X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Phalloidin-488 antibody

RRID:AB_2315147

Local Arrangement of Fibronectin by Myofibroblasts Governs Peripheral Nuclear Positioning in Muscle Cells.

  • Roman W
  • Dev. Cell
  • 2018 Jul 2

Literature context: Life Technologies Cat #A12379; RRID:AB_2315147 Phalloidin 555 Alexa Fluor Life


Abstract:

Skeletal muscle cells (myofibers) are rod-shaped multinucleated cells surrounded by an extracellular matrix (ECM) basal lamina. In contrast to other cell types, nuclei in myofibers are positioned just below the plasma membrane at the cell periphery. Peripheral nuclear positioning occurs during myogenesis and is driven by myofibril crosslinking and contraction. Here we show that peripheral nuclear positioning is triggered by local accumulation of fibronectin secreted by myofibroblasts. We demonstrate that fibronectin via α5-integrin mediates peripheral nuclear positioning dependent on FAK and Src activation. Finally, we show that Cdc42, downstream of restricted fibronectin activation, is required for myofibril crosslinking but not myofibril contraction. Thus we identify that local activation of integrin by fibronectin secreted by myofibroblasts activates peripheral nuclear positioning in skeletal myofibers.

Funding information:
  • NIGMS NIH HHS - T32-GM07062(United States)

Planar cell polarity signalling coordinates heart tube remodelling through tissue-scale polarisation of actomyosin activity.

  • Merks AM
  • Nat Commun
  • 2018 Jun 4

Literature context: lexa Fluorâ„¢ 488 Phalloidin (Cat#A12379, ThermoFisher Scientificâ„¢), Goa


Abstract:

Development of a multiple-chambered heart from the linear heart tube is inherently linked to cardiac looping. Although many molecular factors regulating the process of cardiac chamber ballooning have been identified, the cellular mechanisms underlying the chamber formation remain unclear. Here, we demonstrate that cardiac chambers remodel by cell neighbour exchange of cardiomyocytes guided by the planar cell polarity (PCP) pathway triggered by two non-canonical Wnt ligands, Wnt5b and Wnt11. We find that PCP signalling coordinates the localisation of actomyosin activity, and thus the efficiency of cell neighbour exchange. On a tissue-scale, PCP signalling planar-polarises tissue tension by restricting the actomyosin contractility to the apical membranes of outflow tract cells. The tissue-scale polarisation of actomyosin contractility is required for cardiac looping that occurs concurrently with chamber ballooning. Taken together, our data reveal that instructive PCP signals couple cardiac chamber expansion with cardiac looping through the organ-scale polarisation of actomyosin-based tissue tension.

Funding information:
  • Medical Research Council - (United Kingdom)

Phospholipase PLA2G6, a Parkinsonism-Associated Gene, Affects Vps26 and Vps35, Retromer Function, and Ceramide Levels, Similar to α-Synuclein Gain.

  • Lin G
  • Cell Metab.
  • 2018 Jun 7

Literature context: Phalloidin 488nm ThermoFisher RRID:AB_2315147 DAPI ThermoFisher AB_2629482


Abstract:

Mutations in PLA2G6 (PARK14) cause neurodegenerative disorders in humans, including autosomal recessive neuroaxonal dystrophy and early-onset parkinsonism. We show that loss of iPLA2-VIA, the fly homolog of PLA2G6, reduces lifespan, impairs synaptic transmission, and causes neurodegeneration. Phospholipases typically hydrolyze glycerol phospholipids, but loss of iPLA2-VIA does not affect the phospholipid composition of brain tissue but rather causes an elevation in ceramides. Reducing ceramides with drugs, including myriocin or desipramine, alleviates lysosomal stress and suppresses neurodegeneration. iPLA2-VIA binds the retromer subunits Vps35 and Vps26 and enhances retromer function to promote protein and lipid recycling. Loss of iPLA2-VIA impairs retromer function, leading to a progressive increase in ceramide. This induces a positive feedback loop that affects membrane fluidity and impairs retromer function and neuronal function. Similar defects are observed upon loss of vps26 or vps35 or overexpression of α-synuclein, indicating that these defects may be common in Parkinson disease.

Funding information:
  • NCI NIH HHS - R01 CA130893(United States)

The Listeriolysin O PEST-like Sequence Co-opts AP-2-Mediated Endocytosis to Prevent Plasma Membrane Damage during Listeria Infection.

  • Chen C
  • Cell Host Microbe
  • 2018 Jun 13

Literature context: Fisher Scientific Cat# A12379; RRID:AB_2315147 Bacterial and Virus Strains


Abstract:

Listeriolysin O (LLO) is a cholesterol-dependent cytolysin that mediates escape of Listeria monocytogenes from a phagosome, enabling growth of the bacteria in the host cell cytosol. LLO contains a PEST-like sequence that prevents it from killing infected cells, but the mechanism involved is unknown. We found that the LLO PEST-like sequence was necessary to mediate removal of LLO from the interior face of the plasma membrane, where it coalesces into discrete puncta. LLO interacts with Ap2a2, an adaptor protein involved in endocytosis, via its PEST-like sequence, and Ap2a2-dependent endocytosis is required to prevent LLO-induced cytotoxicity. An unrelated PEST-like sequence from a human G protein-coupled receptor (GPCR), which also interacts with Ap2a2, could functionally complement the PEST-like sequence in L. monocytogenes LLO. These data revealed that LLO co-opts the host endocytosis machinery to protect the integrity of the host plasma membrane during L. monocytogenes infection.

Funding information:
  • NCI NIH HHS - CA111294(United States)
  • NIAID NIH HHS - P01 AI063302()
  • NIAID NIH HHS - R01 AI027655()

Intracellular sorting and transcytosis of the rat transferrin receptor antibody OX26 across the blood-brain barrier in vitro is dependent on its binding affinity.

  • Haqqani AS
  • J. Neurochem.
  • 2018 Jun 7

Literature context: a Fluor 488 Phalloidin (A12379, RRID:AB_2315147, Life Sciences) for 5 min at RT


Abstract:

The blood-brain barrier (BBB) is a formidable obstacle to the delivery of therapeutics to the brain. Antibodies that bind transferrin receptor, which is enriched in brain endothelial cells, have been shown to cross the BBB and are being developed as fusion proteins to deliver therapeutic cargos to brain targets. Various antibodies have been developed for this purpose and their in vivo evaluation demonstrated that either low affinity or mono-valent receptor binding re-directs their transcellular trafficking away from lysosomal degradation and towards improved exocytosis on the abluminal side of the BBB. However, these studies have been performed with antibodies that recognize different TfR epitopes and have different binding characteristics, preventing inter-study comparisons. In this study, the efficiency of transcytosis in vitro and intracellular trafficking in endosomal compartments were evaluated in an in vitro BBB model for affinity variants (Kd from 5 nM -174 nM) of the rat TfR-binding antibody, OX26. Distribution in subcellular fractions of the rat brain endothelial cells was determined using both targeted quantitative proteomics (SRM) and fluorescent imaging with markers of early- and late endosomes. The OX26 variants with affinities of 76 nM and 108 nM showed improved trancytosis (Papp values) across the in vitro BBB model compared to a 5 nM OX26. Whereas ~40% of the 5 nM OX26 and ~35% of TfR co-localized with late-endosome/lysosome compartment, 76 nM and 108 nM affinity variants showed lower amounts in lysosomes and a predominant co-localization with early endosome markers. The study links bi-valent TfR antibody affinity to mechanisms of sorting and trafficking away from late endosomes and lysosomes, resulting in improvement in their transcytosis efficiency. This article is protected by copyright. All rights reserved.

Funding information:
  • NIAID NIH HHS - R56 AI018188(United States)

Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration.

  • Ratheesh A
  • Dev. Cell
  • 2018 May 7

Literature context: ientific Cat# A12379, RRID:AB_2315147 Phalloidin 633 Thermo Fisher Sc


Abstract:

Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo.

Funding information:
  • NCI NIH HHS - P50 CA130805(United States)

Spred1 Safeguards Hematopoietic Homeostasis against Diet-Induced Systemic Stress.

  • Tadokoro Y
  • Cell Stem Cell
  • 2018 May 3

Literature context: n Molecular Probes Cat# A12379, RRID:AB_2315147 ProLong Diamond Antifade Mounta


Abstract:

Stem cell self-renewal is critical for tissue homeostasis, and its dysregulation can lead to organ failure or tumorigenesis. While obesity can induce varied abnormalities in bone marrow components, it is unclear how diet might affect hematopoietic stem cell (HSC) self-renewal. Here, we show that Spred1, a negative regulator of RAS-MAPK signaling, safeguards HSC homeostasis in animals fed a high-fat diet (HFD). Under steady-state conditions, Spred1 negatively regulates HSC self-renewal and fitness, in part through Rho kinase activity. Spred1 deficiency mitigates HSC failure induced by infection mimetics and prolongs HSC lifespan, but it does not initiate leukemogenesis due to compensatory upregulation of Spred2. In contrast, HFD induces ERK hyperactivation and aberrant self-renewal in Spred1-deficient HSCs, resulting in functional HSC failure, severe anemia, and myeloproliferative neoplasm-like disease. HFD-induced hematopoietic abnormalities are mediated partly through alterations to the gut microbiota. Together, these findings reveal that diet-induced stress disrupts fine-tuning of Spred1-mediated signals to govern HSC homeostasis.

Funding information:
  • Arthritis Research UK - 17522(United Kingdom)

Hearing vulnerability after noise exposure in a mouse model of reactive oxygen species overproduction.

  • Morioka S
  • J. Neurochem.
  • 2018 Apr 20

Literature context: conjugated phalloidin (1 : 500, RRID:AB_2315147) and HRP-conjugated secondary (


Abstract:

Previous studies have convincingly argued that reactive oxygen species (ROS) contribute to the development of several major types of sensorineural hearing loss, such as noise-induced hearing loss (NIHL), drug-induced hearing loss, and age-related hearing loss. However, the underlying molecular mechanisms induced by ROS in these pathologies remain unclear. To resolve this issue, we established an in vivo model of ROS overproduction by generating a transgenic (TG) mouse line expressing the human NADPH oxidase 4 (NOX4, NOX4-TG mice), which is a constitutively active ROS-producing enzyme that does not require stimulation or an activator. Overproduction of ROS was detected at the cochlea of the inner ear in NOX4-TG mice, but they showed normal hearing function under baseline conditions. However, they demonstrated hearing function vulnerability, especially at high-frequency sounds, upon exposure to intense noise, which was accompanied by loss of cochlear outer hair cells (OHCs). The vulnerability to loss of hearing function and OHCs was rescued by treatment with the antioxidant Tempol. Additionally, we found increased protein levels of the heat shock protein 47 (HSP47) in models using HEK293 cells, including H2 O2 treatment and cells with stable and transient expression of NOX4. Furthermore, the upregulated levels of Hsp47 were observed in both the cochlea and heart of NOX4-TG mice. Thus, antioxidant therapy is a promising approach for the treatment of NIHL. Hsp47 may be an endogenous antioxidant factor, compensating for the chronic ROS overexposure in vivo, and counteracting ROS-related hearing loss. This article is protected by copyright. All rights reserved.

Funding information:
  • NIGMS NIH HHS - T32 GM007388(United States)

Ari-1 Regulates Myonuclear Organization Together with Parkin and Is Associated with Aortic Aneurysms.

  • Tan KL
  • Dev. Cell
  • 2018 Apr 23

Literature context: fic CAT#A12379; RRID:AB_2315147 TOPRO3 Thermo Scientific CAT#T3


Abstract:

Nuclei are actively positioned and anchored to the cytoskeleton via the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex. We identified mutations in the Parkin-like E3 ubiquitin ligase Ariadne-1 (Ari-1) that affect the localization and distribution of LINC complex members in Drosophila. ari-1 mutants exhibit nuclear clustering and morphology defects in larval muscles. We show that Ari-1 mono-ubiquitinates the core LINC complex member Koi. Surprisingly, we discovered functional redundancy between Parkin and Ari-1: increasing Parkin expression rescues ari-1 mutant phenotypes and vice versa. We further show that rare variants in the human homolog of ari-1 (ARIH1) are associated with thoracic aortic aneurysms and dissections, conditions resulting from smooth muscle cell (SMC) dysfunction. Human ARIH1 rescues fly ari-1 mutant phenotypes, whereas human variants found in patients fail to do so. In addition, SMCs obtained from patients display aberrant nuclear morphology. Hence, ARIH1 is critical in anchoring myonuclei to the cytoskeleton.

Funding information:
  • Intramural NIH HHS - (United States)

Distribution of tachykinin-related peptides in the brain of the tobacco budworm Heliothis virescens.

  • Zhao XC
  • J. Comp. Neurol.
  • 2017 Dec 15

Literature context: Probes, Eugene OR; Cat# A12379; RRID:AB_2315147) was performed by adding it to


Abstract:

Invertebrate tachykinin-related peptides (TKRPs) comprise a group of signaling molecules having sequence similarities to mammalian tachykinins. A growing body of evidence has demonstrated the presence of TKRPs in the central nervous system of insects. In this investigation, we used an antiserum against locustatachykinin-II to reveal the distribution pattern of these peptides in the brain of the moth Heliothis virescens. Immunolabeling was found throughout the brain of the heliothine moth. Most of the roughly 500 locustatachykinin-II immunoreactive cell bodies, that is, ca. 400, were located in the protocerebrum, whereas the rest was distributed in the deutocerebrum, tritocerebrum, and the gnathal ganglion. Abundant immunoreactive processes were located in the same regions. Labeled processes in the protocerebrum were especially localized in optic lobe, central body, lateral accessory lobe, superior protocerebrum, and lateral protocerebrum, while those in the deutocerebrum were present exclusively in the antennal lobe. In addition to brain interneurons, four pairs of median neurosecretory cells in the pars intercerebralis with terminal processes in the corpora cardiaca and aorta wall were immunostained. No sexual dimorphism in immunoreactivity was found. Comparing the data obtained here with findings from other insect species reveals considerable differences, suggesting species-specific roles of tachykinin-related peptides in insects.

ESRP1 Mutations Cause Hearing Loss due to Defects in Alternative Splicing that Disrupt Cochlear Development.

  • Rohacek AM
  • Dev. Cell
  • 2017 Nov 6

Literature context: 1:50) Molecular Probes A-12379; RRID:AB_2315147 Critical Commercial Assays


Abstract:

Alternative splicing contributes to gene expression dynamics in many tissues, yet its role in auditory development remains unclear. We performed whole-exome sequencing in individuals with sensorineural hearing loss (SNHL) and identified pathogenic mutations in Epithelial Splicing-Regulatory Protein 1 (ESRP1). Patient-derived induced pluripotent stem cells showed alternative splicing defects that were restored upon repair of an ESRP1 mutant allele. To determine how ESRP1 mutations cause hearing loss, we evaluated Esrp1-/- mouse embryos and uncovered alterations in cochlear morphogenesis, auditory hair cell differentiation, and cell fate specification. Transcriptome analysis revealed impaired expression and splicing of genes with essential roles in cochlea development and auditory function. Aberrant splicing of Fgfr2 blocked stria vascularis formation due to erroneous ligand usage, which was corrected by reducing Fgf9 gene dosage. These findings implicate mutations in ESRP1 as a cause of SNHL and demonstrate the complex interplay between alternative splicing, inner ear development, and auditory function.

Funding information:
  • NHGRI NIH HHS - U01 HG006546()
  • NIA NIH HHS - R01 AG046544()
  • NIDCD NIH HHS - F31 DC014647()
  • NIDCD NIH HHS - R01 DC006254()
  • NIDCR NIH HHS - R01 DE024749()
  • NIGMS NIH HHS - T32 GM008216()

TMC2 Modifies Permeation Properties of the Mechanoelectrical Transducer Channel in Early Postnatal Mouse Cochlear Outer Hair Cells.

  • Corns LF
  • Front Mol Neurosci
  • 2017 Nov 3

Literature context: idin (1:300: Life Technologies, RRID:AB_2315147), 0.7% FBS and 0.01% Triton -X1


Abstract:

The ability of cochlear hair cells to convert sound into receptor potentials relies on the mechanoelectrical transducer (MET) channels present in their stereociliary bundles. There is strong evidence implying that transmembrane channel-like protein (TMC) 1 contributes to the pore-forming subunit of the mature MET channel, yet its expression is delayed (~>P5 in apical outer hair cells, OHCs) compared to the onset of mechanotransduction (~P1). Instead, the temporal expression of TMC2 coincides with this onset, indicating that it could be part of the immature MET channel. We investigated MET channel properties from OHCs of homo- and heterozygous Tmc2 knockout mice. In the presence of TMC2, the MET channel blocker dihydrostreptomycin (DHS) had a lower affinity for the channel, when the aminoglycoside was applied extracellularly or intracellularly, with the latter effect being more pronounced. In Tmc2 knockout mice OHCs were protected from aminoglycoside ototoxicity during the first postnatal week, most likely due to their small MET current and the lower saturation level for aminoglycoside entry into the individual MET channels. DHS entry through the MET channels of Tmc2 knockout OHCs was lower during the first than in the second postnatal week, suggestive of a developmental change in the channel pore properties independent of TMC2. However, the ability of TMC2 to modify the MET channel properties strongly suggests it contributes to the pore-forming subunit of the neonatal channel. Nevertheless, we found that TMC2, different from TMC1, is not necessary for OHC development. While TMC2 is required for mechanotransduction in mature vestibular hair cells, its expression in the immature cochlea may be an evolutionary remnant.

Control of Cell Shape, Neurite Outgrowth, and Migration by a Nogo-A/HSPG Interaction.

  • Kempf A
  • Dev. Cell
  • 2017 Oct 9

Literature context: Cat#A-12379, RRID:AB_2315147 Bacterial and Virus Strains


Abstract:

Heparan sulfate proteoglycans (HSPGs) critically modulate adhesion-, growth-, and migration-related processes. Here, we show that the transmembrane protein, Nogo-A, inhibits neurite outgrowth and cell spreading in neurons and Nogo-A-responsive cell lines via HSPGs. The extracellular, active 180 amino acid Nogo-A region, named Nogo-A-Δ20, binds to heparin and brain-derived heparan sulfate glycosaminoglycans (GAGs) but not to the closely related chondroitin sulfate GAGs. HSPGs are required for Nogo-A-Δ20-induced inhibition of adhesion, cell spreading, and neurite outgrowth, as well as for RhoA activation. Surprisingly, we show that Nogo-A-Δ20 can act via HSPGs independently of its receptor, Sphingosine-1-Phosphate receptor 2 (S1PR2). We thereby identify the HSPG family members syndecan-3 and syndecan-4 as functional receptors for Nogo-A-Δ20. Finally, we show in explant cultures ex vivo that Nogo-A-Δ20 promotes the migration of neuroblasts via HSPGs but not S1PR2.

Dual function of the PI3K-Akt-mTORC1 axis in myelination of the peripheral nervous system.

  • Figlia G
  • Elife
  • 2017 Sep 7

Literature context: chnologies (Carlsbad, CA, USA) (RRID:AB_2315147).


Abstract:

Myelination is a biosynthetically demanding process in which mTORC1, the gatekeeper of anabolism, occupies a privileged regulatory position. We have shown previously that loss of mTORC1 function in Schwann cells (SCs) hampers myelination. Here, we genetically disrupted key inhibitory components upstream of mTORC1, TSC1 or PTEN, in mouse SC development, adult homeostasis, and nerve injury. Surprisingly, the resulting mTORC1 hyperactivity led to markedly delayed onset of both developmental myelination and remyelination after injury. However, if mTORC1 was hyperactivated after myelination onset, radial hypermyelination was observed. At early developmental stages, physiologically high PI3K-Akt-mTORC1 signaling suppresses expression of Krox20 (Egr2), the master regulator of PNS myelination. This effect is mediated by S6K and contributes to control mechanisms that keep SCs in a not-fully differentiated state to ensure proper timing of myelination initiation. An ensuing decline in mTORC1 activity is crucial to allow myelination to start, while remaining mTORC1 activity drives myelin growth.

Directional migration of mesenchymal stem cells under an SDF-1α gradient on a microfluidic device.

  • Park S
  • PLoS ONE
  • 2017 Sep 8

Literature context: Fisher Scientific Cat# A12379, RRID:AB_2315147), and nuclei were stained with


Abstract:

Homing of peripheral stem cells is regulated by one of the most representative homing factors, stromal cell-derived factor 1 alpha (SDF-1α), which specifically binds to the plasma membrane receptor CXCR4 of mesenchymal stem cells (MSCs) in order to initiate the signaling pathways that lead to directional migration and homing of stem cells. This complex homing process and directional migration of stem cells have been mimicked on a microfluidic device that is capable of generating a chemokine gradient within the collagen matrix and embedding endothelial cell (EC) monolayers to mimic blood vessels. On the microfluidic device, stem cells showed directional migration toward the higher concentration of SDF-1α, whereas treatment with the CXCR4 antagonist AMD3100 caused loss of directionality of stem cells. Furthermore, inhibition of stem cell's main migratory signaling pathways, Rho-ROCK and Rac pathways, caused blockage of actomyosin and lamellipodia formation, decreasing the migration distance but maintaining directionality. Stem cell homing regulated by SDF-1α caused directional migration of stem cells, while the migratory ability was affected by the activation of migration-related signaling pathways.

Gestational Stage and IFN-λ Signaling Regulate ZIKV Infection In Utero.

  • Jagger BW
  • Cell Host Microbe
  • 2017 Sep 13

Literature context: n Invitrogen RRID:AB_2315147 Rabbit anti-cytokeratin 19 Abca


Abstract:

Although Zika virus (ZIKV)-induced congenital disease occurs more frequently during early stages of pregnancy, its basis remains undefined. Using established type I interferon (IFN)-deficient mouse models of ZIKV transmission in utero, we found that the placenta and fetus were more susceptible to ZIKV infection at earlier gestational stages. Whereas ZIKV infection at embryonic day 6 (E6) resulted in placental insufficiency and fetal demise, infections at midstage (E9) resulted in reduced cranial dimensions, and infection later in pregnancy (E12) caused no apparent fetal disease. In addition, we found that fetuses lacking type III IFN-λ signaling had increased ZIKV replication in the placenta and fetus when infected at E12, and reciprocally, treatment of pregnant mice with IFN-λ2 reduced ZIKV infection. IFN-λ treatment analogously diminished ZIKV infection in human midgestation fetal- and maternal-derived tissue explants. Our data establish a model of gestational stage dependence of ZIKV pathogenesis and IFN-λ-mediated immunity at the maternal-fetal interface.

Funding information:
  • NCI NIH HHS - P30 CA047904()
  • NIAID NIH HHS - R01 AI073755()
  • NIAID NIH HHS - R01 AI104972()
  • NIAID NIH HHS - T32 AI007172()
  • NIAID NIH HHS - U19 AI083019()
  • NICHD NIH HHS - R01 HD075665()
  • NICHD NIH HHS - R01 HD091218()

Modulation of occluding junctions alters the hematopoietic niche to trigger immune activation.

  • Khadilkar RJ
  • Elife
  • 2017 Aug 25

Literature context: hermoFisher Scientific, A-12379 RRID:AB_2315147), VECTASHIELD with DAPI (H-1200


Abstract:

Stem cells are regulated by signals from their microenvironment, or niche. During Drosophila hematopoiesis, a niche regulates prohemocytes to control hemocyte production. Immune challenges activate cell-signalling to initiate the cellular and innate immune response. Specifically, certain immune challenges stimulate the niche to produce signals that induce prohemocyte differentiation. However, the mechanisms that promote prohemocyte differentiation subsequent to immune challenges are poorly understood. Here we show that bacterial infection induces the cellular immune response by modulating occluding-junctions at the hematopoietic niche. Occluding-junctions form a permeability barrier that regulates the accessibility of prohemocytes to niche derived signals. The immune response triggered by infection causes barrier breakdown, altering the prohemocyte microenvironment to induce immune cell production. Moreover, genetically induced barrier ablation provides protection against infection by activating the immune response. Our results reveal a novel role for occluding-junctions in regulating niche-hematopoietic progenitor signalling and link this mechanism to immune cell production following infection.

An Actomyosin-Arf-GEF Negative Feedback Loop for Tissue Elongation under Stress.

  • West JJ
  • Curr. Biol.
  • 2017 Aug 7

Literature context: phalloidinInvitrogenCat #A12380Alexa Fluor 488-conjugated phalloidinInvitrogenCat #A12379anti-digoxigenin AP-conjugateSig


Abstract:

In response to a pulling force, a material can elongate, hold fast, or fracture. During animal development, multi-cellular contraction of one region often stretches neighboring tissue. Such local contraction occurs by induced actomyosin activity, but molecular mechanisms are unknown for regulating the physical properties of connected tissue for elongation under stress. We show that cytohesins, and their Arf small G protein guanine nucleotide exchange activity, are required for tissues to elongate under stress during both Drosophila dorsal closure (DC) and zebrafish epiboly. In Drosophila, protein localization, laser ablation, and genetic interaction studies indicate that the cytohesin Steppke reduces tissue tension by inhibiting actomyosin activity at adherens junctions. Without Steppke, embryogenesis fails, with epidermal distortions and tears resulting from myosin misregulation. Remarkably, actomyosin network assembly is necessary and sufficient for local Steppke accumulation, where live imaging shows Steppke recruitment within minutes. This rapid negative feedback loop provides a molecular mechanism for attenuating the main tension generator of animal tissues. Such attenuation relaxes tissues and allows orderly elongation under stress.

Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons.

  • Scholz N
  • Elife
  • 2017 Aug 8

Literature context: exa 488 (1:500; RRID:AB_2315147), Alexa Fluor-488-conjugated go


Abstract:

Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response.

Nicotinamide Ameliorates Disease Phenotypes in a Human iPSC Model of Age-Related Macular Degeneration.

  • Saini JS
  • Cell Stem Cell
  • 2017 May 4

Literature context: t#A12379; RRID:AB_2315147 Mouse mono


Abstract:

Age-related macular degeneration (AMD) affects the retinal pigment epithelium (RPE), a cell monolayer essential for photoreceptor survival, and is the leading cause of vision loss in the elderly. There are no disease-altering therapies for dry AMD, which is characterized by accumulation of subretinal drusen deposits and complement-driven inflammation. We report the derivation of human-induced pluripotent stem cells (hiPSCs) from patients with diagnosed AMD, including two donors with the rare ARMS2/HTRA1 homozygous genotype. The hiPSC-derived RPE cells produce several AMD/drusen-related proteins, and those from the AMD donors show significantly increased complement and inflammatory factors, which are most exaggerated in the ARMS2/HTRA1 lines. Using a panel of AMD biomarkers and candidate drug screening, combined with transcriptome analysis, we discover that nicotinamide (NAM) ameliorated disease-related phenotypes by inhibiting drusen proteins and inflammatory and complement factors while upregulating nucleosome, ribosome, and chromatin-modifying genes. Thus, targeting NAM-regulated pathways is a promising avenue for developing therapeutics to combat AMD.

Funding information:
  • NEI NIH HHS - F32 EY025931()
  • NEI NIH HHS - R01 EY022079()
  • NIA NIH HHS - RF1 AG042932()

Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis.

  • Sidhaye J
  • Elife
  • 2017 Apr 4

Literature context: alloidin (RRID:AB_2315147, Molecular


Abstract:

Organ formation is a multi-scale event that involves changes at the intracellular, cellular and tissue level. Organogenesis often starts with the formation of characteristically shaped organ precursors. However, the cellular mechanisms driving organ precursor formation are often not clear. Here, using zebrafish, we investigate the epithelial rearrangements responsible for the development of the hemispherical retinal neuroepithelium (RNE), a part of the optic cup. We show that in addition to basal shrinkage of RNE cells, active migration of connected epithelial cells into the RNE is a crucial player in its formation. This cellular movement is driven by progressive cell-matrix contacts and actively translocates prospective RNE cells to their correct location before they adopt neuroepithelial fate. Failure of this migration during neuroepithelium formation leads to ectopic determination of RNE cells and consequently impairs optic cup formation. Overall, this study illustrates how spatiotemporal coordination between morphogenic movements and fate determination critically influences organogenesis.

RING finger E3 ligase PPP1R11 regulates TLR2 signaling and innate immunity.

  • McKelvey AC
  • Elife
  • 2016 Nov 2

Literature context: (A12379, RRID:AB_2315147), Hoechst


Abstract:

Toll-like receptor 2 (TLR2) is a pattern recognition receptor that recognizes many types of PAMPs that originate from gram-positive bacteria. Here we describe a novel mechanism regulating TLR2 protein expression and subsequent cytokine release through the ubiquitination and degradation of the receptor in response to ligand stimulation. We show a new mechanism in which an uncharacterized RING finger E3 ligase, PPP1R11, directly ubiquitinates TLR2 both in vitro and in vivo, which leads to TLR2 degradation and disruption of the signaling cascade. Lentiviral gene transfer or knockdown of PPP1R11 in mouse lungs significantly affects lung inflammation and the clearance of Staphylococcus aureus. There is a negative correlation between PPP1R11 and TLR2 levels in white blood cell samples isolated from patients with Staphylococcus aureus infections. These results suggest that PPP1R11 plays an important role in regulating innate immunity and gram-positive bacterial clearance by functioning, in part, through the ubiquitination and degradation of TLR2.

Funding information:
  • NIMH NIH HHS - R56MH104593(United States)

Differentiation alters stem cell nuclear architecture, mechanics, and mechano-sensitivity.

  • Heo SJ
  • Elife
  • 2016 Nov 30

Literature context: sbad, CA, RRID:AB_2315147) was used


Abstract:

Mesenchymal stem cell (MSC) differentiation is mediated by soluble and physical cues. In this study, we investigated differentiation-induced transformations in MSC cellular and nuclear biophysical properties and queried their role in mechanosensation. Our data show that nuclei in differentiated bovine and human MSCs stiffen and become resistant to deformation. This attenuated nuclear deformation was governed by restructuring of Lamin A/C and increased heterochromatin content. This change in nuclear stiffness sensitized MSCs to mechanical-loading-induced calcium signaling and differentiated marker expression. This sensitization was reversed when the 'stiff' differentiated nucleus was softened and was enhanced when the 'soft' undifferentiated nucleus was stiffened through pharmacologic treatment. Interestingly, dynamic loading of undifferentiated MSCs, in the absence of soluble differentiation factors, stiffened and condensed the nucleus, and increased mechanosensitivity more rapidly than soluble factors. These data suggest that the nucleus acts as a mechanostat to modulate cellular mechanosensation during differentiation.

Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse.

  • Schill EM
  • Dev. Biol.
  • 2016 Jan 15

Literature context: vitrogen; RRID:AB_2315147 Rabbit ant


Abstract:

Hirschsprung Disease (HSCR) is a potentially deadly birth defect characterized by the absence of the enteric nervous system (ENS) in distal bowel. Although HSCR has clear genetic causes, no HSCR-associated mutation is 100% penetrant, suggesting gene-gene and gene-environment interactions determine HSCR occurrence. To test the hypothesis that certain medicines might alter HSCR risk we treated zebrafish with medications commonly used during early human pregnancy and discovered that ibuprofen caused HSCR-like absence of enteric neurons in distal bowel. Using fetal CF-1 mouse gut slice cultures, we found that ibuprofen treated enteric neural crest-derived cells (ENCDC) had reduced migration, fewer lamellipodia and lower levels of active RAC1/CDC42. Additionally, inhibiting ROCK, a RHOA effector and known RAC1 antagonist, reversed ibuprofen effects on migrating mouse ENCDC in culture. Ibuprofen also inhibited colonization of Ret+/- mouse bowel by ENCDC in vivo and dramatically reduced bowel colonization by chick ENCDC in culture. Interestingly, ibuprofen did not affect ENCDC migration until after at least three hours of exposure. Furthermore, mice deficient in Ptgs1 (COX 1) and Ptgs2 (COX 2) had normal bowel colonization by ENCDC and normal ENCDC migration in vitro suggesting COX-independent effects. Consistent with selective and strain specific effects on ENCDC, ibuprofen did not affect migration of gut mesenchymal cells, NIH3T3, or WT C57BL/6 ENCDC, and did not affect dorsal root ganglion cell precursor migration in zebrafish. Thus, ibuprofen inhibits ENCDC migration in vitro and bowel colonization by ENCDC in vivo in zebrafish, mouse and chick, but there are cell type and strain specific responses. These data raise concern that ibuprofen may increase Hirschsprung disease risk in some genetically susceptible children.

Wnt/Frizzled family members mediate olfactory sensory neuron axon extension.

  • Rodriguez-Gil DJ
  • J. Comp. Neurol.
  • 2008 Nov 20

Literature context:


Abstract:

A comprehensive model has yet to emerge, but it seems likely that numerous mechanisms contribute to the specificity of olfactory sensory neuron (OSN) axon innervation of the olfactory bulb. Elsewhere in the nervous system the Wnt/Fz family has been implicated in patterning of anterior-posterior axes, cell type specification, cell proliferation, and axon guidance. Because of our work describing cadherin-catenin family member expression in the primary olfactory pathway, and because mechanisms of Wnt-Fz interactions can depend in part on catenins, we were encouraged to explore Wnt-Fz expression and function in OSN axon extension. Here, we show that OSNs express Fz-1, Fz-3, and Wnt-5a, whereas olfactory ensheathing cells (OECs) express Wnt-4. Fz-7 is also expressed in the olfactory nerve by cells that delineate large axon fascicles, but are negative for OEC markers. Fz-1 showed a developmental downregulation. However, in adults it is expressed at different levels across the olfactory epithelium and in restricted glomeruli across the olfactory bulb, suggesting an important role in the formation and maintenance of OSN connections to the olfactory bulb. Reporter TOPGAL mice demonstrated that some OECs located in the inner olfactory nerve layer can respond to Wnt ligands. Of further interest, we show here with in vitro assays that Wnt-5a increases OSN axon outgrowth and alters growth cone morphology. Our data point to a key role for Wnt/Fz molecules in the development of the mouse olfactory system, providing complementary mechanisms required for OSN axon extension and coalescence.