Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

rho4D2 antibody


Antibody ID


Target Antigen

Proper Citation

(R. Molday, University of British Columbia; British Columbia; Canada Cat# rho4D2, RRID:AB_2315273)




R. Molday, University of British Columbia; British Columbia; Canada

Cat Num


Publications that use this research resource

Top2b is involved in the formation of outer segment and synapse during late-stage photoreceptor differentiation by controlling key genes of photoreceptor transcriptional regulatory network.

  • Li Y
  • J. Neurosci. Res.
  • 2018 May 11

Literature context: ty of British Columbia, Canada, AB_2315273, mouse, monoclonal1:100Synaptop


Topoisomerase II beta (Top2b) is an enzyme that alters the topologic states of DNA during transcription. Top2b deletion in early retinal progenitor cells causes severe defects in neural differentiation and affects cell survival in all retinal cell types. However, it is unclear whether the observed severe phenotypes are the result of cell-autonomous/primary defects or non-cell-autonomous/secondary defects caused by alterations of other retinal cells. Using photoreceptor cells as a model, we first characterized the phenotypes in Top2b conditional knockout. Top2b deletion leads to malformation of photoreceptor outer segments (OSs) and synapses accompanied by dramatic cell loss at late-stage photoreceptor differentiation. Then, we performed mosaic analysis with shRNA-mediated Top2b knockdown in neonatal retina using in vivo electroportation to target rod photoreceptors in neonatal retina. Top2b knockdown causes defective OS without causing a dramatic cell loss, suggesting a Top2b cell-autonomous function. Furthermore, RNA-seq analysis reveals that Top2b controls the expression of key genes in the photoreceptor gene-regulatory network (e.g., Crx, Nr2e3, Opn1sw, Vsx2) and retinopathy-related genes (e.g., Abca4, Bbs7, Pde6b). Together, our data establish a combinatorial cell-autonomous and non-cell-autonomous role for Top2b in the late stage of photoreceptor differentiation and maturation. © 2017 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

Funding information:
  • NEI NIH HHS - R21 EY018738()
  • NIDA NIH HHS - R21 DA035594()
  • NIDA NIH HHS - R21 DA039686()

Small molecule Photoregulin3 prevents retinal degeneration in the RhoP23H mouse model of retinitis pigmentosa.

  • Nakamura PA
  • Elife
  • 2017 Nov 17

Literature context: noclonal Dr. Robert Molday, UBC RRID:AB_2315273 1:250


Regulation of rod gene expression has emerged as a potential therapeutic strategy to treat retinal degenerative diseases like retinitis pigmentosa (RP). We previously reported on a small molecule modulator of the rod transcription factor Nr2e3, Photoregulin1 (PR1), that regulates the expression of photoreceptor-specific genes. Although PR1 slows the progression of retinal degeneration in models of RP in vitro, in vivo analyses were not possible with PR1. We now report a structurally unrelated compound, Photoregulin3 (PR3) that also inhibits rod photoreceptor gene expression, potentially though Nr2e3 modulation. To determine the effectiveness of PR3 as a potential therapy for RP, we treated RhoP23H mice with PR3 and assessed retinal structure and function. PR3-treated RhoP23H mice showed significant structural and functional photoreceptor rescue compared with vehicle-treated littermate control mice. These results provide further support that pharmacological modulation of rod gene expression provides a potential strategy for the treatment of RP.

Funding information:
  • NEI NIH HHS - R01 EY021374()
  • NIGMS NIH HHS - P01 GM081619()

Non-image Forming Light Detection by Melanopsin, Rhodopsin, and Long-Middlewave (L/W) Cone Opsin in the Subterranean Blind Mole Rat, Spalax Ehrenbergi: Immunohistochemical Characterization, Distribution, and Connectivity.

  • Esquiva G
  • Front Neuroanat
  • 2016 Jul 4

Literature context: sh Columbia; Canada Cat# rho4D2 RRID:AB_2315273Mouse1:1KS-cone opsinJH455J. Nat


The blind mole rat, Spalax ehrenbergi, can, despite severely degenerated eyes covered by fur, entrain to the daily light/dark cycle and adapt to seasonal changes due to an intact circadian timing system. The present study demonstrates that the Spalax retina contains a photoreceptor layer, an outer nuclear layer (ONL), an outer plexiform layer (OPL), an inner nuclear layer (INL), an inner plexiform layer (IPL), and a ganglion cell layer (GCL). By immunohistochemistry, the number of melanopsin (mRGCs) and non-melanopsin bearing retinal ganglion cells was analyzed in detail. Using the ganglion cell marker RNA-binding protein with multiple splicing (RBPMS) it was shown that the Spalax eye contains 890 ± 62 RGCs. Of these, 87% (752 ± 40) contain melanopsin (cell density 788 melanopsin RGCs/mm(2)). The remaining RGCs were shown to co-store Brn3a and calretinin. The melanopsin cells were located mainly in the GCL with projections forming two dendritic plexuses located in the inner part of the IPL and in the OPL. Few melanopsin dendrites were also found in the ONL. The Spalax retina is rich in rhodopsin and long/middle wave (L/M) cone opsin bearing photoreceptor cells. By using Ctbp2 as a marker for ribbon synapses, both rods and L/M cone ribbons containing pedicles in the OPL were found in close apposition with melanopsin dendrites in the outer plexus suggesting direct synaptic contact. A subset of cone bipolar cells and all photoreceptor cells contain recoverin while a subset of bipolar and amacrine cells contain calretinin. The calretinin expressing amacrine cells seemed to form synaptic contacts with rhodopsin containing photoreceptor cells in the OPL and contacts with melanopsin cell bodies and dendrites in the IPL. The study demonstrates the complex retinal circuitry used by the Spalax to detect light, and provides evidence for both melanopsin and non-melanopsin projecting pathways to the brain.

Funding information:
  • NIGMS NIH HHS - R01 GM080639(United States)

Retinal photoreceptor arrangement, SWS1 and LWS opsin sequence, and electroretinography in the South American marsupial Thylamys elegans (Waterhouse, 1839).

  • Palacios AG
  • J. Comp. Neurol.
  • 2010 May 1

Literature context:


We studied the retinal photoreceptors in the mouse opossum Thylamys elegans, a nocturnal South American marsupial. A variety of photoreceptor properties and color vision capabilities have been documented in Australian marsupials, and we were interested to establish what similarities and differences this American marsupial showed. Thylamys opsin gene sequencing revealed two cone opsins, a longwave-sensitive (LWS) opsin and a shortwave-sensitive (SWS1) opsin with deduced peak sensitivities at 560 nm and 360 nm (ultraviolet), respectively. Immunocytochemistry located these opsins to separate cone populations, a majority of LWS cones (density range 1,600-5,600/mm(2)) and a minority of SWS1 cones (density range 100-690/mm(2)). With rod densities of 440,000-590,000/mm(2), the cones constituted 0.4-1.2% of the photoreceptors. This is a suitable adaptation to nocturnal vision. Cone densities peaked in a horizontally elongated region ventral to the optic nerve head. In ventral-but not dorsal-retina, roughly 40% of the LWS opsin-expressing cones occurred as close pairs (double cones), and one member of each double cone contained a colorless oil droplet. The corneal electroretinogram (ERG) showed a high scotopic sensitivity with a rod peak sensitivity at 505 nm. At mesopic light levels, the spectral ERG revealed the contributions of a UV-sensitive SWS1 cone mechanism and an LWS cone mechanism with peak sensitivities at 365 nm and 555 nm, respectively, confirming the tuning predictions from the cone opsin sequences. The two spectral cone types provide the basis for dichromatic color vision, or trichromacy if the rods contribute to color processing at mesopic light levels.