X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Anti-Tenascin antibody

RRID:AB_2256033

Antibody ID

AB_2256033

Target Antigen

Tenascin chicken/bird, ch, h

Proper Citation

(Millipore Cat# AB19013, RRID:AB_2256033)

Clonality

polyclonal antibody

Comments

seller recommendations: Immunohistochemistry; Functional Assay; IH, IH(P), FUNC

Host Organism

rabbit

Vendor

Millipore

Cat Num

AB19013

Publications that use this research resource

Combined Loss of EAF2 and p53 Induces Prostate Carcinogenesis in Male Mice.

  • Wang Y
  • Endocrinology
  • 2017 Dec 1

Literature context:


Abstract:

Mutations in the p53 tumor suppressor are frequent in patients with castration-resistant prostate cancer but less so in patients with localized disease, and patients who have Li-Fraumeni with germline p53 mutations do not have an increased incidence of prostate cancer, suggesting that additional molecular and/or genetic changes are required for p53 to promote prostate carcinogenesis. ELL-associated factor 2 (EAF2) is a tumor suppressor that is frequently downregulated in advanced prostate cancer. Previous studies have suggested that p53 binds to EAF2, providing a potential mechanism for their functional interactions. In this study, we tested whether p53 and EAF2 could functionally interact in prostate cancer cells and whether concurrent inactivation of p53 and EAF2 could promote prostate carcinogenesis in a murine knockout model. Endogenous p53 coprecipitated with EAF2 in prostate cancer cells, and deletion mutagenesis indicated that this interaction was mediated through the C terminus of EAF2 and the DNA binding domain of p53. Concurrent knockdown of p53 and EAF2 induced an increase in proliferation and migration in cultured prostate cancer cells, and conventional p53 and EAF2 knockout mice developed prostate cancer. In human prostate cancer specimens, concurrent p53 nuclear staining and EAF2 downregulation was associated with high Gleason score. These findings suggest that EAF2 and p53 functionally interact in prostate tumor suppression and that simultaneous inactivation of EAF2 and p53 can drive prostate carcinogenesis.

Funding information:
  • NIMH NIH HHS - ZIA MH002498(United States)

Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice.

  • Bucks SA
  • Elife
  • 2017 Mar 6

Literature context:


Abstract:

Vestibular hair cells in the inner ear encode head movements and mediate the sense of balance. These cells undergo cell death and replacement (turnover) throughout life in non-mammalian vertebrates. However, there is no definitive evidence that this process occurs in mammals. We used fate-mapping and other methods to demonstrate that utricular type II vestibular hair cells undergo turnover in adult mice under normal conditions. We found that supporting cells phagocytose both type I and II hair cells. Plp1-CreERT2-expressing supporting cells replace type II hair cells. Type I hair cells are not restored by Plp1-CreERT2-expressing supporting cells or by Atoh1-CreERTM-expressing type II hair cells. Destruction of hair cells causes supporting cells to generate 6 times as many type II hair cells compared to normal conditions. These findings expand our understanding of sensorineural plasticity in adult vestibular organs and further elucidate the roles that supporting cells serve during homeostasis and after injury.

Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates.

  • Seifert AW
  • PLoS ONE
  • 2012 Apr 9

Literature context:


Abstract:

While considerable progress has been made towards understanding the complex processes and pathways that regulate human wound healing, regenerative medicine has been unable to develop therapies that coax the natural wound environment to heal scar-free. The inability to induce perfect skin regeneration stems partly from our limited understanding of how scar-free healing occurs in a natural setting. Here we have investigated the wound repair process in adult axolotls and demonstrate that they are capable of perfectly repairing full thickness excisional wounds made on the flank. In the context of mammalian wound repair, our findings reveal a substantial reduction in hemostasis, reduced neutrophil infiltration and a relatively long delay in production of new extracellular matrix (ECM) during scar-free healing. Additionally, we test the hypothesis that metamorphosis leads to scarring and instead show that terrestrial axolotls also heal scar-free, albeit at a slower rate. Analysis of newly forming dermal ECM suggests that low levels of fibronectin and high levels of tenascin-C promote regeneration in lieu of scarring. Lastly, a genetic analysis during wound healing comparing epidermis between aquatic and terrestrial axolotls suggests that matrix metalloproteinases may regulate the fibrotic response. Our findings outline a blueprint to understand the cellular and molecular mechanisms coordinating scar-free healing that will be useful towards elucidating new regenerative therapies targeting fibrosis and wound repair.

Expression of GATA3 and tenascin in the avian vestibular maculae: normative patterns and changes during sensory regeneration.

  • Warchol ME
  • J. Comp. Neurol.
  • 2007 Feb 1

Literature context:


Abstract:

Sensory receptors in the vestibular organs of birds can regenerate after ototoxic injury. Notably, this regenerative process leads to the restoration of the correct patterning of hair cell phenotype and afferent innervation within the repaired sensory epithelium. The molecular signals that specify cell phenotype and regulate neuronal guidance during sensory regeneration are not known, but they are likely to be similar to the signals that direct these processes during embryonic development. The present study examined the recovery of hair cell phenotype during regeneration in the avian utricle, a vestibular organ that detects linear acceleration and head orientation. First, we show that Type I hair cells in the avian vestibular maculae are immunoreactive for the extracellular matrix molecule tenascin and that treatment with the ototoxic antibiotic streptomycin results in a nearly complete elimination of tenascin immunoreactivity. Cells that express tenascin begin to recover after about 2 weeks and are then contacted by calyx terminals of vestibular neurons. In addition, our previous work had shown that the zinc finger transcription factor GATA3 is uniquely expressed within the striolar reversal zone of the utricle (Hawkins et al. [2003] Hum Mol Genet 12:1261-1272), and we show here that this regionalized expression of GATA3 is maintained after severe hair cell lesions and after transplantation of the sensory epithelium onto a chemically defined substrate. In contrast, the expression of three other supporting cell markers--alpha- and beta-tectorin and SCA--is reduced following ototoxic injury. These observations suggest that GATA3 expression may maintain positional information in the maculae during sensory regeneration.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BBF0083091(United Kingdom)