X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Anti-UBE2D antibody

RRID:AB_2210152

Antibody ID

AB_2210152

Target Antigen

UBE2D (C-6) human, mouse, rat

Proper Citation

(Santa Cruz Biotechnology Cat# sc-166278, RRID:AB_2210152)

Clonality

monoclonal antibody

Comments

Applications: western blot, ELISA, immunoprecipitation, immunocytochemistry

Host Organism

mouse

Vendor

Santa Cruz Biotechnology

Cat Num

sc-166278

Publications that use this research resource

Mex3a Marks a Slowly Dividing Subpopulation of Lgr5+ Intestinal Stem Cells.

  • Barriga FM
  • Cell Stem Cell
  • 2017 Jun 1

Literature context:


Abstract:

Highly proliferative Lgr5+ stem cells maintain the intestinal epithelium and are thought to be largely homogeneous. Although quiescent intestinal stem cell (ISC) populations have been described, the identity and features of such a population remain controversial. Here we report unanticipated heterogeneity within the Lgr5+ ISC pool. We found that expression of the RNA-binding protein Mex3a labels a slowly cycling subpopulation of Lgr5+ ISCs that contribute to all intestinal lineages with distinct kinetics. Single-cell transcriptome profiling revealed that Lgr5+ cells adopt two discrete states, one of which is defined by a Mex3a expression program and relatively low levels of proliferation genes. During homeostasis, Mex3a+ cells continually shift into the rapidly dividing, self-renewing ISC pool. Chemotherapy and radiation preferentially target rapidly dividing Lgr5+ cells but spare the Mex3a-high/Lgr5+ population, helping to promote regeneration of the intestinal epithelium following toxic insults. Thus, Mex3a defines a reserve-like ISC population within the Lgr5+ compartment.

RING finger E3 ligase PPP1R11 regulates TLR2 signaling and innate immunity.

  • McKelvey AC
  • Elife
  • 2016 Nov 2

Literature context:


Abstract:

Toll-like receptor 2 (TLR2) is a pattern recognition receptor that recognizes many types of PAMPs that originate from gram-positive bacteria. Here we describe a novel mechanism regulating TLR2 protein expression and subsequent cytokine release through the ubiquitination and degradation of the receptor in response to ligand stimulation. We show a new mechanism in which an uncharacterized RING finger E3 ligase, PPP1R11, directly ubiquitinates TLR2 both in vitro and in vivo, which leads to TLR2 degradation and disruption of the signaling cascade. Lentiviral gene transfer or knockdown of PPP1R11 in mouse lungs significantly affects lung inflammation and the clearance of Staphylococcus aureus. There is a negative correlation between PPP1R11 and TLR2 levels in white blood cell samples isolated from patients with Staphylococcus aureus infections. These results suggest that PPP1R11 plays an important role in regulating innate immunity and gram-positive bacterial clearance by functioning, in part, through the ubiquitination and degradation of TLR2.

Funding information:
  • NIMH NIH HHS - R56MH104593(United States)