Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

DAPI (4',6-Diamidino-2-Phenylindole, Dilactate) antibody


Antibody ID


Target Antigen


Proper Citation

(Thermo Fisher Scientific Cat# D3571, RRID:AB_2307445)


monoclonal antibody




Thermo Fisher Scientific

Cat Num


Chrono-pharmacological Targeting of the CCL2-CCR2 Axis Ameliorates Atherosclerosis.

  • Winter C
  • Cell Metab.
  • 2018 Jul 3

Literature context:


Onset of cardiovascular complications as a consequence of atherosclerosis exhibits a circadian incidence with a peak in the morning hours. Although development of atherosclerosis extends for long periods of time through arterial leukocyte recruitment, we hypothesized that discrete diurnal invasion of the arterial wall could sustain atherogenic growth. Here, we show that myeloid cell recruitment to atherosclerotic lesions oscillates with a peak during the transition from the activity to the resting phase. This diurnal phenotype is regulated by rhythmic release of myeloid cell-derived CCL2, and blockade of its signaling abolished oscillatory leukocyte adhesion. In contrast, we show that myeloid cell adhesion to microvascular beds peaks during the early activity phase. Consequently, timed pharmacological CCR2 neutralization during the activity phase caused inhibition of atherosclerosis without disturbing microvascular recruitment. These findings demonstrate that chronic inflammation of large vessels feeds on rhythmic myeloid cell recruitment, and lay the foundation for chrono-pharmacology-based therapy.

Funding information:
  • NIEHS NIH HHS - P42 ES005948(United States)

Astrocytic signaling supports hippocampal-prefrontal theta synchronization and cognitive function.

  • Sardinha VM
  • Glia
  • 2018 Jun 5

Literature context:


Astrocytes interact with neurons at the cellular level through modulation of synaptic formation, maturation, and function, but the impact of such interaction into behavior remains unclear. Here, we studied the dominant negative SNARE (dnSNARE) mouse model to dissect the role of astrocyte-derived signaling in corticolimbic circuits, with implications for cognitive processing. We found that the blockade of gliotransmitter release in astrocytes triggers a critical desynchronization of neural theta oscillations between dorsal hippocampus and prefrontal cortex. Moreover, we found a strong cognitive impairment in tasks depending on this network. Importantly, the supplementation with d-serine completely restores hippocampal-prefrontal theta synchronization and rescues the spatial memory and long-term memory of dnSNARE mice. We provide here novel evidence of long distance network modulation by astrocytes, with direct implications to cognitive function.

Identification of a critical sulfation in chondroitin that inhibits axonal regeneration.

  • Pearson CS
  • Elife
  • 2018 May 15

Literature context:


The failure of mammalian CNS neurons to regenerate their axons derives from a combination of intrinsic deficits and extrinsic factors. Following injury, chondroitin sulfate proteoglycans (CSPGs) within the glial scar inhibit axonal regeneration, an action mediated by the sulfated glycosaminoglycan (GAG) chains of CSPGs, especially those with 4-sulfated (4S) sugars. Arylsulfatase B (ARSB) selectively cleaves 4S groups from the non-reducing ends of GAG chains without disrupting other, growth-permissive motifs. We demonstrate that ARSB is effective in reducing the inhibitory actions of CSPGs both in in vitro models of the glial scar and after optic nerve crush (ONC) in adult mice. ARSB is clinically approved for replacement therapy in patients with mucopolysaccharidosis VI and therefore represents an attractive candidate for translation to the human CNS.

Funding information:
  • National Institutes of Health - 1ZIAHL006135()
  • NIEHS NIH HHS - 2T32ES007329-10(United States)

The Role of Mitotic Cell-Substrate Adhesion Re-modeling in Animal Cell Division.

  • Dix CL
  • Dev. Cell
  • 2018 Apr 9

Literature context:


Animal cells undergo a dramatic series of shape changes as they divide, which depend on re-modeling of cell-substrate adhesions. Here, we show that while focal adhesion complexes are disassembled during mitotic rounding, integrins remain in place. These integrin-rich contacts connect mitotic cells to the underlying substrate throughout mitosis, guide polarized cell migration following mitotic exit, and are functionally important, since adherent cells undergo division failure when removed from the substrate. Further, the ability of cells to re-spread along pre-existing adhesive contacts is essential for division in cells compromised in their ability to construct a RhoGEF-dependent (Ect2) actomyosin ring. As a result, following Ect2 depletion, cells fail to divide on small adhesive islands but successfully divide on larger patterns, as the connection between daughter cells narrows and severs as they migrate away from one another. In this way, regulated re-modeling of cell-substrate adhesions during mitotic rounding aids division in animal cells.

Funding information:
  • Telethon - JT01Y01(Italy)

Broad-Spectrum Regulation of Nonreceptor Tyrosine Kinases by the Bacterial ADP-Ribosyltransferase EspJ.

  • Pollard DJ
  • MBio
  • 2018 Apr 10

Literature context:


Tyrosine phosphorylation is key for signal transduction from exogenous stimuli, including the defense against pathogens. Conversely, pathogens can subvert protein phosphorylation to control host immune responses and facilitate invasion and dissemination. The bacterial effectors EspJ and SeoC are injected into host cells through a type III secretion system by enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively), Citrobacter rodentium, and Salmonella enterica, where they inhibit Src kinase by coupled amidation and ADP-ribosylation. C. rodentium, which is used to model EPEC and EHEC infections in humans, is a mouse pathogen triggering colonic crypt hyperplasia (CCH) and colitis. Enumeration of bacterial shedding and CCH confirmed that EspJ affects neither tolerance nor resistance to infection. However, comparison of the proteomes of intestinal epithelial cells isolated from mice infected with wild-type C. rodentium or C. rodentium encoding catalytically inactive EspJ revealed that EspJ-induced ADP-ribosylation regulates multiple nonreceptor tyrosine kinases in vivo Investigation of the substrate repertoire of EspJ revealed that in HeLa and A549 cells, Src and Csk were significantly targeted; in polarized Caco2 cells, EspJ targeted Src and Csk and the Src family kinase (SFK) Yes1, while in differentiated Thp1 cells, EspJ modified Csk, the SFKs Hck and Lyn, the Tec family kinases Tec and Btk, and the adapter tyrosine kinase Syk. Furthermore, Abl (HeLa and Caco2) and Lyn (Caco2) were enriched specifically in the EspJ-containing samples. Biochemical assays revealed that EspJ, the only bacterial ADP-ribosyltransferase that targets mammalian kinases, controls immune responses and the Src/Csk signaling axis.IMPORTANCE Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively) strains cause significant mortality and morbidity worldwide. Citrobacter rodentium is a mouse pathogen used to model EPEC and EHEC pathogenesis in vivo Diarrheal disease is triggered following injection of bacterial effectors, via a type III secretion system (T3SS), into intestinal epithelial cells (IECs). While insights into the role of the effectors were historically obtained from pathological, immunologic, or cell culture phenotypes, subtle roles of individual effectors in vivo are often masked. The aim of this study was to elucidate the role and specificity of the ADP-ribosyltransferase effector EspJ. For the first time, we show that the in vivo processes affected by a T3SS effector can be studied by comparing the proteomes of IECs extracted from mice infected with wild-type C. rodentium or an espJ catalytic mutant. We show that EspJ, the only bacterial ADP-ribosyltransferase that targets mammalian kinases, regulates the host immune response in vivo.

Funding information:
  • NIGMS NIH HHS - GM07739(United States)

Isl1β Overexpression With Key β Cell Transcription Factors Enhances Glucose-Responsive Hepatic Insulin Production and Secretion.

  • Jung Y
  • Endocrinology
  • 2018 Feb 1

Literature context:


Adenoviral gene transfer of key β cell developmental regulators including Pdx1, Neurod1, and Mafa (PDA) has been reported to generate insulin-producing cells in the liver. However, PDA insulin secretion is transient and glucose unresponsive. Here, we report that an additional β cell developmental regulator, insulin gene enhancer binding protein splicing variant (Isl1β), improved insulin production and glucose-responsive secretion in PDA mice. Microarray gene expression analysis suggested that adenoviral PDA transfer required an additional element for mature β cell generation, such as Isl1 and Elf3 in the liver. In vitro promoter analysis indicated that splicing variant Isl1, or Isl1β, is an important factor for transcriptional activity of the insulin gene. In vivo bioluminescence monitoring using insulin promoter-luciferase transgenic mice verified that adenoviral PDA + Isl1β transfer produced highly intense luminescence from the liver, which peaked at day 7 and persisted for more than 10 days. Using insulin promoter-GFP transgenic mice, we further confirmed that Isl1β supplementation to PDA augmented insulin-producing cells in the liver, insulin production and secretion, and β cell‒related genes. Finally, the PDA + Isl1β combination ameliorated hyperglycemia in diabetic mice for 28 days and enhanced glucose tolerance and responsiveness. Thus, our results suggest that Isl1β is a key additional transcriptional factor for advancing the generation of insulin-producing cells in the liver in combination with PDA.

Funding information:
  • Wellcome Trust - 092809(United Kingdom)

High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease.

  • Mrdjen D
  • Immunity
  • 2018 Feb 20

Literature context:


Individual reports suggest that the central nervous system (CNS) contains multiple immune cell types with diverse roles in tissue homeostasis, immune defense, and neurological diseases. It has been challenging to map leukocytes across the entire brain, and in particular in pathology, where phenotypic changes and influx of blood-derived cells prevent a clear distinction between reactive leukocyte populations. Here, we applied high-dimensional single-cell mass and fluorescence cytometry, in parallel with genetic fate mapping systems, to identify, locate, and characterize multiple distinct immune populations within the mammalian CNS. Using this approach, we revealed that microglia, several subsets of border-associated macrophages and dendritic cells coexist in the CNS at steady state and exhibit disease-specific transformations in the immune microenvironment during aging and in models of Alzheimer's disease and multiple sclerosis. Together, these data and the described framework provide a resource for the study of disease mechanisms, potential biomarkers, and therapeutic targets in CNS disease.

Funding information:
  • NHLBI NIH HHS - HL086621(United States)

The β-alanine transporter BalaT is required for visual neurotransmission in Drosophila.

  • Han Y
  • Elife
  • 2017 Aug 14

Literature context:


The recycling of neurotransmitters is essential for sustained synaptic transmission. In Drosophila, histamine recycling is required for visual synaptic transmission. Synaptic histamine is rapidly taken up by laminar glia, and is converted to carcinine. After delivered back to photoreceptors, carcinine is hydrolyzed to release histamine and β-alanine. This histamine is repackaged into synaptic vesicles, but it is unclear how the β-alanine is returned to the laminar glial cells. Here, we identified a new β-alanine transporter, which we named BalaT (Beta-alanine Transporter). Null balat mutants exhibited lower levels of β-alanine, as well as less β-alanine accumulation in the retina. Moreover, BalaT is expressed and required in retinal pigment cells for maintaining visual synaptic transmission and phototaxis behavior. These results provide the first genetic evidence that retinal pigment cells play a critical role in visual neurotransmission, and suggest that a BalaT-dependent β-alanine trafficking pathway is required for histamine homeostasis and visual neurotransmission.

Dentate Gyrus Contributes to Retrieval as well as Encoding: Evidence from Context Fear Conditioning, Recall, and Extinction.

  • Bernier BE
  • J. Neurosci.
  • 2017 Jun 28

Literature context:


Dentate gyrus (DG) is widely thought to provide a teaching signal that enables hippocampal encoding of memories, but its role during retrieval is poorly understood. Some data and models suggest that DG plays no role in retrieval; others encourage the opposite conclusion. To resolve this controversy, we evaluated the effects of optogenetic inhibition of dorsal DG during context fear conditioning, recall, generalization, and extinction in male mice. We found that (1) inhibition during training impaired context fear acquisition; (2) inhibition during recall did not impair fear expression in the training context, unless mice had to distinguish between similar feared and neutral contexts; (3) inhibition increased generalization of fear to an unfamiliar context that was similar to a feared one and impaired fear expression in the conditioned context when it was similar to a neutral one; and (4) inhibition impaired fear extinction. These effects, as well as several seemingly contradictory published findings, could be reproduced by BACON (Bayesian Context Fear Algorithm), a physiologically realistic hippocampal model positing that acquisition and retrieval both involve coordinated activity in DG and CA3. Our findings thus suggest that DG contributes to retrieval and extinction, as well as to the initial establishment of context fear.SIGNIFICANCE STATEMENT Despite abundant evidence that the hippocampal dentate gyrus (DG) plays a critical role in memory, it remains unclear whether the role of DG relates to memory acquisition or retrieval. Using contextual fear conditioning and optogenetic inhibition, we show that DG contributes to both of these processes. Using computational simulations, we identify specific mechanisms through which the suppression of DG affects memory performance. Finally, we show that DG contributes to fear extinction learning, a process in which learned fear is attenuated through exposures to a fearful context in the absence of threat. Our data resolve a long-standing question about the role of DG in memory and provide insight into how disorders affecting DG, including aging, stress, and depression, influence cognitive processes.

Funding information:
  • NEI NIH HHS - R21 EY026446()
  • NIMH NIH HHS - F31 MH111243()
  • NIMH NIH HHS - R01 MH062122()
  • NIMH NIH HHS - R01 MH102595()
  • NIMH NIH HHS - R03 MH111321()
  • NIMH NIH HHS - T32 MH106454()

Tamoxifen Provides Structural and Functional Rescue in Murine Models of Photoreceptor Degeneration.

  • Wang X
  • J. Neurosci.
  • 2017 Mar 22

Literature context:


Photoreceptor degeneration is a cause of irreversible vision loss in incurable blinding retinal diseases including retinitis pigmentosa (RP) and atrophic age-related macular degeneration. We found in two separate mouse models of photoreceptor degeneration that tamoxifen, a selective estrogen receptor modulator and a drug previously linked with retinal toxicity, paradoxically provided potent neuroprotective effects. In a light-induced degeneration model, tamoxifen prevented onset of photoreceptor apoptosis and atrophy and maintained near-normal levels of electroretinographic responses. Rescue effects were correlated with decreased microglial activation and inflammatory cytokine production in the retina in vivo and a reduction of microglia-mediated toxicity to photoreceptors in vitro, indicating a microglia-mediated mechanism of rescue. Tamoxifen also rescued degeneration in a genetic (Pde6brd10) model of RP, significantly improving retinal structure, electrophysiological responses, and visual behavior. These prominent neuroprotective effects warrant the consideration of tamoxifen as a drug suitable for being repurposed to treat photoreceptor degenerative disease.SIGNIFICANCE STATEMENT Photoreceptor degeneration is a cause of irreversible blindness in a number of retinal diseases such as retinitis pigmentosa (RP) and atrophic age-related macular degeneration. Tamoxifen, a selective estrogen receptor modulator approved for the treatment of breast cancer and previously linked to a low incidence of retinal toxicity, was unexpectedly found to exert marked protective effects against photoreceptor degeneration. Structural and functional protective effects were found for an acute model of light-induced photoreceptor injury and for a genetic model for RP. The mechanism of protection involved the modulation of microglial activation and the production of inflammatory cytokines, highlighting the role of inflammatory mechanisms in photoreceptor degeneration. Tamoxifen may be suitable for clinical study as a potential treatment for diseases involving photoreceptor degeneration.

The carbocyanine dye DiD labels in vitro and in vivo neural stem cells of the subventricular zone as well as myelinated structures following in vivo injection in the lateral ventricle.

  • Carradori D
  • J. Neurosci. Res.
  • 2016 Feb 16

Literature context:


Carbocyanines are fluorescent lipophilic cationic dyes used since the early 1980s as neuronal tracers. Several applications of these compounds have been developed thanks to their low cell toxicity, lateral diffusion within the cellular membranes, and good photostability. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine 4-chlorobenzenesulfonate (DiD) is an interesting component of this family because, in addition to the classic carbocyanine properties, it has a longer wavelength compared with its analogues. That makes DiD an excellent carbocyanine for labeling cells and tissues with significant intrinsic fluorescence. Drug encapsulation, drug delivery, and cellular transplantation are also fields using DiD-based systems where having detailed knowledge about its behavior as a single entity is important. Recently, promising studies concerned neural stem cells from the subventricular zone of the lateral ventricle in the brain (their natural niche) and their potential therapeutic use. Here, we show that DiD is able to label these stem cells in vitro and present basilar information concerning its pharmacokinetics, concentrations, and microscope protocols. Moreover, when DiD is injected in vivo in the cerebrospinal fluid present in the lateral ventricle of rat, it also labels stem cells as well as myelinated structures of the caudoputamen. This analysis provides a database to consult when planning experiments concerning DiD and neural stem cells from the subventricular zone.