X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SIX2 antibody

RRID:AB_2189084

Antibody ID

AB_2189084

Target Antigen

Six2 human, mouse

Proper Citation

(Proteintech Group Cat# 11562-1-AP, RRID:AB_2189084)

Clonality

polyclonal antibody

Comments

Useful for western blot, ELISA

Host Organism

rabbit

Vendor

Proteintech Group

Cat Num

11562-1-AP

Publications that use this research resource

In Vivo Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation.

  • Liao HK
  • Cell
  • 2017 Dec 14

Literature context: ix2 Proteintech Cat#11562-1-AP; RRID:AB_2189084 Anti-Utropin Santa Cruz Cat#sc-


Abstract:

Current genome-editing systems generally rely on inducing DNA double-strand breaks (DSBs). This may limit their utility in clinical therapies, as unwanted mutations caused by DSBs can have deleterious effects. CRISPR/Cas9 system has recently been repurposed to enable target gene activation, allowing regulation of endogenous gene expression without creating DSBs. However, in vivo implementation of this gain-of-function system has proven difficult. Here, we report a robust system for in vivo activation of endogenous target genes through trans-epigenetic remodeling. The system relies on recruitment of Cas9 and transcriptional activation complexes to target loci by modified single guide RNAs. As proof-of-concept, we used this technology to treat mouse models of diabetes, muscular dystrophy, and acute kidney disease. Results demonstrate that CRISPR/Cas9-mediated target gene activation can be achieved in vivo, leading to measurable phenotypes and amelioration of disease symptoms. This establishes new avenues for developing targeted epigenetic therapies against human diseases. VIDEO ABSTRACT.

Funding information:
  • NHLBI NIH HHS - R01 HL083047(United States)
  • NHLBI NIH HHS - R01 HL123755()
  • NIAID NIH HHS - R01 AI108651()

Derivation and characterization of integration-free iPSC line ISRM-UM51 derived from SIX2-positive renal cells isolated from urine of an African male expressing the CYP2D6 *4/*17 variant which confers intermediate drug metabolizing activity.

  • Bohndorf M
  • Stem Cell Res
  • 2017 Oct 17

Literature context: teintech Group Cat# 11562-1-AP, RRID:AB_2189084 Pluripotency markers CD133 1:50


Abstract:

SIX2-positive renal cells isolated from urine from a 51year old male of African origin bearing the CYP2D6 *4/*17 variant were reprogrammed by nucleofection of a combination of two episomal-based plasmids omitting pathway (TGFβ, MEK and GSK3β) inhibition. The induced pluripotent stem cells (iPSCs) were characterized by immunocytochemistry, embryoid body formation, DNA-fingerprinting and karyotype analysis. Comparative transcriptome analyses with human embryonic stem cell lines H1 and H9 revealed a Pearson correlation of 0.9243 and 0.9619 respectively.

Repression of Interstitial Identity in Nephron Progenitor Cells by Pax2 Establishes the Nephron-Interstitium Boundary during Kidney Development.

  • Naiman N
  • Dev. Cell
  • 2017 May 22

Literature context: 562-1-AP; RRID:AB_2189084 Mouse mono


Abstract:

The kidney contains the functional units, the nephrons, surrounded by the renal interstitium. Previously we discovered that, once Six2-expressing nephron progenitor cells and Foxd1-expressing renal interstitial progenitor cells form at the onset of kidney development, descendant cells from these populations contribute exclusively to the main body of nephrons and renal interstitial tissues, respectively, indicating a lineage boundary between the nephron and renal interstitial compartments. Currently it is unclear how lineages are regulated during kidney organogenesis. We demonstrate that nephron progenitor cells lacking Pax2 fail to differentiate into nephron cells but can switch fates into renal interstitium-like cell types. These data suggest that Pax2 function maintains nephron progenitor cells by repressing a renal interstitial cell program. Thus, the lineage boundary between the nephron and renal interstitial compartments is maintained by the Pax2 activity in nephron progenitor cells during kidney organogenesis.

Funding information:
  • NIDDK NIH HHS - R01 DK094933()
  • NIDDK NIH HHS - R37 DK054364()
  • NIH HHS - R21 OD021437()

Tridimensional Visualization and Analysis of Early Human Development.

  • Belle M
  • Cell
  • 2017 Mar 23

Literature context: 562-1-AP; RRID:AB_2189084 Mouse mono


Abstract:

Generating a precise cellular and molecular cartography of the human embryo is essential to our understanding of the mechanisms of organogenesis in normal and pathological conditions. Here, we have combined whole-mount immunostaining, 3DISCO clearing, and light-sheet imaging to start building a 3D cellular map of the human development during the first trimester of gestation. We provide high-resolution 3D images of the developing peripheral nervous, muscular, vascular, cardiopulmonary, and urogenital systems. We found that the adult-like pattern of skin innervation is established before the end of the first trimester, showing important intra- and inter-individual variations in nerve branches. We also present evidence for a differential vascularization of the male and female genital tracts concomitant with sex determination. This work paves the way for a cellular and molecular reference atlas of human cells, which will be of paramount importance to understanding human development in health and disease. PAPERCLIP.