuclear p65 in vivo and in vitro, implicating activation of NF-κB signaling in chronic stress-induced pathological processes. Using the novelty-suppressed feeding (NSF) and elevated-plus maze (EPM) tests, we found that treatment with pyrrolidine dithiocarbamate (PDTC; intrahippocampal infusion), an inhibitor of NF-κB, rescued the CMS- or glucocorticoid-induced anxiogenic behaviors in mice. Microinjection of PDTC into the hippocampus reversed CMS-induced upregulation of neuronal nitric oxide synthase (nNOS), carboxy-terminal PDZ ligand of nNOS (CAPON) and dexamethasone-induced ras protein 1 (Dexras1) and dendritic spine loss of DG granule cells. Moreover, overexpression of CAPON by infusing LV-CAPON-L-GFP into the hippocampus induced nNOS-Dexras1 interaction and anxiety-like behaviors, and inhibition of NF-κB by PDTC reduced the LV-CAPON-L-GFP-induced increases in nNOS-Dexras1 complex and anxiogenic-like effects in mice. These findings indicate that hippocampal NF-κB mediates anxiogenic behaviors, probably via regulating the association of nNOS-CAPON-Dexras1, and uncover a novel approach to the treatment of anxiety disorders. This article is protected by copyright. All rights reserved.

Funding information:
  • NIGMS NIH HHS - GM GM69373(United States)

Abrogated Freud-1/Cc2d1a Repression of 5-HT1A Autoreceptors Induces Fluoxetine-Resistant Anxiety/Depression-Like Behavior.

  • Vahid-Ansari F
  • J. Neurosci.
  • 2017 Dec 6

Literature context:


Abstract:

Freud-1/Cc2d1a represses the gene transcription of serotonin-1A (5-HT1A) autoreceptors, which negatively regulate 5-HT tone. To test the role of Freud-1 in vivo, we generated mice with adulthood conditional knock-out of Freud-1 in 5-HT neurons (cF1ko). In cF1ko mice, 5-HT1A autoreceptor protein, binding and hypothermia response were increased, with reduced 5-HT content and neuronal activity in the dorsal raphe. The cF1ko mice displayed increased anxiety- and depression-like behavior that was resistant to chronic antidepressant (fluoxetine) treatment. Using conditional Freud-1/5-HT1A double knock-out (cF1/1A dko) to disrupt both Freud-1 and 5-HT1A genes in 5-HT neurons, no increase in anxiety- or depression-like behavior was seen upon knock-out of Freud-1 on the 5-HT1A autoreceptor-negative background; rather, a reduction in depression-like behavior emerged. These studies implicate transcriptional dysregulation of 5-HT1A autoreceptors by the repressor Freud-1 in anxiety and depression and provide a clinically relevant genetic model of antidepressant resistance. Targeting specific transcription factors, such as Freud-1, to restore transcriptional balance may augment response to antidepressant treatment.SIGNIFICANCE STATEMENT Altered regulation of the 5-HT1A autoreceptor has been implicated in human anxiety, major depression, suicide, and resistance to antidepressants. This study uniquely identifies a single transcription factor, Freud-1, as crucial for 5-HT1A autoreceptor expression in vivo Disruption of Freud-1 in serotonin neurons in mice links upregulation of 5-HT1A autoreceptors to anxiety/depression-like behavior and provides a new model of antidepressant resistance. Treatment strategies to reestablish transcriptional regulation of 5-HT1A autoreceptors could provide a more robust and sustained antidepressant response.

Funding information:
  • NCI NIH HHS - 5P20CA90578(United States)