X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mouse Anti-Green Fluorescent Protein (GFP) Monoclonal Antibody, Unconjugated, Clone 3E6

RRID:AB_221568

Antibody ID

AB_221568

Target Antigen

Green Fluorescent Protein (GFP) other, green fluorescent protein

Proper Citation

(Molecular Probes Cat# A-11120, RRID:AB_221568)

Clonality

monoclonal antibody

Comments

Discontinued; This product offered by Molecular Probes (Invitrogen), now part of Thermo Fisher: ELISA; Immunocytochemistry; Immunoprecipitation; Immunoprecipitation, Immunocytochemistry, ELISA

Clone ID

Clone 3E6

Host Organism

mouse

Caudal mesopallial neurons in female songbirds bridge sensory and motor brain regions.

  • Dunning JL
  • J. Comp. Neurol.
  • 2018 Jul 1

Literature context: 2a anti-GFP in PBS, Invitrogen, RRID:AB_221568) in a humidification chamber ov


Abstract:

Female songbirds use male song as an indicator of fitness and use that information to select their mate. Investigations of the female auditory system have provided evidence that the neurons within the caudal mesopallium (CM) are involved in the processing of songs that a female finds attractive, however, it is not clear how CM may exert its influence on behavioral indicators of mate choice. In the present study, anterograde tracing revealed the efferent connections of the female songbird CM. The results demonstrate connections to other auditory regions previously described in males, as well as novel connections to brain regions implicated in motor control. As in males, CM neurons in females project robustly to the lateral and medial extents of the caudal nidopallium, and to the ventral intermediate arcopallium. In a novel finding that is not present in males, CM neurons also project to the robust nucleus of the arcopallium and to the caudal striatum. Calling behavior and the expression of copulation solicitation displays are key indicators of female mate choice, and the projections found here bridge critical gaps necessary to understand how auditory perception can influence circuits related to the expression of those affiliative behaviors in female songbirds.

Funding information:
  • NICHD NIH HHS - HD053312(United States)

Reconfiguration of a Multi-oscillator Network by Light in the Drosophila Circadian Clock.

  • Chatterjee A
  • Curr. Biol.
  • 2018 Jul 9

Literature context: oFisher Cat#A11120; RRID:AB_221568 Mouse monoclonal anti-LUC-Y The


Abstract:

The brain clock that drives circadian rhythms of locomotor activity relies on a multi-oscillator neuronal network. In addition to synchronizing the clock with day-night cycles, light also reformats the clock-driven daily activity pattern. How changes in lighting conditions modify the contribution of the different oscillators to remodel the daily activity pattern remains largely unknown. Our data in Drosophila indicate that light readjusts the interactions between oscillators through two different modes. We show that a morning s-LNv > DN1p circuit works in series, whereas two parallel evening circuits are contributed by LNds and other DN1ps. Based on the photic context, the master pacemaker in the s-LNv neurons swaps its enslaved partner-oscillator-LNd in the presence of light or DN1p in the absence of light-to always link up with the most influential phase-determining oscillator. When exposure to light further increases, the light-activated LNd pacemaker becomes independent by decoupling from the s-LNvs. The calibration of coupling by light is layered on a clock-independent network interaction wherein light upregulates the expression of the PDF neuropeptide in the s-LNvs, which inhibits the behavioral output of the DN1p evening oscillator. Thus, light modifies inter-oscillator coupling and clock-independent output-gating to achieve flexibility in the network. It is likely that the light-induced changes in the Drosophila brain circadian network could reveal general principles of adapting to varying environmental cues in any neuronal multi-oscillator system.

Funding information:
  • NIAMS NIH HHS - AR052190(United States)
  • NIGMS NIH HHS - R35 GM118087()

Anatomical characterization of PDF-tri neurons and peptidergic neurons associated with eclosion behavior in Drosophila.

  • Selcho M
  • J. Comp. Neurol.
  • 2018 Jun 1

Literature context: RRID:AB_221568


Abstract:

The peptidergic Pigment-dispersing factor (PDF)-Tri neurons are a group of non-clock neurons that appear transiently around the time of adult ecdysis (=eclosion) in the fruit fly Drosophila melanogaster. This specific developmental pattern points to a function of these neurons in eclosion or other processes that are active around pupal-adult transition. As a first step to understand the role of these neurons, we here characterize the anatomy of the PDF-Tri neurons. In addition, we describe a further set of peptidergic neurons that have been associated with eclosion behavior, eclosion hormone (EH), and crustacean cardioactive peptide (CCAP) neurons, to single cell level in the pharate adult brain. PDF-Tri neurons as well as CCAP neurons co-express a classical transmitter indicated by the occurrence of small clear vesicles in addition to dense-core vesicles containing the peptides. In the tritocerebrum, gnathal ganglion and the superior protocerebrum PDF-Tri neurites contain peptidergic varicosities and both pre- and postsynaptic sites, suggesting that the PDF-Tri neurons represent modulatory rather than pure interneurons that connect the subesophageal zone with the superior protocerebrum. The extensive overlap of PDF-Tri arborizations with neurites of CCAP- and EH-expressing neurons in distinct brain regions provides anatomical evidence for a possible function of the PDF-Tri neurons in eclosion behavior.

Funding information:
  • NIAID NIH HHS - AI29611(United States)

Adult-specific insulin-producing neurons in Drosophila melanogaster.

  • Ohhara Y
  • J. Comp. Neurol.
  • 2018 Jun 1

Literature context: r probes, A-11120 (clone 3E6) - RRID:AB_221568 HA YPYDVPDYA encoding HA epitop


Abstract:

Holometabolous insects undergo metamorphosis to reorganize their behavioral and morphological features into adult-specific ones. In the central nervous system (CNS), some larval neurons undergo programmed cell death, whereas others go through remodeling of axonal and dendritic arbors to support functions of re-established adult organs. Although there are multiple neuropeptides that have stage-specific roles in holometabolous insects, the reorganization pattern of the entire neuropeptidergic system through metamorphosis still remains largely unclear. In this study, we conducted a mapping and lineage tracing of peptidergic neurons in the larval and adult CNS by using Drosophila genetic tools. We found that Diuretic hormone 44-producing median neurosecretory cells start expressing Insulin-like peptide 2 in the pharate adult stage. This neuronal cluster projects to the corpora cardiaca and dorsal vessel in both larval and adult stages, and also innervates an adult-specific structure in the digestive tract, the crop. We propose that the adult-specific insulin-producing cells may regulate functions of the digestive system in a stage-specific manner. Our study provides a neuroanatomical basis for understanding remodeling of the neuropeptidergic system during insect development and evolution.

Funding information:
  • NHGRI NIH HHS - HG001536(United States)

Reciprocal Negative Regulation Between Lmx1a and Lmo4 Is Required for Inner Ear Formation.

  • Huang Y
  • J. Neurosci.
  • 2018 Jun 6

Literature context: ogen, A11120, RRID:AB_221568), and rabbit anti-Lmx1a (1:500,


Abstract:

LIM-domain containing transcription factors (LIM-TFs) are conserved factors important for embryogenesis. The specificity of these factors in transcriptional regulation is conferred by the complexes that they form with other proteins such as LIM-domain-binding (Ldb) proteins and LIM-domain only (LMO) proteins. Unlike LIM-TFs, these proteins do not bind DNA directly. LMO proteins are negative regulators of LIM-TFs and function by competing with LIM-TFs for binding to Ldb's. Although the LIM-TF Lmx1a is expressed in the developing mouse hindbrain, which provides many of the extrinsic signals for inner ear formation, conditional knock-out embryos of both sexes show that the inner ear source of Lmx1a is the major contributor of ear patterning. In addition, we have found that the reciprocal interaction between Lmx1a and Lmo4 (a LMO protein within the inner ear) mediates the formation of both vestibular and auditory structures. Lmo4 negatively regulates Lmx1a to form the three sensory cristae, the anterior semicircular canal, and the shape of the utricle in the vestibule. Furthermore, this negative regulation blocks ectopic sensory formation in the cochlea. In contrast, Lmx1a negatively regulates Lmo4 in mediating epithelial resorption of the canal pouch, which gives rise to the anterior and posterior semicircular canals. We also found that Lmx1a is independently required for the formation of the endolymphatic duct and hair cells in the basal cochlear region.SIGNIFICANCE STATEMENT The mammalian inner ear is a structurally complex organ responsible for detecting sound and maintaining balance. Failure to form the intricate 3D structure of this organ properly during development most likely will result in sensory deficits on some level. Here, we provide genetic evidence that a transcription factor, Lmx1a, interacts with its negative regulator, Lmo4, to pattern various vestibular and auditory components of the mammalian inner ear. Identifying these key molecules that mediate formation of this important sensory organ will be helpful for designing strategies and therapeutics to alleviate hearing loss and balance disorders.

Funding information:
  • NIA NIH HHS - R01 AG028268(United States)

The role of calretinin-expressing granule cells in olfactory bulb functions and odor behavior.

  • Hardy D
  • Sci Rep
  • 2018 Jun 20

Literature context: :500, Invitrogen, Cat# A-11120, RRID:AB_221568), rabbit anti-mCherry (24 h, 1:


Abstract:

The adult mouse olfactory bulb is continuously supplied with new neurons that mostly differentiate into granule cells (GCs). Different subtypes of adult-born GCs have been identified, but their maturational profiles and their roles in bulbar network functioning and odor behavior remain elusive. It is also not known whether the same subpopulations of GCs born during early postnatal life (early-born) or during adulthood (adult-born) differ in their morpho-functional properties. Here, we show that adult-born calretinin-expressing (CR+) and non-expressing (CR-) GCs, as well as early-born CR+ GCs, display distinct inhibitory inputs but indistinguishable excitatory inputs and similar morphological characteristics. The frequencies of inhibitory post-synaptic currents were lower in early-born and adult-born CR+ GCs than in adult-born CR- neurons. These findings were corroborated by the reduced density of gephyrin+ puncta on CR+ GCs. CR+ GCs displayed a higher level of activation following olfactory tasks based on odor discrimination, as determined by an immediate early gene expression analysis. Pharmacogenetic inhibition of CR+ GCs diminished the ability of the mice to discriminate complex odor mixtures. Altogether, our results indicate that distinct inhibitory inputs are received by adult-born CR+ and CR- GCs, that early- and adult-born CR+ neurons have similar morpho-functional properties, and that CR+ GCs are involved in complex odor discrimination tasks.

Funding information:
  • Austrian Science Fund FWF - P 21487(Austria)

Morphological study of a connexin 43-GFP reporter mouse highlights glial heterogeneity, amacrine cells, and olfactory ensheathing cells.

  • Theofilas P
  • J. Neurosci. Res.
  • 2018 May 18

Literature context: A-11120, RRID:AB_221568 Goat anti-


Abstract:

Connexin 43 (Cx43) is the main astrocytic connexin and forms the basis of the glial syncytium. The morphology of connexin-expressing cells can be best studied in transgenic mouse lines expressing cytoplasmic fluorescent reporters, since immunolabeling the plaques can obscure the shapes of the individual cells. The Cx43kiECFP mouse generated by Degen et al. (FASEBJ 26:4576, 2012) expresses cytosolic ECFP and has previously been used to establish that Cx43 may not be expressed by all astrocytes within a population, and this can vary in a region-dependent way. To establish this mouse line as a tool for future astrocyte and connexin research, we sought to consolidate reporter authenticity, studying cell types and within-region population heterogeneity. Applying anti-GFP, all cell types related to astroglia were positive-namely, protoplasmic astrocytes in the hippocampus, cortex, thalamus, spinal cord, olfactory bulb, cerebellum with Bergmann glia and astrocytes also in the molecular layer, and retinal Müller cells and astrocytes. Labeled cell types further comprise white matter astrocytes, olfactory ensheathing cells, radial glia-like stem cells, retinal pigment epithelium cells, ependymal cells, and meningeal cells. We furthermore describe a retinal Cx43-expressing amacrine cell morphologically reminiscent of ON-OFF wide-field amacrine cells, representing the first example of a mammalian CNS neuron-expressing Cx43 protein. In double staining with cell type-specific markers (GFAP, S100ß, glutamine synthetase), Cx43 reporter expression in the hippocampus and cortex was restricted to GFAP+ astrocytes. Altogether, this mouse line is a highly reliable tool for studies of Cx43-expressing CNS cells and astroglial cell morphology. © 2017 Wiley Periodicals, Inc.

Neurochemical Heterogeneity Among Lateral Hypothalamic Hypocretin/Orexin and Melanin-Concentrating Hormone Neurons Identified Through Single-Cell Gene Expression Analysis.

  • Mickelsen LE
  • eNeuro
  • 2018 May 30

Literature context: er Scientific, A-11120, RRID:AB_221568). After multiple washes in PBST


Abstract:

The lateral hypothalamic area (LHA) lies at the intersection of multiple neural and humoral systems and orchestrates fundamental aspects of behavior. Two neuronal cell types found in the LHA are defined by their expression of hypocretin/orexin (Hcrt/Ox) and melanin-concentrating hormone (MCH) and are both important regulators of arousal, feeding, and metabolism. Conflicting evidence suggests that these cell populations have a more complex signaling repertoire than previously appreciated, particularly in regard to their coexpression of other neuropeptides and the machinery for the synthesis and release of GABA and glutamate. Here, we undertook a single-cell expression profiling approach to decipher the neurochemical phenotype, and heterogeneity therein, of Hcrt/Ox and MCH neurons. In transgenic mouse lines, we used single-cell quantitative polymerase chain reaction (qPCR) to quantify the expression of 48 key genes, which include neuropeptides, fast neurotransmitter components, and other key markers, which revealed unexpected neurochemical diversity. We found that single MCH and Hcrt/Ox neurons express transcripts for multiple neuropeptides and markers of both excitatory and inhibitory fast neurotransmission. Virtually all MCH and approximately half of the Hcrt/Ox neurons sampled express both the machinery for glutamate release and GABA synthesis in the absence of a vesicular GABA release pathway. Furthermore, we found that this profile is characteristic of a subpopulation of LHA glutamatergic neurons but contrasts with a broad population of LHA GABAergic neurons. Identifying the neurochemical diversity of Hcrt/Ox and MCH neurons will further our understanding of how these populations modulate postsynaptic excitability through multiple signaling mechanisms and coordinate diverse behavioral outputs.

A Basal Ganglia Circuit Sufficient to Guide Birdsong Learning.

  • Xiao L
  • Neuron
  • 2018 Apr 4

Literature context: mouse anti-GFP Invitrogen RRID:AB_221568 Bacterial and Virus Strains


Abstract:

Learning vocal behaviors, like speech and birdsong, is thought to rely on continued performance evaluation. Whether candidate performance evaluation circuits in the brain are sufficient to guide vocal learning is not known. Here, we test the sufficiency of VTA projections to the vocal basal ganglia in singing zebra finches, a songbird species that learns to produce a complex and stereotyped multi-syllabic courtship song during development. We optogenetically manipulate VTA axon terminals in singing birds contingent on how the pitch of an individual song syllable is naturally performed. We find that optical inhibition and excitation of VTA terminals are each sufficient to reliably guide learned changes in song. Inhibition and excitation have opponent effects on future performances of targeted song syllables, consistent with positive and negative reinforcement of performance outcomes. These findings define a central role for reinforcement mechanisms in learning vocalizations and demonstrate minimal circuit elements for learning vocal behaviors. VIDEO ABSTRACT.

Funding information:
  • Intramural NIH HHS - Z01 ES090080-11(United States)
  • NIDA NIH HHS - R21 DA042362()
  • NIDCD NIH HHS - R01 DC014364()
  • NIMH NIH HHS - R03 MH111319()
  • NINDS NIH HHS - R01 NS102488()

Nek9 Phosphorylation Defines a New Role for TPX2 in Eg5-Dependent Centrosome Separation before Nuclear Envelope Breakdown.

  • Eibes S
  • Curr. Biol.
  • 2018 Jan 8

Literature context: ti-GFPThermo FisherCat# A11120; RRID: AB_221568Mouse anti-FLAGSigmaCat# F3165;


Abstract:

Centrosomes [1, 2] play a central role during spindle assembly in most animal cells [3]. In early mitosis, they organize two symmetrical microtubule arrays that upon separation define the two poles of the forming spindle. Centrosome separation is tightly regulated [4, 5], occurring through partially redundant mechanisms that rely on the action of microtubule-based dynein and kinesin motors and the actomyosin system [6]. While centrosomes can separate in prophase or in prometaphase after nuclear envelope breakdown (NEBD), prophase centrosome separation optimizes spindle assembly and minimizes the occurrence of abnormal chromosome attachments that could end in aneuploidy [7, 8]. Prophase centrosome separation relies on the activity of Eg5/KIF11, a mitotic kinesin [9] that accumulates around centrosomes in early mitosis under the control of CDK1 and the Nek9/Nek6/7 kinase module [10-17]. Here, we show that Eg5 localization and centrosome separation in prophase depend on the nuclear microtubule-associated protein TPX2 [18], a pool of which localizes to the centrosomes before NEBD. This localization involves RHAMM/HMMR [19] and the kinase Nek9 [20], which phosphorylates TPX2 nuclear localization signal (NLS) preventing its interaction with importin and nuclear import. The pool of centrosomal TPX2 in prophase has a critical role for both microtubule aster organization and Eg5 localization, and thereby for centrosome separation. Our results uncover an unsuspected role for TPX2 before NEBD and define a novel regulatory mechanism for centrosome separation in prophase. They furthermore suggest NLS phosphorylation as a novel regulatory mechanism for spindle assembly factors controlled by the importin/Ran system.

Funding information:
  • NIGMS NIH HHS - R01 GM041804(United States)

Interneuron-specific signaling evokes distinctive somatostatin-mediated responses in adult cortical astrocytes.

  • Mariotti L
  • Nat Commun
  • 2018 Jan 8

Literature context: 0334) plus anti-GFP (RRID:AB_221568, 1:200 mouse, Invitrogen Thermo


Abstract:

The signaling diversity of GABAergic interneurons to post-synaptic neurons is crucial to generate the functional heterogeneity that characterizes brain circuits. Whether this diversity applies to other brain cells, such as the glial cells astrocytes, remains unexplored. Using optogenetics and two-photon functional imaging in the adult mouse neocortex, we here reveal that parvalbumin- and somatostatin-expressing interneurons, two key interneuron classes in the brain, differentially signal to astrocytes inducing weak and robust GABAB receptor-mediated Ca2+ elevations, respectively. Furthermore, the astrocyte response depresses upon parvalbumin interneuron repetitive stimulations and potentiates upon somatostatin interneuron repetitive stimulations, revealing a distinguished astrocyte plasticity. Remarkably, the potentiated response crucially depends on the neuropeptide somatostatin, released by somatostatin interneurons, which activates somatostatin receptors at astrocytic processes. Our study unveils, in the living brain, a hitherto unidentified signaling specificity between interneuron subtypes and astrocytes opening a new perspective into the role of astrocytes as non-neuronal components of inhibitory circuits.

Funding information:
  • NCI NIH HHS - R01 CA137102(United States)

Endosomal Rab cycles regulate Parkin-mediated mitophagy.

  • Yamano K
  • Elife
  • 2018 Jan 23

Literature context: RRID:AB_221568 1:1000 (IF)


Abstract:

Damaged mitochondria are selectively eliminated by mitophagy. Parkin and PINK1, gene products mutated in familial Parkinson's disease, play essential roles in mitophagy through ubiquitination of mitochondria. Cargo ubiquitination by E3 ubiquitin ligase Parkin is important to trigger selective autophagy. Although autophagy receptors recruit LC3-labeled autophagic membranes onto damaged mitochondria, how other essential autophagy units such as ATG9A-integrated vesicles are recruited remains unclear. Here, using mammalian cultured cells, we demonstrate that RABGEF1, the upstream factor of the endosomal Rab GTPase cascade, is recruited to damaged mitochondria via ubiquitin binding downstream of Parkin. RABGEF1 directs the downstream Rab proteins, RAB5 and RAB7A, to damaged mitochondria, whose associations are further regulated by mitochondrial Rab-GAPs. Furthermore, depletion of RAB7A inhibited ATG9A vesicle assembly and subsequent encapsulation of the mitochondria by autophagic membranes. These results strongly suggest that endosomal Rab cycles on damaged mitochondria are a crucial regulator of mitophagy through assembling ATG9A vesicles.

Funding information:
  • Japan Science and Technology Agency - JPMJCR13M7(International)
  • Japan Society for the Promotion of Science - 16K15095(International)
  • Japan Society for the Promotion of Science - JP15H01196(International)
  • Japan Society for the Promotion of Science - JP16K18545(International)
  • Japan Society for the Promotion of Science - JP26000014(International)
  • Japan Society for the Promotion of Science - JP26111729(International)
  • Japan Society for the Promotion of Science - JP26840033(International)
  • NIDCR NIH HHS - R03 DE018415-02(United States)
  • NINDS NIH HHS - Intramural program(United States)

Serotonin enhances excitability and gamma frequency temporal integration in mouse prefrontal fast-spiking interneurons.

  • Athilingam JC
  • Elife
  • 2017 Dec 5

Literature context: alog#:200801:500antibody (mouse)mouse anti-GFPInvitrogenCatalog#:{"type":"entr


Abstract:

The medial prefrontal cortex plays a key role in higher order cognitive functions like decision making and social cognition. These complex behaviors emerge from the coordinated firing of prefrontal neurons. Fast-spiking interneurons (FSIs) control the timing of excitatory neuron firing via somatic inhibition and generate gamma (30-100 Hz) oscillations. Therefore, factors that regulate how FSIs respond to gamma-frequency input could affect both prefrontal circuit activity and behavior. Here, we show that serotonin (5HT), which is known to regulate gamma power, acts via 5HT2A receptors to suppress an inward-rectifying potassium conductance in FSIs. This leads to depolarization, increased input resistance, enhanced spiking, and slowed decay of excitatory post-synaptic potentials (EPSPs). Notably, we found that slowed EPSP decay preferentially enhanced temporal summation and firing elicited by gamma frequency inputs. These findings show how changes in passive membrane properties can affect not only neuronal excitability but also the temporal filtering of synaptic inputs.

Funding information:
  • NCI NIH HHS - P30 CA47904(United States)
  • NIDA NIH HHS - R01 DA035913()
  • NIMH NIH HHS - F31 MH111219()
  • NIMH NIH HHS - U01 MH105948()

LMO1 Synergizes with MYCN to Promote Neuroblastoma Initiation and Metastasis.

  • Zhu S
  • Cancer Cell
  • 2017 Sep 11

Literature context: Fisher Scientific Cat# A-11120; RRID:AB_221568 Anti-Green Fluorescent Protein


Abstract:

A genome-wide association study identified LMO1, which encodes an LIM-domain-only transcriptional cofactor, as a neuroblastoma susceptibility gene that functions as an oncogene in high-risk neuroblastoma. Here we show that dβh promoter-mediated expression of LMO1 in zebrafish synergizes with MYCN to increase the proliferation of hyperplastic sympathoadrenal precursor cells, leading to a reduced latency and increased penetrance of neuroblastomagenesis. The transgenic expression of LMO1 also promoted hematogenous dissemination and distant metastasis, which was linked to neuroblastoma cell invasion and migration, and elevated expression levels of genes affecting tumor cell-extracellular matrix interaction, including loxl3, itga2b, itga3, and itga5. Our results provide in vivo validation of LMO1 as an important oncogene that promotes neuroblastoma initiation, progression, and widespread metastatic dissemination.

Hierarchical organization and genetically separable subfamilies of PSD95 postsynaptic supercomplexes.

  • Frank RAW
  • J. Neurochem.
  • 2017 Sep 7

Literature context: :RRID:AB_221568); Thermo Fisher Scientific Inc.


Abstract:

PSD95 is an abundant postsynaptic scaffold protein in glutamatergic synapses that assembles into supercomplexes composed of over 80 proteins including neurotransmitter receptors, ion channels and adhesion proteins. How these diverse constituents are organized into PSD95 supercomplexes in vivo is poorly understood. Here, we dissected the supercomplexes in mice combining endogenous gene-tagging, targeted mutations and quantitative biochemical assays. Generating compound heterozygous mice with two different gene-tags, one on each Psd95 allele, showed that each ~1.5 MDa PSD95-containing supercomplex contains on average two PSD95 molecules. Gene-tagging the endogenous GluN1 and PSD95 with identical Flag tags revealed N-methyl D-aspartic acid receptors (NMDARs) containing supercomplexes that represent only 3% of the total population of PSD95 supercomplexes, suggesting there are many other subtypes. To determine whether this extended population of different PSD95 supercomplexes use genetically defined mechanisms to specify their assembly, we tested the effect of five targeted mouse mutations on the assembly of known PSD95 interactors, Kir2.3, Arc, IQsec2/BRAG1 and Adam22. Unexpectedly, some mutations were highly selective, whereas others caused widespread disruption, indicating that PSD95 interacting proteins are organized hierarchically into distinct subfamilies of ~1.5 MDa supercomplexes, including a subpopulation of Kir2.3-NMDAR ion channel-channel supercomplexes. Kir2.3-NMDAR ion channel-channel supercomplexes were found to be anatomically restricted to particular brain regions. These data provide new insight into the mechanisms that govern the constituents of postsynaptic supercomplexes and the diversity of synapse types. Read the Editorial Highlight for this article on page 500. Cover Image for this issue: doi. 10.1111/jnc.13811.

Hormonal Signaling Cascade during an Early-Adult Critical Period Required for Courtship Memory Retention in Drosophila.

  • Lee SS
  • Curr. Biol.
  • 2017 Sep 25

Literature context: P Molecular Probes Cat#A-11120; RRID:AB_221568 Rabbit anti-JHAMT [40] N/A


Abstract:

Formation and expression of memories are critical for context-dependent decision making. In Drosophila, a courting male rejected by a mated female subsequently courts less avidly when paired with a virgin female, a behavioral modification attributed to "courtship memory." Here we show the critical role of hormonal state for maintenance of courtship memory. Ecdysis-triggering hormone (ETH) is essential for courtship memory through regulation of juvenile hormone (JH) levels in adult males. Reduction of JH levels via silencing of ETH signaling genes impairs short-term courtship memory, a phenotype rescuable by the JH analog methoprene. JH-deficit-induced memory impairment involves rapid decay rather than failure of memory acquisition. A critical period governs memory performance during the first 3 days of adulthood. Using sex-peptide-expressing "pseudo-mated" trainers, we find that robust courtship memory elicited in the absence of aversive chemical mating cues also is dependent on ETH-JH signaling. Finally, we find that JH acts through dopaminergic neurons and conclude that an ETH-JH-dopamine signaling cascade is required during a critical period for promotion of social-context-dependent memory.

Stable Positioning of Unc13 Restricts Synaptic Vesicle Fusion to Defined Release Sites to Promote Synchronous Neurotransmission.

  • Reddy-Alla S
  • Neuron
  • 2017 Sep 13

Literature context: Fisher Scientific Cat# A-11120, RRID:AB_221568 Rabbit GFP Thermo Fisher Scient


Abstract:

Neural information processing depends on precisely timed, Ca2+-activated synaptic vesicle exocytosis from release sites within active zones (AZs), but molecular details are unknown. Here, we identify that the (M)Unc13-family member Unc13A generates release sites and show the physiological relevance of their restrictive AZ targeting. Super-resolution and intravital imaging of Drosophila neuromuscular junctions revealed that (unlike the other release factors Unc18 and Syntaxin-1A) Unc13A was stably and precisely positioned at AZs. Local Unc13A levels predicted single AZ activity. Different Unc13A portions selectively affected release site number, position, and functionality. An N-terminal fragment stably localized to AZs, displaced endogenous Unc13A, and reduced the number of release sites, while a C-terminal fragment generated excessive sites at atypical locations, resulting in reduced and delayed evoked transmission that displayed excessive facilitation. Thus, release site generation by the Unc13A C terminus and their specific AZ localization via the N terminus ensure efficient transmission and prevent ectopic, temporally imprecise release.

A Circuit Node that Integrates Convergent Input from Neuromodulatory and Social Behavior-Promoting Neurons to Control Aggression in Drosophila.

  • Watanabe K
  • Neuron
  • 2017 Aug 30

Literature context: RRID:AB_221568 anti-GABA (rabbit) Sigma-Aldric


Abstract:

Diffuse neuromodulatory systems such as norepinephrine (NE) control brain-wide states such as arousal, but whether they control complex social behaviors more specifically is not clear. Octopamine (OA), the insect homolog of NE, is known to promote both arousal and aggression. We have performed a systematic, unbiased screen to identify OA receptor-expressing neurons (OARNs) that control aggression in Drosophila. Our results uncover a tiny population of male-specific aSP2 neurons that mediate a specific influence of OA on aggression, independent of any effect on arousal. Unexpectedly, these neurons receive convergent input from OA neurons and P1 neurons, a population of FruM+ neurons that promotes male courtship behavior. Behavioral epistasis experiments suggest that aSP2 neurons may constitute an integration node at which OAergic neuromodulation can bias the output of P1 neurons to favor aggression over inter-male courtship. These results have potential implications for thinking about the role of related neuromodulatory systems in mammals.

Funding information:
  • NIMH NIH HHS - MH084020(United States)

A novel role for Ets4 in axis specification and cell migration in the spider Parasteatoda tepidariorum.

  • Pechmann M
  • Elife
  • 2017 Aug 29

Literature context: 1120; ThermoFischer SCIENTIFIC (RRID:AB_221568); final concentration 1:1000) a


Abstract:

Organizers play important roles during the embryonic development of many animals. The most famous example is the Spemann organizer that sets up embryonic axes in amphibian embryos. In spiders, a group of BMP secreting mesenchymal cells (the cumulus) functions as an organizer of the dorsoventral axis. Similar to experiments performed with the Spemann organizer, transplantation of the cumulus is able to induce a secondary axis in spiders. Despite the importance of this structure, it is unknown which factors are needed to activate cumulus specific gene expression. To address this question, we performed a transcriptomic analysis of early embryonic development in the spider Parasteatoda tepidariorum. Through this work, we found that the transcription factor Pt-Ets4 is needed for cumulus integrity, dorsoventral patterning and for the activation of Pt-hunchback and Pt-twist expression. Furthermore, ectopic expression of Pt-Ets4 is sufficient to induce cell delamination and migration by inducing a mesoderm-like cell fate.

Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

  • Aguilar JI
  • Neuron
  • 2017 Aug 30

Literature context: ientific Cat# A-11120; RRID:AB_221568 Chicken anti-GFP Abcam Cat# ab1


Abstract:

The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content.

A Splice Variant of Centrosomin Converts Mitochondria to Microtubule-Organizing Centers.

  • Chen JV
  • Curr. Biol.
  • 2017 Jul 10

Literature context: #A-11120; RRID:AB_221568 Chicken an


Abstract:

Non-centrosomal microtubule organizing centers (MTOCs) direct microtubule (MT) organization to exert diverse cell-type-specific functions. In Drosophila spermatids, the giant mitochondria provide structural platforms for MT reorganization to support elongation of the extremely long sperm. However, the molecular basis for this mitochondrial MTOC and other non-centrosomal MTOCs has not been discerned. Here we report that Drosophila centrosomin (cnn) expresses two major protein variants: the centrosomal form (CnnC) and a non-centrosomal form in testes (CnnT). CnnC is established as essential for functional centrosomes, the major MTOCs in animal cells. We show that CnnT is expressed exclusively in testes by alternative splicing and localizes to giant mitochondria in spermatids. In cell culture, CnnT targets to the mitochondrial surface, recruits the MT nucleator γ-tubulin ring complex (γ-TuRC), and is sufficient to convert mitochondria to MTOCs independent of core pericentriolar proteins that regulate MT assembly at centrosomes. We mapped two separate domains in CnnT: one that is necessary and sufficient to target it to mitochondria and another that is necessary and sufficient to recruit γ-TuRCs and nucleate MTs. In elongating spermatids, CnnT forms speckles on the giant mitochondria that are required to recruit γ-TuRCs to organize MTs and support spermiogenesis. This molecular characterization of the mitochondrial MTOC defines a minimal molecular requirement for MTOC generation and implicates the potent role of Cnn (or its related) proteins in the direct regulation of MT assembly and organization of non-centrosomal MTOCs.

Astrocytic Process Plasticity and IKKβ/NF-κB in Central Control of Blood Glucose, Blood Pressure, and Body Weight.

  • Zhang Y
  • Cell Metab.
  • 2017 May 2

Literature context: #A-11120; RRID:AB_221568 Mouse mono


Abstract:

Central regulation of metabolic physiology is mediated critically through neuronal functions; however, whether astrocytes are also essential remains unclear. Here we show that the high-order processes of astrocytes in the mediobasal hypothalamus displayed shortening in fasting and elongation in fed status. Chronic overnutrition and astrocytic IKKβ/NF-κB upregulation similarly impaired astrocytic plasticity, leading to sustained shortening of high-order processes. In physiology, astrocytic IKKβ/NF-κB upregulation resulted in early-onset effects, including glucose intolerance and blood pressure rise, and late-onset effects, including body weight and fat gain. Appropriate inhibition in astrocytic IKKβ/NF-κB protected against chronic overnutrition impairing astrocytic plasticity and these physiological functions. Mechanistically, astrocytic regulation of hypothalamic extracellular GABA level and therefore BDNF expression were found partly accountable. Hence, astrocytic process plasticity and IKKβ/NF-κB play significant roles in central control of blood glucose, blood pressure, and body weight as well as the central induction of these physiological disorders leading to disease.

Funding information:
  • NHLBI NIH HHS - R01 HL113180()
  • NIA NIH HHS - R01 AG031774()
  • NIDDK NIH HHS - R01 DK078750()
  • NIDDK NIH HHS - R01 DK099136()

Mps1 Regulates Kinetochore-Microtubule Attachment Stability via the Ska Complex to Ensure Error-Free Chromosome Segregation.

  • Maciejowski J
  • Dev. Cell
  • 2017 Apr 24

Literature context: A-11120; RRID:AB_221568 KNL1/CASC5


Abstract:

The spindle assembly checkpoint kinase Mps1 not only inhibits anaphase but also corrects erroneous attachments that could lead to missegregation and aneuploidy. However, Mps1's error correction-relevant substrates are unknown. Using a chemically tuned kinetochore-targeting assay, we show that Mps1 destabilizes microtubule attachments (K fibers) epistatically to Aurora B, the other major error-correcting kinase. Through quantitative proteomics, we identify multiple sites of Mps1-regulated phosphorylation at the outer kinetochore. Substrate modification was microtubule sensitive and opposed by PP2A-B56 phosphatases that stabilize chromosome-spindle attachment. Consistently, Mps1 inhibition rescued K-fiber stability after depleting PP2A-B56. We also identify the Ska complex as a key effector of Mps1 at the kinetochore-microtubule interface, as mutations that mimic constitutive phosphorylation destabilized K fibers in vivo and reduced the efficiency of the Ska complex's conversion from lattice diffusion to end-coupled microtubule binding in vitro. Our results reveal how Mps1 dynamically modifies kinetochores to correct improper attachments and ensure faithful chromosome segregation.

Funding information:
  • NCI NIH HHS - K22 CA207458()
  • NCI NIH HHS - P30 CA008748()
  • NIGMS NIH HHS - R01 GM083988()
  • NIGMS NIH HHS - R01 GM094972()

Synaptic Vesicle Endocytosis Occurs on Multiple Timescales and Is Mediated by Formin-Dependent Actin Assembly.

  • Soykan T
  • Neuron
  • 2017 Feb 22

Literature context: A-11120; RRID:AB_221568 Goat anti


Abstract:

Neurotransmission is based on the exocytic fusion of synaptic vesicles (SVs) followed by endocytic membrane retrieval and the reformation of SVs. Recent data suggest that at physiological temperature SVs are internalized via clathrin-independent ultrafast endocytosis (UFE) within hundreds of milliseconds, while other studies have postulated a key role for clathrin-mediated endocytosis (CME) of SV proteins on a timescale of seconds to tens of seconds. Here we demonstrate using cultured hippocampal neurons as a model that at physiological temperature SV endocytosis occurs on several timescales from less than a second to several seconds, yet, is largely independent of clathrin. Clathrin-independent endocytosis (CIE) of SV membranes is mediated by actin-nucleating formins such as mDia1, which are required for the formation of presynaptic endosome-like vacuoles from which SVs reform. Our results resolve previous discrepancies in the field and suggest that SV membranes are predominantly retrieved via CIE mediated by formin-dependent actin assembly.

An Ancient, Unified Mechanism for Metformin Growth Inhibition in C. elegans and Cancer.

  • Wu L
  • Cell
  • 2016 Dec 15

Literature context: tibodyThermo FisherCat#MA5-15256Mouse monoclonal anti-GFP Tag Antibody (for ChIP)Thermo FisherCat#A-11120Mouse Ig


Abstract:

Metformin has utility in cancer prevention and treatment, though the mechanisms for these effects remain elusive. Through genetic screening in C. elegans, we uncover two metformin response elements: the nuclear pore complex (NPC) and acyl-CoA dehydrogenase family member-10 (ACAD10). We demonstrate that biguanides inhibit growth by inhibiting mitochondrial respiratory capacity, which restrains transit of the RagA-RagC GTPase heterodimer through the NPC. Nuclear exclusion renders RagC incapable of gaining the GDP-bound state necessary to stimulate mTORC1. Biguanide-induced inactivation of mTORC1 subsequently inhibits growth through transcriptional induction of ACAD10. This ancient metformin response pathway is conserved from worms to humans. Both restricted nuclear pore transit and upregulation of ACAD10 are required for biguanides to reduce viability in melanoma and pancreatic cancer cells, and to extend C. elegans lifespan. This pathway provides a unified mechanism by which metformin kills cancer cells and extends lifespan, and illuminates potential cancer targets. PAPERCLIP.

Funding information:
  • NCI NIH HHS - R01 CA166717()
  • NIDDK NIH HHS - K01 DK098285()
  • NIDDK NIH HHS - K08 DK087941()
  • NIDDK NIH HHS - P30 DK040561()
  • NIDDK NIH HHS - P30 DK057521()
  • NIDDK NIH HHS - R01 DK072041()
  • NIDDK NIH HHS - R01 DK101522()
  • NIDDK NIH HHS - R03 DK098436()
  • NIH HHS - P40 OD010440()

Different Doublecortin (DCX) Patient Alleles Show Distinct Phenotypes in Cultured Neurons: EVIDENCE FOR DIVERGENT LOSS-OF-FUNCTION AND "OFF-PATHWAY" CELLULAR MECHANISMS.

  • Yap CC
  • J. Biol. Chem.
  • 2016 Dec 23

Literature context: lot SLBJ4607V) were from Sigma. Anti-GFP, mouse (catalog no. A11120, lot 877587


Abstract:

Doublecortin on the X-chromosome (DCX) is a neuronal microtubule-binding protein with a multitude of roles in neurodevelopment. In humans, DCX is a major genetic locus for X-linked lissencephaly. The best studied defects are in neuronal migration during corticogenesis and in the hippocampus, as well as axon and dendrite growth defects. Much effort has been directed at understanding the molecular and cellular bases of DCX-linked lissencephaly. The focus has been in particular on defects in microtubule assembly and bundling, using knock-out mice and expression of WT and mutant Dcx in non-neuronal cells. Dcx also binds other proteins besides microtubules, such as spinophilin (abbreviated spn; gene name Ppp1r9b protein phosphatase 1 regulatory subunit 9b) and the clathrin adaptors AP-1 and AP-2. Even though many non-sense and missense mutations of Dcx are known, their molecular and cellular defects are still only incompletely understood. It is also largely unknown how neurons are affected by expression of DCX patient alleles. We have now characterized several patient DCX alleles (DCX-R89G, DCX-R59H, DCX-246X, DCX-272X, and DCX-303X) using a gain-of-function dendrite growth assay in cultured rat neurons in combination with the determination of molecular binding activities and subcellular localization in non-neuronal and neuronal cells. First, we find that several mutants (Dcx-R89G and Dcx-272X) were loss-of-function alleles (as had been postulated) but surprisingly acted via different cellular mechanisms. Second, one allele (Dcx-R59H) formed cytoplasmic aggregates, which contained Hspa1B (heat shock protein 1B hsp70) and ubiquitinated proteins, trapped other cytoskeletal proteins, including spinophilin, and led to increased autophagy. This allele could thus be categorized as "off-pathway"/possibly neomorph. Our findings thus suggested that distinct DCX alleles caused dysfunction by different mechanisms.

Funding information:
  • NIGMS NIH HHS - R01 GM043154(United States)

Regrowth of Serotonin Axons in the Adult Mouse Brain Following Injury.

  • Jin Y
  • Neuron
  • 2016 Aug 17

Literature context: #A11120, RRID:AB_221568), chicken


Abstract:

It is widely believed that damaged axons in the adult mammalian brain have little capacity to regrow, thereby impeding functional recovery after injury. Studies using fixed tissue have suggested that serotonin neurons might be a notable exception, but remain inconclusive. We have employed in vivo two-photon microscopy to produce time-lapse images of serotonin axons in the neocortex of the adult mouse. Serotonin axons undergo massive retrograde degeneration following amphetamine treatment and subsequent slow recovery of axonal density, which is dominated by new growth with little contribution from local sprouting. A stab injury that transects serotonin axons running in the neocortex is followed by local regression of cut serotonin axons and followed by regrowth from cut ends into and across the stab rift zone. Regrowing serotonin axons do not follow the pathways left by degenerated axons. The regrown axons release serotonin and their regrowth is correlated with recovery in behavioral tests.

Sex and laterality differences in medial amygdala neurons and astrocytes of adult mice.

  • Pfau DR
  • J. Comp. Neurol.
  • 2016 Aug 15

Literature context: #A11120, RRID:AB_10073917


Abstract:

The posterodorsal aspect of the medial amygdala (MePD) in rats is sexually dimorphic, being larger and containing more and larger neurons in males than in females. It is also highly lateralized, with the right MePD larger than the left in both sexes, but with the smaller left MePD actually containing more and larger neurons than the larger right. Astrocytes are also strikingly sexually differentiated, with male-biased numbers and lateralized favoring the right in the rat MePD. However, comparable information is scant for mice where genetic tools offer greater experimental power. Hence, we examined the MePD from adult male and female C57Bl/6(J) mice. We now report that the MePD is larger in males than in females, with the MePD in males containing more astrocytes and neurons than in females. However, we did not find sex differences in astrocyte complexity or overall glial number nor effects of laterality in either measure. While the mouse MePD is generally less lateralized than in rats, we did find that the sex difference in astrocyte number is only on the right because of a significant lateralization in females, with significantly fewer astrocytes on the right than the left but only in females. A sex difference in neuronal soma size favoring males was also evident, but only on the left. Sex differences in the number of neurons and astrocytes common to both rodent species may represent core morphological features that critically underlie the expression of sex-specific behaviors that depend on the MePD. J. Comp. Neurol. 524:2492-2502, 2016. © 2016 Wiley Periodicals, Inc.

Funding information:
  • Wellcome Trust - WT098418MA(United Kingdom)

Synaptic circuitry of identified neurons in the antennal lobe of Drosophila melanogaster.

  • Rybak J
  • J. Comp. Neurol.
  • 2016 Jun 15

Literature context: . A11122; RRID:AB_221568). It was u


Abstract:

In Drosophila melanogaster olfactory sensory neurons (OSNs) establish synapses with projection neurons (PNs) and local interneurons within antennal lobe (AL) glomeruli. Substantial knowledge regarding this circuitry has been obtained by functional studies, whereas ultrastructural evidence of synaptic contacts is scarce. To fill this gap, we studied serial sections of three glomeruli using electron microscopy. Ectopic expression of a membrane-bound peroxidase allowed us to map synaptic sites along PN dendrites. Our data prove for the first time that each of the three major types of AL neurons is both pre- and postsynaptic to the other two types, as previously indicated by functional studies. PN dendrites carry a large proportion of output synapses, with approximately one output per every three input synapses. Detailed reconstructions of PN dendrites showed that these synapses are distributed unevenly, with input and output sites partially segregated along a proximal-distal gradient and the thinnest branches carrying solely input synapses. Moreover, our data indicate synapse clustering, as we found evidence of dendritic tiling of PN dendrites. PN output synapses exhibited T-shaped presynaptic densities, mostly arranged as tetrads. In contrast, output synapses from putative OSNs showed elongated presynaptic densities in which the T-bar platform was supported by several pedestals and contacted as many as 20 postsynaptic profiles. We also discovered synaptic contacts between the putative OSNs. The average synaptic density in the glomerular neuropil was about two synapses/µm(3) . These results are discussed with regard to current models of olfactory glomerular microcircuits across species.

Neuropeptide F neurons modulate sugar reward during associative olfactory learning of Drosophila larvae.

  • Rohwedder A
  • J. Comp. Neurol.
  • 2015 Dec 15

Literature context: A, 1:200; RRID:AB_221568; Table 1).


Abstract:

All organisms continuously have to adapt their behavior according to changes in the environment in order to survive. Experience-driven changes in behavior are usually mediated and maintained by modifications in signaling within defined brain circuits. Given the simplicity of the larval brain of Drosophila and its experimental accessibility on the genetic and behavioral level, we analyzed if Drosophila neuropeptide F (dNPF) neurons are involved in classical olfactory conditioning. dNPF is an ortholog of the mammalian neuropeptide Y, a highly conserved neuromodulator that stimulates food-seeking behavior. We provide a comprehensive anatomical analysis of the dNPF neurons on the single-cell level. We demonstrate that artificial activation of dNPF neurons inhibits appetitive olfactory learning by modulating the sugar reward signal during acquisition. No effect is detectable for the retrieval of an established appetitive olfactory memory. The modulatory effect is based on the joint action of three distinct cell types that, if tested on the single-cell level, inhibit and invert the conditioned behavior. Taken together, our work describes anatomically and functionally a new part of the sugar reinforcement signaling pathway for classical olfactory conditioning in Drosophila larvae.

Funding information:
  • NEI NIH HHS - R01 EY015128(United States)

Projections from the subparaventricular zone define four channels of output from the circadian timing system.

  • Vujovic N
  • J. Comp. Neurol.
  • 2015 Dec 15

Literature context: vitrogen; Cat. no. A11120, RRID:AB_221568, Lot no. 71C1-1), used at a con


Abstract:

The subparaventricular zone of the hypothalamus (SPZ) is the main efferent target of neural projections from the suprachiasmatic nucleus (SCN) and an important relay for the circadian timing system. Although the SPZ is fairly homogeneous cytoarchitecturally and neurochemically, it has been divided into distinct functional and connectional subdivisions. The dorsal subdivision of the SPZ (dSPZ) plays an important role in relaying signals from the SCN controlling body temperature rhythms, while the ventral subdivision (vSPZ) is critical for rhythms of sleep and locomotor activity (Lu et al. [] J Neurosci 21:4864-4874). On the other hand, the medial part of the SPZ receives input mainly from the dorsomedial SCN, whereas the lateral SPZ receives input from the ventrolateral SCN and the retinohypothalamic tract (Leak and Moore [] J Comp Neurol 433:312-334). We therefore investigated whether there are corresponding differences in efferent outputs from these four quadrants of the SPZ (dorsolateral, ventrolateral, dorsomedial, and ventromedial) by a combination of anterograde and retrograde tracing. We found that, while all four subdivisions of the SPZ share a similar backbone of major projection pathways to the septal region, thalamus, hypothalamus, and brainstem, each segment of the SPZ has a specific set of targets where its projections dominate. Furthermore, we observed intra-SPZ projections of varying densities between the four subdivisions. Taken together, this pattern of organization suggests that the circadian timing system may have several parallel neural outflow pathways that provide a road map for understanding how they subserve different functions.

Funding information:
  • NHGRI NIH HHS - R01 HG008728(United States)

Serotonin and insulin-like peptides modulate leucokinin-producing neurons that affect feeding and water homeostasis in Drosophila.

  • Liu Y
  • J. Comp. Neurol.
  • 2015 Aug 15

Literature context: (RRID:AB_221568) anti-gree


Abstract:

Metabolic homeostasis and water balance is maintained by tight hormonal and neuronal regulation. In Drosophila, insulin-like peptides (DILPs) are key regulators of metabolism, and the neuropeptide leucokinin (LK) is a diuretic hormone that also modulates feeding. However, it is not known whether LK and DILPs act together to regulate feeding and water homeostasis. Because LK neurons express the insulin receptor (dInR), we tested functional links between DILP and LK signaling in feeding and water balance. Thus, we performed constitutive and conditional manipulations of activity in LK neurons and insulin-producing cells (IPCs) in adult flies and monitored food intake, responses to desiccation, and peptide expression levels. We also measured in vivo changes in LK and DILP levels in neurons in response to desiccation and drinking. Our data show that activated LK cells stimulate diuresis in vivo, and that LK and IPC signaling affect food intake in opposite directions. Overexpression of the dInR in LK neurons decreases the LK peptide levels, but only caused a subtle decrease in feeding, and had no effect on water balance. Next we demonstrated that LK neurons express the serotonin receptor 5-HT1B . Knockdown of this receptor in LK neurons diminished LK expression, increased desiccation resistance, and diminished food intake. Live calcium imaging indicates that serotonin inhibits spontaneous activity in abdominal LK neurons. Our results suggest that serotonin via 5-HT1B diminishes activity in the LK neurons and thereby modulates functions regulated by LK peptide, but the action of the dInR in these neurons remains less clear.

Localization of the contacts between Kenyon cells and aminergic neurons in the Drosophila melanogaster brain using SplitGFP reconstitution.

  • Pech U
  • J. Comp. Neurol.
  • 2013 Dec 1

Literature context:


Abstract:

The mushroom body of the insect brain represents a neuronal circuit involved in the control of adaptive behavior, e.g., associative learning. Its function relies on the modulation of Kenyon cell activity or synaptic transmitter release by biogenic amines, e.g., octopamine, dopamine, or serotonin. Therefore, for a comprehensive understanding of the mushroom body, it is of interest not only to determine which modulatory neurons interact with Kenyon cells but also to pinpoint where exactly in the mushroom body they do so. To accomplish the latter, we made use of the GRASP technique and created transgenic Drosophila melanogaster that carry one part of a membrane-bound splitGFP in Kenyon cells, along with a cytosolic red fluorescent marker. The second part of the splitGFP is expressed in distinct neuronal populations using cell-specific Gal4 drivers. GFP is reconstituted only if these neurons interact with Kenyon cells in close proximity, which, in combination with two-photon microscopy, provides a very high spatial resolution. We characterize spatially and microstructurally distinct contact regions between Kenyon cells and dopaminergic, serotonergic, and octopaminergic/tyraminergic neurons in all subdivisions of the mushroom body. Subpopulations of dopaminergic neurons contact complementary lobe regions densely. Octopaminergic/tyraminergic neurons contact Kenyon cells sparsely and are restricted mainly to the calyx, the α'-lobes, and the γ-lobes. Contacts of Kenyon cells with serotonergic neurons are heterogeneously distributed over the entire mushroom body. In summary, the technique enables us to localize precisely a segmentation of the mushroom body by differential contacts with aminergic neurons.

Funding information:
  • NCI NIH HHS - P30 CA51008(United States)

Stat3 defines three populations of Müller glia and is required for initiating maximal müller glia proliferation in the regenerating zebrafish retina.

  • Nelson CM
  • J. Comp. Neurol.
  • 2012 Dec 15

Literature context:


Abstract:

We analyzed the role of Stat3, Ascl1a, and Lin28a in Müller glia reentry into the cell cycle following damage to the zebrafish retina. Immunohistochemical analysis was employed to determine the temporal and spatial expression of Stat3 and Ascl1a proteins following rod and cone photoreceptor cell apoptosis. Stat3 expression was observed in all Müller glia, whereas Ascl1a expression was restricted to only the mitotic Müller glia. Knockdown of Stat3 protein expression did not affect photoreceptor apoptosis, but significantly reduced, without abolishing, the number of proliferating Ascl1a-positive Müller glia. Knockdown of Ascl1a protein also did not change the extent of photoreceptor apoptosis, but did yield significantly fewer Müller glia that reentered the cell cycle relative to the stat3 morphant and significantly decreased the number and intensity of Stat3-expressing Müller glia. Finally, introduction of lin28a morpholinos resulted in decreased Müller glia expression of Stat3 and Ascl1a, significantly reducing the number of proliferating Müller glia. Thus, there are three populations of Müller glia in the light-damaged zebrafish retina: 1) Stat3-expressing Ascl1a-nonexpressing nonproliferating (quiescent) Müller glia; 2) Stat3-dependent Ascl1a-dependent proliferating Müller glia; and 3) Stat3-independent Ascl1a-dependent proliferating Müller glia. Whereas Ascl1a and Lin28a are required for Müller glia proliferation, Stat3 is necessary for the maximal number of Müller glia to proliferate during regeneration of the damaged zebrafish retina.

Funding information:
  • NHLBI NIH HHS - T32 HL105321(United States)

Involvement of the Drosophila taurine/aspartate transporter dEAAT2 in selective olfactory and gustatory perceptions.

  • Besson MT
  • J. Comp. Neurol.
  • 2011 Oct 1

Literature context:


Abstract:

Excitatory amino acid transporters (EAATs) are membrane proteins involved in the uptake of neurotransmitter amino acids in the nervous system. The Drosophila dEAAT2 gene was previously described to encode a taurine/aspartate transporter. To analyze further the expression pattern and physiological function of this protein, we generated transgenic flies containing either the dEAAT2 promoter region fused to GAL4 (dEAAT2-GAL4) or a transgene allowing expression of a dEAAT2::GFP fusion protein (UAS-dEAAT2::GFP). We observed that dEAAT2-GAL4 expresses green fluorescent protein (GFP) in neurons in central and peripheral structures of third-instar larvae and adult flies. Labeled neurons were found in olfactory and gustatory pathways, in which dEAAT2::GFP was detected from the dendrites of the sensory neurons up to the first- and second-order centers. dEAAT2-GAL4 is also expressed in mechanosensory neurons. We found that a viable piggyBac insertion strain disrupts dEAAT2 expression. This mutant appears morphologically normal and presents no locomotor or phototaxis impairments; however, its brain taurine level is significantly reduced compared with that of wild-type flies. The dEAAT2 mutant showed decreased avoidance behavior in the presence of high concentration of propionic acid compared with wild-type flies, but no modification of the avoidance response to benzaldehyde. In gustatory tests, both mutant and control flies were normally attracted to sucrose; however, the dEAAT2 mutant presented a higher salt sensitivity, being repulsed by low and high salt concentrations. Therefore, we conclude that dEAAT2 does function as a taurine transporter in vivo and that this protein is physiologically required for the sensory perception of specific environmental molecules.

Funding information:
  • PHS HHS - HHSN266200400042C(United States)

Multiple neuropeptides in the Drosophila antennal lobe suggest complex modulatory circuits.

  • Carlsson MA
  • J. Comp. Neurol.
  • 2010 Aug 15

Literature context:


Abstract:

The fruitfly, Drosophila, is dependent on its olfactory sense in food search and reproduction. Processing of odorant information takes place in the antennal lobes, the primary olfactory center in the insect brain. Besides classical neurotransmitters, earlier studies have indicated the presence of a few neuropeptides in the olfactory system. In the present study we made an extensive analysis of the expression of neuropeptides in the Drosophila antennal lobes by direct profiling using matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry and immunocytochemistry. Neuropeptides from seven different precursor genes were unambiguously identified and their localization in neurons was subsequently revealed by immunocytochemistry. These were short neuropeptide F, tachykinin related peptide, allatostatin A, myoinhibitory peptide, SIFamide, IPNamide, and myosuppressin. The neuropeptides were expressed in subsets of olfactory sensory cells and different populations of local interneurons and extrinsic (centrifugal) neurons. In some neuron types neuropeptides were colocalized with classical neurotransmitters. Our findings suggest a huge complexity in peptidergic signaling in different circuits of the antennal lobe.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/E004431/1(United Kingdom)
  • NINDS NIH HHS - R01 NS018201-20(United States)

Type 1 corticotropin-releasing factor receptor expression reported in BAC transgenic mice: implications for reconciling ligand-receptor mismatch in the central corticotropin-releasing factor system.

  • Justice NJ
  • J. Comp. Neurol.
  • 2008 Dec 1

Literature context:


Abstract:

In addition to its established role in initiating the endocrine arm of the stress response, corticotropin-releasing factor (CRF) can act in the brain to modulate neural pathways that effect coordinated physiological and behavioral adjustments to stress. Although CRF is expressed in a set of interconnected limbic and autonomic cell groups implicated as primary sites of stress-related peptide action, most of these are lacking or impoverished in CRF receptor (CRFR) expression. Understanding the distribution of functional receptor expression has been hindered by the low resolution of ligand binding approaches and the lack of specific antisera, which have supported immunolocalizations at odds with analyses at the mRNA level. We have generated a transgenic mouse that shows expression of the principal, or type 1, CRFR (CRFR1). This mouse expresses GFP in a cellular distribution that largely mimics that of CRFR1 mRNA and is extensively colocalized with it in individual neurons. GFP-labeled cells display indices of activation (Fos induction) in response to central CRF injection. At the cellular level, GFP labeling marks somatic and proximal dendritic morphology with high resolution and is also localized to axonal projections of at least some labeled cell groups. This includes a presence in synaptic inputs to central autonomic structures such as the central amygdalar nucleus, which is implicated as a stress-related site of CRF action, but lacks cellular CRFR1 expression. These findings validate a new tool for pursuing the role of central CRFR signaling in stress adaptation and suggest means by which the pervasive ligand-receptor mismatch in this system may be reconciled.

Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS.

  • Daniels RW
  • J. Comp. Neurol.
  • 2008 May 1

Literature context:


Abstract:

Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system (CNS) and at Drosophila neuromuscular junctions (NMJs). Although glutamate is also used as a transmitter in the Drosophila CNS, there has been no systematic description of the central glutamatergic signaling system in the fly. With the recent cloning of the Drosophila vesicular glutamate transporter (DVGLUT), it is now possible to mark many, if not all, central glutamatergic neurons and synapses. Here we present the pattern of glutamatergic synapses and cell bodies in the late larval CNS and in the adult fly brain by using an anti-DVGLUT antibody. We also introduce two new tools for studying the Drosophila glutamatergic system: a dvglut promoter fragment fused to Gal4 whose expression labels glutamatergic neurons and a green fluorescent protein (GFP)-tagged DVGLUT transgene that localizes to synapses. In the larval CNS, we find synaptic DVGLUT immunoreactivity prominent in all brain lobe neuropil compartments except for the mushroom body. Likewise in the adult CNS, glutamatergic synapses are abundant throughout all major brain structures except the mushroom body. We also find that the larval ventral nerve cord neuropil is rich in glutamatergic synapses, which are primarily located near the dorsal surface of the neuropil, segregated from the ventrally positioned cholinergic processes. This description of the glutamatergic system in Drosophila highlights the prevalence of glutamatergic neurons in the CNS and presents tools for future study and manipulation of glutamatergic transmission.

Funding information:
  • NINDS NIH HHS - R21 NS082938(United States)

Intrinsic neurons of Drosophila mushroom bodies express short neuropeptide F: relations to extrinsic neurons expressing different neurotransmitters.

  • Johard HA
  • J. Comp. Neurol.
  • 2008 Apr 1

Literature context:


Abstract:

Mushroom bodies constitute prominent paired neuropils in the brain of insects, known to be involved in higher olfactory processing and learning and memory. In Drosophila there are about 2,500 intrinsic mushroom body neurons, Kenyon cells, and a large number of different extrinsic neurons connecting the calyx, peduncle, and lobes to other portions of the brain. The neurotransmitter of the Kenyon cells has not been identified in any insect. Here we show expression of the gene snpf and its neuropeptide products (short neuropeptide F; sNPFs) in larval and adult Drosophila Kenyon cells by means of in situ hybridization and antisera against sequences of the precursor and two of the encoded peptides. Immunocytochemistry displays peptide in intrinsic neuronal processes in most parts of the mushroom body structures, except for a small core in the center of the peduncle and lobes and in the alpha'- and beta'-lobes. Weaker immunolabeling is seen in Kenyon cell bodies and processes in the calyx and initial peduncle and is strongest in the more distal portions of the lobes. We used different antisera and Gal4-driven green fluorescent protein to identify Kenyon cells and different populations of extrinsic neurons defined by their signal substances. Thus, we display neurotransmitter systems converging on Kenyon cells: neurons likely to utilize dopamine, tyramine/octopamine, glutamate, and acetylcholine. Attempts to identify other neurotransmitter components (including vesicular glutamate transporter) in Kenyon cells failed. However, it is likely that the Kenyon cells utilize an additional neurotransmitter, yet to be identified, and that the neuropeptides described here may represent cotransmitters.

Funding information:
  • NINDS NIH HHS - R01 NS063360(United States)

Atypical expression of Drosophila gustatory receptor genes in sensory and central neurons.

  • Thorne N
  • J. Comp. Neurol.
  • 2008 Feb 1

Literature context:


Abstract:

Members of the Drosophila gustatory receptor (Gr) gene family are generally expressed in chemosensory neurons and are known to mediate the perception of sugars, bitter substrates, CO(2), and pheromones. The Gr gene family consists of 68 members, many of which are organized in gene clusters of up to six genes, yet only expression of about 15 Gr genes has been characterized in detail prior to this study. Here we describe the first comprehensive expression analysis of six highly conserved Gr genes, Gr28a and Gr28b.a to Gr28b.e. Four of these Gr genes are not only expressed in the characteristic pattern associated with previously analyzed Gr genes-chemosensory neurons of the gustatory and olfactory system-but several other types of sensory neurons and neurons in the brain. Specifically, we show that several of the Gr28 genes are expressed in abdominal multidendritic neurons, putative hygroreceptive neurons of the arista, neurons associated with the Johnston's organ, peripheral proprioceptive neurons in the legs, neurons in the larval and adult brain, and oenocytes. Thus, our findings suggest that some Gr genes are utilized in nongustatory roles in the nervous system and tissues involved in proprioception, hygroreception, and other sensory modalities. It is also possible that the Gr28 genes have chemosensory roles in the detection of internal ligands.

Funding information:
  • NCI NIH HHS - P01 CA073992(United States)

Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain.

  • Tran PB
  • J. Comp. Neurol.
  • 2007 Feb 20

Literature context:


Abstract:

We previously demonstrated that chemokine receptors are expressed by neural progenitors grown as cultured neurospheres. To examine the significance of these findings for neural progenitor function in vivo, we investigated whether chemokine receptors were expressed by cells having the characteristics of neural progenitors in neurogenic regions of the postnatal brain. Using in situ hybridization we demonstrated the expression of CCR1, CCR2, CCR5, CXCR3, and CXCR4 chemokine receptors by cells in the dentate gyrus (DG), subventricular zone of the lateral ventricle, and olfactory bulb. The pattern of expression for all of these receptors was similar, including regions where neural progenitors normally reside. In addition, we attempted to colocalize chemokine receptors with markers for neural progenitors. In order to do this we used nestin-EGFP and TLX-LacZ transgenic mice, as well as labeling for Ki67, a marker for dividing cells. In all three areas of the brain we demonstrated colocalization of chemokine receptors with these three markers in populations of cells. Expression of chemokine receptors by neural progenitors was further confirmed using CXCR4-EGFP BAC transgenic mice. Expression of CXCR4 in the DG included cells that expressed nestin and GFAP as well as cells that appeared to be immature granule neurons expressing PSA-NCAM, calretinin, and Prox-1. CXCR4-expressing cells in the DG were found in close proximity to immature granule neurons that expressed the chemokine SDF-1/CXCL12. Cells expressing CXCR4 frequently coexpressed CCR2 receptors. These data support the hypothesis that chemokine receptors are important in regulating the migration of progenitor cells in postnatal brain.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/H024808/1(United Kingdom)