X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Kv4.3 potassium channel antibody

RRID:AB_2131966

Antibody ID

AB_2131966

Target Antigen

Kv4.3 potassium channel null

Proper Citation

(UC Davis/NIH NeuroMab Facility Cat# 75-017, RRID:AB_2131966)

Clonality

monoclonal antibody

Comments

Originating manufacturer of this product. Applications: IB, ICC, IHC, IP, KO, WB. Validation status: IF or IB (Pass), IB in brain (Pass), IHC in brain (Pass), KO (Pass).

Clone ID

K75/41

Host Organism

mouse

KChIP2 is a core transcriptional regulator of cardiac excitability.

  • Nassal DM
  • Elife
  • 2017 Mar 6

Literature context:


Abstract:

Arrhythmogenesis from aberrant electrical remodeling is a primary cause of death among patients with heart disease. Amongst a multitude of remodeling events, reduced expression of the ion channel subunit KChIP2 is consistently observed in numerous cardiac pathologies. However, it remains unknown if KChIP2 loss is merely a symptom or involved in disease development. Using rat and human derived cardiomyocytes, we identify a previously unobserved transcriptional capacity for cardiac KChIP2 critical in maintaining electrical stability. Through interaction with genetic elements, KChIP2 transcriptionally repressed the miRNAs miR-34b and miR-34c, which subsequently targeted key depolarizing (INa) and repolarizing (Ito) currents altered in cardiac disease. Genetically maintaining KChIP2 expression or inhibiting miR-34 under pathologic conditions restored channel function and moreover, prevented the incidence of reentrant arrhythmias. This identifies the KChIP2/miR-34 axis as a central regulator in developing electrical dysfunction and reveals miR-34 as a therapeutic target for treating arrhythmogenesis in heart disease.

Funding information:
  • NHLBI NIH HHS - R01 HL096962()
  • NHLBI NIH HHS - R01 HL132520()

Distribution and functional expression of Kv4 family α subunits and associated KChIP β subunits in the bed nucleus of the stria terminalis.

  • Rainnie DG
  • J. Comp. Neurol.
  • 2014 Feb 15

Literature context:


Abstract:

Regulation of BNSTALG neuronal firing activity is tightly regulated by the opposing actions of the fast outward potassium current, IA , mediated by α subunits of the Kv4 family of ion channels, and the transient inward calcium current, IT . Together, these channels play a critical role in regulating the latency to action potential onset, duration, and frequency, as well as dendritic back-propagation and synaptic plasticity. Previously we have shown that Type I-III BNSTALG neurons express mRNA transcripts for each of the Kv4 α subunits. However, the biophysical properties of native IA channels are critically dependent on the formation of macromolecular complexes of Kv4 channels with a family of chaperone proteins, the potassium channel-interacting proteins (KChIP1-4). Here we used a multidisciplinary approach to investigate the expression and function of Kv4 channels and KChIPs in neurons of the rat BNSTALG . Using immunofluorescence we demonstrated the pattern of localization of Kv4.2, Kv4.3, and KChIP1-4 proteins in the BNSTALG . Moreover, our single-cell reverse-transcription polymerase chain reaction (scRT-PCR) studies revealed that mRNA transcripts for Kv4.2, Kv4.3, and all four KChIPs were differentially expressed in Type I-III BNSTALG neurons. Furthermore, immunoelectron microscopy revealed that Kv4.2 and Kv4.3 channels were primarily localized to the dendrites and spines of BNSTALG neurons, and are thus ideally situated to modulate synaptic transmission. Consistent with this observation, in vitro patch clamp recordings showed that reducing postsynaptic IA in these neurons lowered the threshold for long-term potentiation (LTP) induction. These results are discussed in relation to potential modulation of IA channels by chronic stress.

Trafficking of the IKs -complex in MDCK cells: site of subunit assembly and determinants of polarized localization.

  • David JP
  • Traffic
  • 2013 Apr 7

Literature context:


Abstract:

The voltage-gated potassium channel KV 7.1 is regulated by non-pore forming regulatory KCNE β-subunits. Together with KCNE1, it forms the slowly activating delayed rectifier potassium current IKs . However, where the subunits assemble and which of the subunits determines localization of the IKs -complex has not been unequivocally resolved yet. We employed trafficking-deficient KV 7.1 and KCNE1 mutants to investigate IKs trafficking using the polarized Madin-Darby Canine Kidney cell line. We find that the assembly happens early in the secretory pathway but provide three lines of evidence that it takes place in a post-endoplasmic reticulum compartment. We demonstrate that KV 7.1 targets the IKs -complex to the basolateral membrane, but that KCNE1 can redirect the complex to the apical membrane upon mutation of critical KV 7.1 basolateral targeting signals. Our data provide a possible explanation to the fact that KV 7.1 can be localized apically or basolaterally in different epithelial tissues and offer a solution to divergent literature results regarding the effect of KCNE subunits on the subcellular localization of KV 7.1/KCNE complexes.

Neuritin activates insulin receptor pathway to up-regulate Kv4.2-mediated transient outward K+ current in rat cerebellar granule neurons.

  • Yao JJ
  • J. Biol. Chem.
  • 2012 Nov 30

Literature context:


Abstract:

Neuritin is a new neurotrophic factor discovered in a screen to identify genes involved in activity-dependent synaptic plasticity. Neuritin also plays multiple roles in the process of neural development and synaptic plasticity. The receptors for binding neuritin and its downstream signaling effectors, however, remain unclear. Here, we report that neuritin specifically increases the densities of transient outward K(+) currents (I(A)) in rat cerebellar granule neurons (CGNs) in a time- and concentration-dependent manner. Neuritin-induced amplification of I(A) is mediated by increased mRNA and protein expression of Kv4.2, the main α-subunit of I(A). Exposure of CGNs to neuritin markedly induces phosphorylation of ERK (pERK), Akt (pAkt), and mammalian target of rapamycin (pmTOR). Neuritin-induced I(A) and increased expression of Kv4.2 are attenuated by ERK, Akt, or mTOR inhibitors. Unexpectedly, pharmacological blockade of insulin receptor, but not the insulin-like growth factor 1 receptor, abrogates the effect of neuritin on I(A) amplification and Kv4.2 induction. Indeed, neuritin activates downstream signaling effectors of the insulin receptor in CGNs and HeLa. Our data reveal, for the first time, an unanticipated role of the insulin receptor in previously unrecognized neuritin-mediated signaling.

Funding information:
  • Intramural NIH HHS - U54 HG003273(United States)

Coexpression of high-voltage-activated ion channels Kv3.4 and Cav1.2 in pioneer axons during pathfinding in the developing rat forebrain.

  • Huang CY
  • J. Comp. Neurol.
  • 2012 Nov 1

Literature context:


Abstract:

Precise axon pathfinding is crucial for establishment of the initial neuronal network during development. Pioneer axons navigate without the help of preexisting axons and pave the way for follower axons that project later. Voltage-gated ion channels make up the intrinsic electrical activity of pioneer axons and regulate axon pathfinding. To elucidate which channel molecules are present in pioneer axons, immunohistochemical analysis was performed to examine 14 voltage-gated ion channels (Kv1.1-Kv1.3, Kv3.1-Kv3.4, Kv4.3, Cav1.2, Cav1.3, Cav2.2, Nav1.2, Nav1.6, and Nav1.9) in nine axonal tracts in the developing rat forebrain, including the optic nerve, corpus callosum, corticofugal fibers, thalamocortical axons, lateral olfactory tract, hippocamposeptal projection, anterior commissure, hippocampal commissure, and medial longitudinal fasciculus. We found A-type K⁺ channel Kv3.4 in both pioneer axons and early follower axons and L-type Ca²⁺ channel Cav1.2 in pioneer axons and early and late follower axons. Spatially, Kv3.4 and Cav1.2 were colocalized with markers of pioneer neurons and pioneer axons, such as deleted in colorectal cancer (DCC), in most fiber tracts examined. Temporally, Kv3.4 and Cav1.2 were expressed abundantly in most fiber tracts during axon pathfinding but were downregulated beginning in synaptogenesis. By contrast, delayed rectifier Kv channels (e.g., Kv1.1) and Nav channels (e.g., Nav1.2) were absent from these fiber tracts (except for the corpus callosum) during pathfinding of pioneer axons. These data suggest that Kv3.4 and Cav1.2, two high-voltage-activated ion channels, may act together to control Ca²⁺ -dependent electrical activity of pioneer axons and play important roles during axon pathfinding.

Funding information:
  • NEI NIH HHS - R37 EY006837(United States)

Distinct cellular distributions of Kv4 pore-forming and auxiliary subunits in rat dorsal root ganglion neurons.

  • Matsuyoshi H
  • Life Sci.
  • 2012 Sep 17

Literature context:


Abstract:

AIMS: Dorsal root ganglia contain heterogeneous populations of primary afferent neurons that transmit various sensory stimuli. This functional diversity may be correlated with differential expression of voltage-gated K(+) (Kv) channels. Here, we examine cellular distributions of Kv4 pore-forming and ancillary subunits that are responsible for fast-inactivating A-type K(+) current. MAIN METHODS: Expression pattern of Kv α-subunit, β-subunit and auxiliary subunit was investigated using immunohistochemistry, in situ hybridization and RT-PCR technique. KEY FINDINGS: The two pore-forming subunits Kv4.1 and Kv4.3 show distinct cellular distributions: Kv4.3 is predominantly in small-sized C-fiber neurons, whereas Kv4.1 is seen in DRG neurons in various sizes. Furthermore, the two classes of Kv4 channel auxiliary subunits are also distributed in different-sized cells. KChIP3 is the only significantly expressed Ca(2+)-binding cytosolic ancillary subunit in DRGs and present in medium to large-sized neurons. The membrane-spanning auxiliary subunit DPP6 is seen in a large number of DRG neurons in various sizes, whereas DPP10 is restricted in small-sized neurons. SIGNIFICANCE: Distinct combinations of Kv4 pore-forming and auxiliary subunits may constitute A-type channels in DRG neurons with different physiological roles. Kv4.1 subunit, in combination with KChIP3 and/or DPP6, form A-type K(+) channels in medium to large-sized A-fiber DRG neurons. In contrast, Kv4.3 and DPP10 may contribute to A-type K(+) current in non-peptidergic, C-fiber somatic afferent neurons.

Funding information:
  • NCI NIH HHS - IU54CA143907-01(United States)

The importance of immunohistochemical analyses in evaluating the phenotype of Kv channel knockout mice.

  • Menegola M
  • Epilepsia
  • 2012 Jun 22

Literature context:


Abstract:

To gain insights into the phenotype of voltage-gated potassium (Kv)1.1 and Kv4.2 knockout mice, we used immunohistochemistry to analyze the expression of component principal or α subunits and auxiliary subunits of neuronal Kv channels in knockout mouse brains. Genetic ablation of the Kv1.1 α subunit did not result in compensatory changes in the expression levels or subcellular distribution of related ion channel subunits in hippocampal medial perforant path and mossy fiber nerve terminals, where high levels of Kv1.1 are normally expressed. Genetic ablation of the Kv4.2 α subunit did not result in altered neuronal cytoarchitecture of the hippocampus. Although Kv4.2 knockout mice did not exhibit compensatory changes in the expression levels or subcellular distribution of the related Kv4.3 α subunit, we found dramatic decreases in the cellular and subcellular expression of specific Kv channel interacting proteins (KChIPs) that reflected their degree of association and colocalization with Kv4.2 in wild-type mouse and rat brains. These studies highlight the insights that can be gained by performing detailed immunohistochemical analyses of Kv channel knockout mouse brains.

Funding information:
  • NIGMS NIH HHS - P41 GM109824(United States)

Alterations of A-type potassium channels in hippocampal neurons after traumatic brain injury.

  • Lei Z
  • J. Neurotrauma
  • 2012 Jan 20

Literature context:


Abstract:

Traumatic brain injury (TBI) is associated with cognitive deficits, memory impairment, and epilepsy. Previous studies have reported neuronal loss and neuronal hyperexcitability in the post-traumatic hippocampus. A-type K+ currents (I(A)) play a critical role in modulating the intrinsic membrane excitability of hippocampal neurons. The disruption of I(A) is reportedly linked to hippocampal dysfunction. The present study investigates the changes of I(A) in the hippocampus after TBI. TBI in rats was induced by controlled cortical impact. The impact induced a reproducible lesion in the cortex and an obvious neuronal death in the ipsilateral hippocampus CA3 region. At one week after TBI, immunohistochemical staining and Western blotting showed that the expression of I(A) channel subunit Kv4.2 was markedly decreased in the ipsilateral hippocampus, but remained unchanged in the contralateral hippocampus. Meanwhile, electrophysiological recording showed that I(A) currents in ipsilateral CA1 pyramidal neurons were significantly reduced, which was associated with an increased neuronal excitability. Furthermore, there was an increased sensitivity to bicuculline-induced seizures in TBI rats. At 8 weeks after TBI, immunohistochemical staining and electrophysiological recording indicated that I(A) returned to control levels. These findings suggest that TBI causes a transient downregulation of I(A) in hippocampal CA1 neurons, which might be associated with the hyperexcitability in the post-traumatic hippocampus, and in turn leads to seizures and epilepsy.

Funding information:
  • NEI NIH HHS - R01 EY020533(United States)

Kv3.1b and Kv3.3 channel subunit expression in murine spinal dorsal horn GABAergic interneurones.

  • Nowak A
  • J. Chem. Neuroanat.
  • 2011 Sep 1

Literature context:


Abstract:

GABAergic interneurones, including those within spinal dorsal horn, contain one of the two isoforms of the synthesizing enzyme glutamate decarboxylase (GAD), either GAD65 or GAD67. The physiological significance of these two GABAergic phenotypes is unknown but a more detailed anatomical and functional characterization may help resolve this issue. In this study, two transgenic Green Fluorescent Protein (GFP) knock-in murine lines, namely GAD65-GFP and GAD67-GFP (Δneo) mice, were used to profile expression of Shaw-related Kv3.1b and Kv3.3 K(+)-channel subunits in dorsal horn interneurones. Neuronal expression of these subunits confers specific biophysical characteristic referred to as 'fast-spiking'. Immuno-labelling for Kv3.1b or Kv3.3 revealed the presence of both of these subunits across the dorsal horn, most abundantly in laminae I-III. Co-localization studies in transgenic mice indicated that Kv3.1b but not Kv3.3 was associated with GAD65-GFP and GAD67-GFP immunopositive neurones. For comparison the distributions of Kv4.2 and Kv4.3 K(+)-channel subunits which are linked to an excitatory neuronal phenotype were characterized. No co-localization was found between GAD-GFP +ve neurones and Kv4.2 or Kv4.3. In functional studies to evaluate whether either GABAergic population is activated by noxious stimulation, hindpaw intradermal injection of capsaicin followed by c-fos quantification in dorsal horn revealed co-expression c-fos and GAD65-GFP (quantified as 20-30% of GFP +ve population). Co-expression was also detected for GAD67-GFP +ve neurones and capsaicin-induced c-fos but at a much reduced level of 4-5%. These data suggest that whilst both GAD65-GFP and GAD67-GFP +ve neurones express Kv3.1b and therefore may share certain biophysical traits, their responses to peripheral noxious stimulation are distinct.

Funding information:
  • NICHD NIH HHS - R01 HD060726(United States)

Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1.

  • Hourez R
  • J. Neurosci.
  • 2011 Aug 17

Literature context:


Abstract:

The contribution of neuronal dysfunction to neurodegeneration is studied in a mouse model of spinocerebellar ataxia type 1 (SCA1) displaying impaired motor performance ahead of loss or atrophy of cerebellar Purkinje cells. Presymptomatic SCA1 mice show a reduction in the firing rate of Purkinje cells (both in vivo and in slices) associated with a reduction in the efficiency of the main glutamatergic synapse onto Purkinje cells and with increased A-type potassium current. The A-type potassium channel Kv4.3 appears to be internalized in response to glutamatergic stimulation in Purkinje cells and accumulates in presymptomatic SCA1 mice. SCA1 mice are treated with aminopyridines, acting as potassium channel blockers to test whether the treatment could improve neuronal dysfunction, motor behavior, and neurodegeneration. In acutely treated young SCA1 mice, aminopyridines normalize the firing rate of Purkinje cells and the motor behavior of the animals. In chronically treated old SCA1 mice, 3,4-diaminopyridine improves the firing rate of Purkinje cells, the motor behavior of the animals, and partially protects against cell atrophy. Chronic treatment with 3,4-diaminopyridine is associated with increased cerebellar levels of BDNF, suggesting that partial protection against atrophy of Purkinje cells is possibly provided by an increased production of growth factors secondary to the reincrease in electrical activity. Our data suggest that aminopyridines might have symptomatic and/or neuroprotective beneficial effects in SCA1, that reduction in the firing rate of Purkinje cells can cause cerebellar ataxia, and that treatment of early neuronal dysfunction is relevant in neurodegenerative disorders such as SCA1.

Funding information:
  • HHMI - R00 GM098600(United States)
  • NEI NIH HHS - R01EY006039-27(United States)

Sialic acids attached to O-glycans modulate voltage-gated potassium channel gating.

  • Schwetz TA
  • J. Biol. Chem.
  • 2011 Feb 11

Literature context:


Abstract:

Neuronal, cardiac, and skeletal muscle action potentials are produced and conducted through the highly regulated activity of several types of voltage-gated ion channels. Voltage-gated potassium (K(v)) channels are responsible for action potential repolarization. Glycans can be attached to glycoproteins through N- and O-linkages. Previous reports described the impact of N-glycans on voltage-gated ion channel function. Here, we show that sialic acids attached through O-linkages modulate gating of K(v)2.1, K(v)4.2, and K(v)4.3. The conductance-voltage (G-V) relationships for each isoform were shifted uniquely by a depolarizing 8-16 mV under conditions of reduced sialylation. The data indicate that sialic acids modulate K(v) channel activation through apparent electrostatic mechanisms that promote channel activity. Voltage-dependent steady-state inactivation was unaffected by changes in sialylation. N-Linked sialic acids cannot be responsible for the G-V shifts because K(v)4.2 and K(v)4.3 cannot be N-glycosylated, and immunoblot analysis confirmed K(v)2.1 is not N-glycosylated. Glycosidase gel shift analysis suggested that K(v)2.1, K(v)4.2, and K(v)4.3 were O-glycosylated and sialylated. To confirm this, azide-modified sugar residues involved specifically in O-glycan and sialic acid biosynthesis were shown to incorporate into all three K(v) channel isoforms using Cu(I)-catalyzed cycloaddition chemistry. Together, the data indicate that sialic acids attached to O-glycans uniquely modulate gating of three K(v) channel isoforms that are not N-glycosylated. These data provide the first evidence that external O-glycans, with core structures distinct from N-glycans in type and number of sugar residues, can modulate K(v) channel function and thereby contribute to changes in electrical signaling that result from regulated ion channel expression and/or O-glycosylation.

Funding information:
  • NIGMS NIH HHS - GM62414(United States)

Impaired glycosylation blocks DPP10 cell surface expression and alters the electrophysiology of Ito channel complex.

  • Cotella D
  • Pflugers Arch.
  • 2010 Jun 18

Literature context:


Abstract:

DPP10 is a transmembrane glycosylated protein belonging to the family of dipeptidyl aminopeptidase-like proteins (DPPLs). DPPLs are auxiliary subunits involved in the regulation of voltage-gated Kv4 channels, key determinants of cardiac and neuronal excitability. Although it is known that DPPLs are needed to generate native-like currents in heterologous expression systems, the molecular basis of this involvement are still poorly defined. In this study, we investigated the functional relevance of DPP10 glycosylation in modulating Kv4.3 channel activities. Using transfected Chinese hamster ovary (CHO) cells to reconstitute Kv4 complex, we show that the pharmacological inhibition of DPP10 glycosylation by tunicamycin and neuraminidase affects transient outward potassium current (I (to)) kinetics. Tunicamycin completely blocked DPP10 glycosylation and reduced DPP10 cell surface expression. The accelerating effects of DPP10 on Kv4.3 current kinetics, i.e. on inactivation and recovery from inactivation, were abolished. Neuraminidase produced different effects on current kinetics than tunicamycin, i.e., shifted the voltage dependence to more negative potentials. The effects of tunicamycin on the native I (to) currents of human atrial myocytes expressing DPP10 were similar to those of the KV4.3/KChIP2/DPP10 complex in CHO cells. Our results suggest that N-linked glycosylation of DPP10 plays an important role in modulating Kv4 channel activities.

Funding information:
  • NINDS NIH HHS - R01 NS059866-01A2(United States)

Dynamic partnership between KCNQ1 and KCNE1 and influence on cardiac IKs current amplitude by KCNE2.

  • Jiang M
  • J. Biol. Chem.
  • 2009 Jun 12

Literature context:


Abstract:

Cardiac slow delayed rectifier (IKs) channel is composed of KCNQ1 (pore-forming) and KCNE1 (auxiliary) subunits. Although KCNE1 is an obligate IKs component that confers the uniquely slow gating kinetics, KCNE2 is also expressed in human heart. In vitro experiments suggest that KCNE2 can associate with the KCNQ1-KCNE1 complex to suppress the current amplitude without altering the slow gating kinetics. Our goal here is to test the role of KCNE2 in cardiac IKs channel function. Pulse-chase experiments in COS-7 cells show that there is a KCNE1 turnover in the KCNQ1-KCNE1 complex, supporting the possibility that KCNE1 in the IKs channel complex can be substituted by KCNE2 when the latter is available. Biotinylation experiments in COS-7 cells show that although KCNE1 relies on KCNQ1 coassembly for more efficient cell surface expression, KCNE2 can independently traffic to the cell surface, thus becoming available for substituting KCNE1 in the IKs channel complex. Injecting vesicles carrying KCNE1 or KCNE2 into KCNQ1-expressing oocytes leads to KCNQ1 modulation in the same manner as KCNQ1+KCNEx (where x=1 or 2) cRNA coinjection. Thus, free KCNEx peptides delivered to the cell membrane can associate with existing KCNQ1 channels to modulate their function. Finally, adenovirus-mediated KCNE2 expression in adult guinea pig ventricular myocytes exhibited colocalization with native KCNQ1 protein and reduces the native IKs current density. We propose that in cardiac myocytes the IKs current amplitude is under dynamic control by the availability of KCNE2 subunits in the cell membrane.

Molecular diversity of deep short-axon cells of the rat main olfactory bulb.

  • Eyre MD
  • Eur. J. Neurosci.
  • 2009 Apr 6

Literature context:


Abstract:

Local circuit GABAergic interneurons comprise the most diverse cell populations of neuronal networks. Interneurons have been characterized and categorized based on their axo-somato-dendritic morphologies, neurochemical content, intrinsic electrical properties and their firing in relation to in-vivo population activity. Great advances in our understanding of their roles have been facilitated by their selective identification. Recently, we have described three major subtypes of deep short-axon cells (dSACs) of the main olfactory bulb (MOB) based on their axo-dendritic distributions and synaptic connectivity. Here, we investigated whether dSACs also display pronounced molecular diversity and whether distinct dSAC subtypes selectively express certain molecules. Multiple immunofluorescent labeling revealed that the most commonly used molecular markers of dSACs (e.g. vasoactive intestinal polypeptide, calbindin and nitric oxide synthase) label only very small subpopulations (< 7%). In contrast, voltage-gated potassium channel subunits Kv2.1, Kv3.1b, Kv4.3 and the GABA(A) receptor alpha1 subunit are present in 70-95% of dSACs without showing any dSAC subtype-selective expression. However, metabotropic glutamate receptor type 1alpha mainly labels dSACs that project to the glomerular layer (GL-dSAC subtype) and comprise approximately 20% of the total dSAC population. Analysing these molecular markers with stereological methods, we estimated the total number of dSACs in the entire MOB to be approximately 13,500, which is around a quarter of the number of mitral cells. Our results demonstrate a large molecular heterogeneity of dSACs and reveal a unique neurochemical marker for one dSAC subtype. Based on our results, dSAC subtype-specific genetic modifications will allow us to decipher the role of GL-dSACs in shaping the dynamic activity of the MOB network.

Funding information:
  • Intramural NIH HHS - K08HD46655(United States)

NMR analysis of KChIP4a reveals structural basis for control of surface expression of Kv4 channel complexes.

  • Schwenk J
  • J. Biol. Chem.
  • 2008 Jul 4

Literature context:


Abstract:

Potassium channel-interacting proteins (KChIPs) are EF-hand calcium-binding proteins of the recoverin/neuronal calcium sensor 1 family that co-assemble with the pore-forming Kv4 alpha-subunits and thus control surface trafficking of the voltage-gated potassium channels mediating the neuronal I(A) and cardiac I(to) currents. Different from the other KChIPs, KChIP4a largely reduces surface expression of the Kv4 channel complexes. Using solution NMR we show that the unique N terminus of KChIP4a forms a 6-turn alpha-helix that is connected to the highly conserved core of the KChIP protein via a solvent-exposed linker. As identified by chemical shift changes, N-terminal alpha-helix and core domain of KChIP4a interact with each other through the same hydrophobic surface pocket that is involved in intermolecular interaction between the N-terminal helix of Kv4alpha and KChIP in Kv4-KChIP complexes. Electrophysiological recordings and biochemical interaction assays of complexes formed by wild-type and mutant Kv4alpha and KChIP4a proteins suggest that competition of these two helical domains for the surface groove is responsible for the reduced trafficking of Kv4-KChIP4a complexes to the plasma membrane. Surface expression of Kv4 complexes may thus be controlled by an auto-inhibitory domain in the KChIP subunit.

Differential expression of I(A) channel subunits Kv4.2 and Kv4.3 in mouse visual cortical neurons and synapses.

  • Burkhalter A
  • J. Neurosci.
  • 2006 Nov 22

Literature context:


Abstract:

In cortical neurons, pore-forming alpha-subunits of the Kv4 subfamily underlie the fast transient outward K+ current (I(A)). Considerable evidence has accumulated demonstrating specific roles for I(A) channels in the generation of individual action potentials and in the regulation of repetitive firing. Although I(A) channels are thought to play a role in synaptic processing, little is known about the cell type- and synapse-specific distribution of these channels in cortical circuits. Here, we used immunolabeling with specific antibodies against Kv4.2 and Kv4.3, in combination with GABA immunogold staining, to determine the cellular, subcellular, and synaptic localization of Kv4 channels in the primary visual cortex of mice, in which subsets of pyramidal cells express yellow fluorescent protein. The results show that both Kv4.2 and Kv4.3 are concentrated in layer 1, the bottom of layer 2/3, and in layers 4 and 5/6. In all layers, clusters of Kv4.2 and Kv4.3 immunoreactivity are evident in the membranes of the somata, dendrites, and spines of pyramidal cells and GABAergic interneurons. Electron microscopic analyses revealed that Kv4.2 and Kv4.3 clusters in pyramidal cells and interneurons are excluded from putative excitatory synapses, whereas postsynaptic membranes at GABAergic synapses often contain Kv4.2 and Kv4.3. The presence of Kv4 channels at GABAergic synapses would be expected to weaken inhibition during dendritic depolarization by backpropagating action potentials. The extrasynaptic localization of Kv4 channels near excitatory synapses, in contrast, should stabilize synaptic excitation during dendritic depolarization. Thus, the synapse-specific distribution of Kv4 channels functions to optimize dendritic excitation and the association between presynaptic and postsynaptic activity.

Funding information:
  • NHGRI NIH HHS - U54 HG004555(United States)

Unanticipated region- and cell-specific downregulation of individual KChIP auxiliary subunit isotypes in Kv4.2 knock-out mouse brain.

  • Menegola M
  • J. Neurosci.
  • 2006 Nov 22

Literature context:


Abstract:

Kv4 family voltage-gated potassium channel alpha subunits and Kv channel-interacting protein (KChIP) and dipeptidyl aminopeptidase-like protein subunits comprise somatodendritic A-type channels in mammalian neurons. Recently, a mouse was generated with a targeted deletion of Kv4.2, a Kv4 alpha subunit expressed in many but not all mammalian brain neurons. Kv4.2-/- mice are grossly indistinguishable from wild-type (WT) littermates. Here we used immunohistochemistry to analyze expression of component Kv4 and KChIP subunits of A-type channels in WT and Kv4.2-/- brains. We found that the expression level, and cellular and subcellular distribution of the other prominent brain Kv4 family member Kv4.3, was indistinguishable between WT and Kv4.2-/- samples. However, we found unanticipated regional and cell-specific decreases in expression of KChIPs. The degree of altered expression of individual KChIP isoforms in different regions and neurons precisely follows the level of Kv4.2 normally found at those sites and presumably their extent of association of these KChIPs with Kv4.2. The dramatic effects of Kv4.2 deletion on KChIP expression suggest that, in addition to previously characterized effects of KChIPs on the functional properties, trafficking, and turnover rate of Kv4 channels, Kv4:KChIP association may confer reciprocal Kv4.2-dependent effects on KChIPs. The impact of Kv4.2 deletion on KChIP expression also supports the major role of KChIPs as auxiliary subunits of Kv4 channels.

Funding information:
  • NCRR NIH HHS - U54RR020839(United States)