Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

tubulin beta antibody


Antibody ID


Target Antigen

Proper Citation

(DSHB Cat# E7, RRID:AB_528499)




consolidated with AB_2315513 and AB_2315515 on 02/2018 by curator.



Cat Num


Atf3 links loss of epithelial polarity to defects in cell differentiation and cytoarchitecture.

  • Donohoe CD
  • PLoS Genet.
  • 2018 Jul 10

Literature context:


Interplay between apicobasal cell polarity modules and the cytoskeleton is critical for differentiation and integrity of epithelia. However, this coordination is poorly understood at the level of gene regulation by transcription factors. Here, we establish the Drosophila activating transcription factor 3 (atf3) as a cell polarity response gene acting downstream of the membrane-associated Scribble polarity complex. Loss of the tumor suppressors Scribble or Dlg1 induces atf3 expression via aPKC but independent of Jun-N-terminal kinase (JNK) signaling. Strikingly, removal of Atf3 from Dlg1 deficient cells restores polarized cytoarchitecture, levels and distribution of endosomal trafficking machinery, and differentiation. Conversely, excess Atf3 alters microtubule network, vesicular trafficking and the partition of polarity proteins along the apicobasal axis. Genomic and genetic approaches implicate Atf3 as a regulator of cytoskeleton organization and function, and identify Lamin C as one of its bona fide target genes. By affecting structural features and cell morphology, Atf3 functions in a manner distinct from other transcription factors operating downstream of disrupted cell polarity.

Funding information:
  • NIGMS NIH HHS - R01 GM057070(United States)

APC Inhibits Ligand-Independent Wnt Signaling by the Clathrin Endocytic Pathway.

  • Saito-Diaz K
  • Dev. Cell
  • 2018 Mar 12

Literature context:


Adenomatous polyposis coli (APC) mutations cause Wnt pathway activation in human cancers. Current models for APC action emphasize its role in promoting β-catenin degradation downstream of Wnt receptors. Unexpectedly, we find that blocking Wnt receptor activity in APC-deficient cells inhibits Wnt signaling independently of Wnt ligand. We also show that inducible loss of APC is rapidly followed by Wnt receptor activation and increased β-catenin levels. In contrast, APC2 loss does not promote receptor activation. We show that APC exists in a complex with clathrin and that Wnt pathway activation in APC-deficient cells requires clathrin-mediated endocytosis. Finally, we demonstrate conservation of this mechanism in Drosophila intestinal stem cells. We propose a model in which APC and APC2 function to promote β-catenin degradation, and APC also acts as a molecular "gatekeeper" to block receptor activation via the clathrin pathway.

Funding information:
  • BLRD VA - I01 BX001426()
  • NCATS NIH HHS - UL1 TR000445()
  • NCATS NIH HHS - UL1 TR002243()
  • NCI NIH HHS - P30 CA068485()
  • NCI NIH HHS - P50 CA095103()
  • NCI NIH HHS - R01 CA069457()
  • NCI NIH HHS - R01 CA105038()
  • NIDDK NIH HHS - F30 DK111107()
  • NIDDK NIH HHS - R01 DK099204()
  • NIGMS NIH HHS - R01 GM081635()
  • NIGMS NIH HHS - R01 GM103926()
  • NIGMS NIH HHS - R01 GM106720()
  • NIGMS NIH HHS - R01 GM121421()
  • NIGMS NIH HHS - R01 GM122222()
  • NIGMS NIH HHS - R35 GM122516()
  • NIGMS NIH HHS - T32 GM007347()
  • NIH HHS - OD008466(United States)
  • NIH HHS - P40 OD018537()

Interaction of the Mineralocorticoid Receptor With RACK1 and Its Role in Aldosterone Signaling.

  • Kuppusamy M
  • Endocrinology
  • 2017 Jul 1

Literature context:


The mineralocorticoid receptor (MR) is a member of the steroid-thyroid hormone receptor superfamily of ligand-dependent transcription factors with diverse functions including the biological actions of aldosterone. Identification of the various transcriptional coregulators of MR is essential for understanding the complexity of MR signaling pathways under physiological and pathological conditions. We used a yeast two-hybrid system to find proteins that interact with a full-length MR and found, among other proteins, that MR interacted specifically with receptor for activated C kinase 1 (RACK1), a scaffolding protein. Overexpression of RACK1 using a tetracycline-inducible lentivirus in mouse cortical collecting duct M1 cells stably expressing the rat MR and a Gaussia luciferase gene reporter under a hormone-response element promoter resulted in enhanced agonist-dependent MR transactivation. Knockdown of RACK1 protein expression by short hairpin RNAs led to a significant reduction in MR activation of the reporter gene and the endogenous genes Ctla2α and Psca. We also demonstrated that RACK1 regulation of MR action is mediated through phosphorylation by the PKC-β signaling pathway. MR and RACK1 were coimmunoprecipitated using an MR antibody in male Sprague-Dawley brain tissue and M1-rMR cells, and colocalization in M1-rMR cells and male rat brains was confirmed by immunofluorescence and immunohistochemistry. The scaffolding protein RACK1 is associated with MR under basal and agonist-stimulated conditions and facilitates agonist-stimulated MR actions through PKC-β. These findings indicate that RACK1 is a newly described coactivator of MR.

Miro's N-terminal GTPase domain is required for transport of mitochondria into axons and dendrites.

  • Babic M
  • J. Neurosci.
  • 2015 Apr 8

Literature context:


Mitochondria are dynamically transported in and out of neuronal processes to maintain neuronal excitability and synaptic function. In higher eukaryotes, the mitochondrial GTPase Miro binds Milton/TRAK adaptor proteins linking microtubule motors to mitochondria. Here we show that Drosophila Miro (dMiro), which has previously been shown to be required for kinesin-driven axonal transport, is also critically required for the dynein-driven distribution of mitochondria into dendrites. In addition, we used the loss-of-function mutations dMiroT25N and dMiroT460N to determine the significance of dMiro's N-terminal and C-terminal GTPase domains, respectively. Expression of dMiroT25N in the absence of endogenous dMiro caused premature lethality and arrested development at a pupal stage. dMiroT25N accumulated mitochondria in the soma of larval motor and sensory neurons, and prevented their kinesin-dependent and dynein-dependent distribution into axons and dendrites, respectively. dMiroT25N mutant mitochondria also were severely fragmented and exhibited reduced kinesin and dynein motility in axons. In contrast, dMiroT460N did not impair viability, mitochondrial size, or the distribution of mitochondria. However, dMiroT460N reduced dynein motility during retrograde mitochondrial transport in axons. Finally, we show that substitutions analogous to the constitutively active Ras-G12V mutation in dMiro's N-terminal and C-terminal GTPase domains cause neomorphic phenotypic effects that are likely unrelated to the normal function of each GTPase domain. Overall, our analysis indicates that dMiro's N-terminal GTPase domain is critically required for viability, mitochondrial size, and the distribution of mitochondria out of the neuronal soma regardless of the employed motor, likely by promoting the transition from a stationary to a motile state.

Adult neurogenesis: a common strategy across diverse species.

  • Sullivan JM
  • J. Comp. Neurol.
  • 2007 Jan 20

Literature context:


Adult neurogenesis, the generation of new neurons from adult precursor cells, occurs in the brains of a phylogenetically diverse array of animals. In the higher (amniotic) vertebrates, these precursor cells are glial cells that reside within specialized regions, known as neurogenic niches, the elements of which both support and regulate neurogenesis. The in vivo identity and location of the precursor cells responsible for adult neurogenesis in nonvertebrate taxa, however, remain largely unknown. Among the invertebrates, adult neurogenesis has been particularly well characterized in freshwater crayfish (Arthropoda, Crustacea), although the identity of the precursor cells sustaining continuous neuronal proliferation in these animals has yet to be established. Here we provide evidence suggesting that, as in the higher vertebrates, the precursor cells maintaining adult neurogenesis in the crayfish Procambarus clarkii are glial cells. These precursor cells reside within a specialized region, or niche, on the ventral surface of the brain, and their progeny migrate from this niche along glial fibers and then proliferate to form new neurons in the central olfactory pathway. The niche in which these precursor cells reside has many features in common with the neurogenic niches of higher vertebrates. These commonalities include: glial cells functioning as both precursor and support cells, directed migration, close association with the brain vasculature, and specialized basal laminae. The cellular machinery maintaining adult neurogenesis appears, therefore, to be shared by widely disparate taxa. These extensive structural and functional parallels suggest a common strategy for the generation of new neurons in adult brains.

Funding information:
  • PHS HHS - EF-0850100(United States)