X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Anti-Glutamine Synthetase, clone GS-6 antibody

RRID:AB_2110656

Antibody ID

AB_2110656

Target Antigen

human, mouse

Proper Citation

(Millipore Cat# MAB302, RRID:AB_2110656)

Clonality

unknown

Comments

This antibody entry is consolidated with RRID: AB_2314617 by curator on Nov 28, 2017; seller recommendations: western blot, ELISA, immunohistochemistry

Vendor

Millipore

Cat Num

MAB302

Immunolocalization of muscarinic M1 receptor in the rat medial prefrontal cortex.

  • Oda S
  • J. Comp. Neurol.
  • 2018 Jun 1

Literature context:


Abstract:

The medial prefrontal cortex (mPFC) has been considered to participate in many higher cognitive functions, such as memory formation and spatial navigation. These cognitive functions are modulated by cholinergic afferents via muscarinic acetylcholine receptors. Previous pharmacological studies have strongly suggested that the M1 receptor (M1R) is the most important subtype among muscarinic receptors to perform these cognitive functions. Actually, M1R is abundant in mPFC. However, the proportion of somata containing M1R among cortical cellular types, and the precise intracellular localization of M1R remain unclear. In this study, to clarify the precise immunolocalization of M1R in rat mPFC, we examined three major cellular types, pyramidal neurons, inhibitory neurons, and astrocytes. M1R immunopositivity signals were found in the majority of the somata of both pyramidal neurons and inhibitory neurons. In pyramidal neurons, strong M1R immunopositivity signals were usually found throughout their somata and dendrites including spines. On the other hand, the signal strength of M1R immunopositivity in the somata of inhibitory neurons significantly varied. Some neurons showed strong signals. Whereas about 40% of GAD67-immunopositive neurons and 30% of parvalbumin-immunopositive neurons (PV neurons) showed only weak signals. In PV neurons, M1R immunopositivity signals were preferentially distributed in somata. Furthermore, we found that many astrocytes showed substantial M1R immunopositivity signals. These signals were also mainly distributed in their somata. Thus, the distribution pattern of M1R markedly differs between cellular types. This difference might underlie the cholinergic modulation of higher cognitive functions subserved by mPFC.

Funding information:
  • NIDDK NIH HHS - P30DK056336(United States)

Probing nano-organization of astroglia with multi-color super-resolution microscopy.

  • Heller JP
  • J. Neurosci. Res.
  • 2018 May 18

Literature context:


Abstract:

Astroglia are essential for brain development, homeostasis, and metabolic support. They also contribute actively to the formation and regulation of synaptic circuits, by successfully handling, integrating, and propagating physiological signals of neural networks. The latter occurs mainly by engaging a versatile mechanism of internal Ca2+ fluctuations and regenerative waves prompting targeted release of signaling molecules into the extracellular space. Astroglia also show substantial structural plasticity associated with age- and use-dependent changes in neural circuitry. However, the underlying cellular mechanisms are poorly understood, mainly because of the extraordinary complex morphology of astroglial compartments on the nanoscopic scale. This complexity largely prevents direct experimental access to astroglial processes, most of which are beyond the diffraction limit of optical microscopy. Here we employed super-resolution microscopy (direct stochastic optical reconstruction microscopy; dSTORM), to visualize astroglial organization on the nanoscale, in culture and in thin brain slices, as an initial step to understand the structural basis of astrocytic nano-physiology. We were able to follow nanoscopic morphology of GFAP-enriched astrocytes, which adapt a flattened shape in culture and a sponge-like structure in situ, with GFAP fibers of varied diameters. We also visualized nanoscopic astrocytic processes using the ubiquitous cytosolic astrocyte marker proteins S100β and glutamine synthetase. Finally, we overexpressed and imaged membrane-targeted pHluorin and lymphocyte-specific protein tyrosine kinase (N-terminal domain) -green fluorescent protein (lck-GFP), to better understand the molecular cascades underlying some common astroglia-targeted fluorescence imaging techniques. The results provide novel, albeit initial, insights into the cellular organization of astroglia on the nanoscale, paving the way for function-specific studies. © 2017 Wiley Periodicals, Inc.

Funding information:
  • Medical Research Council - G0600368()
  • Medical Research Council - G0801316()
  • Medical Research Council - G0802216()
  • Medical Research Council - G0900613()

Morphological study of a connexin 43-GFP reporter mouse highlights glial heterogeneity, amacrine cells, and olfactory ensheathing cells.

  • Theofilas P
  • J. Neurosci. Res.
  • 2018 May 18

Literature context:


Abstract:

Connexin 43 (Cx43) is the main astrocytic connexin and forms the basis of the glial syncytium. The morphology of connexin-expressing cells can be best studied in transgenic mouse lines expressing cytoplasmic fluorescent reporters, since immunolabeling the plaques can obscure the shapes of the individual cells. The Cx43kiECFP mouse generated by Degen et al. (FASEBJ 26:4576, 2012) expresses cytosolic ECFP and has previously been used to establish that Cx43 may not be expressed by all astrocytes within a population, and this can vary in a region-dependent way. To establish this mouse line as a tool for future astrocyte and connexin research, we sought to consolidate reporter authenticity, studying cell types and within-region population heterogeneity. Applying anti-GFP, all cell types related to astroglia were positive-namely, protoplasmic astrocytes in the hippocampus, cortex, thalamus, spinal cord, olfactory bulb, cerebellum with Bergmann glia and astrocytes also in the molecular layer, and retinal Müller cells and astrocytes. Labeled cell types further comprise white matter astrocytes, olfactory ensheathing cells, radial glia-like stem cells, retinal pigment epithelium cells, ependymal cells, and meningeal cells. We furthermore describe a retinal Cx43-expressing amacrine cell morphologically reminiscent of ON-OFF wide-field amacrine cells, representing the first example of a mammalian CNS neuron-expressing Cx43 protein. In double staining with cell type-specific markers (GFAP, S100ß, glutamine synthetase), Cx43 reporter expression in the hippocampus and cortex was restricted to GFAP+ astrocytes. Altogether, this mouse line is a highly reliable tool for studies of Cx43-expressing CNS cells and astroglial cell morphology. © 2017 Wiley Periodicals, Inc.

Olig2-Lineage Astrocytes: A Distinct Subtype of Astrocytes That Differs from GFAP Astrocytes.

  • Tatsumi K
  • Front Neuroanat
  • 2018 Mar 3

Literature context:


Abstract:

Astrocytes are the most abundant glia cell type in the central nervous system (CNS), and are known to constitute heterogeneous populations that differ in their morphology, gene expression and function. Although glial fibrillary acidic protein (GFAP) is the cardinal cytological marker of CNS astrocytes, GFAP-negative astrocytes can easily be found in the adult CNS. Astrocytes are also allocated to spatially distinct regional domains during development. This regional heterogeneity suggests that they help to coordinate post-natal neural circuit formation and thereby to regulate eventual neuronal activity. Here, during lineage-tracing studies of cells expressing Olig2 using Olig2CreER; Rosa-CAG-LSL-eNpHR3.0-EYFP transgenic mice, we found Olig2-lineage mature astrocytes in the adult forebrain. Long-term administration of tamoxifen resulted in sufficient recombinant induction, and Olig2-lineage cells were found to be preferentially clustered in some adult brain nuclei. We then made distribution map of Olig2-lineage astrocytes in the adult mouse brain, and further compared the map with the distribution of GFAP-positive astrocytes visualized in GFAPCre; Rosa-CAG-LSL-eNpHR3.0-EYFP mice. Brain regions rich in Olig2-lineage astrocytes (e.g., basal forebrain, thalamic nuclei, and deep cerebellar nuclei) tended to lack GFAP-positive astrocytes, and vice versa. Even within a single brain nucleus, Olig2-lineage astrocytes and GFAP astrocytes frequently occupied mutually exclusive territories. These findings strongly suggest that there is a subpopulation of astrocytes (Olig2-lineage astrocytes) in the adult brain, and that it differs from GFAP-positive astrocytes in its distribution pattern and perhaps also in its function. Interestingly, the brain nuclei rich in Olig2-lineage astrocytes strongly expressed GABA-transporter 3 in astrocytes and vesicular GABA transporter in neurons, suggesting that Olig2-lineage astrocytes are involved in inhibitory neuronal transmission.

Funding information:
  • NIGMS NIH HHS - P20 GM104416(United States)

Age-Dependent Decline in Fate Switch from NG2 Cells to Astrocytes After Olig2 Deletion.

  • Zuo H
  • J. Neurosci.
  • 2018 Feb 28

Literature context:


Abstract:

NG2 cells are a resident glial progenitor cell population that is uniformly distributed throughout the developing and mature mammalian CNS. Those in the postnatal CNS generate exclusively myelinating and non-myelinating oligodendrocytes and are thus equated with oligodendrocyte precursor cells. Prenatally, NG2 cells in the ventral gray matter of the forebrain generate protoplasmic astrocytes as well as oligodendrocytes. The fate conversion from NG2 cells into protoplasmic astrocytes is dependent on downregulation of the key oligodendrocyte transcription factor Olig2. We showed previously that constitutive deletion of Olig2 in NG2 cells converts NG2 cells in the neocortex into protoplasmic astrocytes at the expense of oligodendrocytes. In this study, we show that postnatal deletion of Olig2 caused NG2 cells in the neocortex but not in other gray matter regions to become protoplasmic astrocytes. However, NG2 cells in the neocortex became more resistant to astrocyte fate switch over the first 3 postnatal weeks. Fewer NG2 cells differentiated into astrocytes and did so with longer latency after Olig2 deletion at postnatal day 18 (P18) compared with deletion at P2. The high-mobility group transcription factor Sox10 was not downregulated for at least 1 month after Olig2 deletion at P18 despite an early transient upregulation of the astrocyte transcription factor NFIA. Furthermore, inhibiting cell proliferation in slice culture reduced astrocyte differentiation from Olig2-deleted perinatal NG2 cells, suggesting that cell division might facilitate nuclear reorganization needed for astrocyte transformation.SIGNIFICANCE STATEMENT NG2 cells are glial progenitor cells that retain a certain degree of lineage plasticity. In the normal postnatal neocortex, they generate mostly oligodendrocyte lineage cells. When the oligodendrocyte transcription factor Olig2 is deleted in NG2 cells in the neocortex, they switch their fate to protoplasmic astrocytes. However, the efficiency of the fate switch decreases with age over the first 3 postnatal weeks and is reduced when cell proliferation is inhibited. As the neocortex matures, sustained expression of the oligodendrocyte lineage-specific key transcription factor Sox10 becomes less dependent on Olig2. Together, our findings suggest a gradual stabilization of the oligodendrocyte lineage genes and loss of lineage plasticity during the first 3 weeks after birth, possibly due to nuclear reorganization.

Funding information:
  • NIH HHS - 1DP2OD007188(United States)

The cystine-glutamate exchanger (xCT, Slc7a11) is expressed in significant concentrations in a subpopulation of astrocytes in the mouse brain.

  • Ottestad-Hansen S
  • Glia
  • 2018 Jan 20

Literature context:


Abstract:

The cystine-glutamate exchanger (xCT) promotes glutathione synthesis by catalyzing cystine uptake and glutamate release. The released glutamate may modulate normal neural signaling and contribute to excitotoxicity in pathological situations. Uncertainty, however, remains as neither the expression levels nor the distribution of xCT have been unambiguously determined. In fact, xCT has been reported in astrocytes, neurons, oligodendrocytes and microglia, but most of the information derives from cell cultures. Here, we show by immunohistochemistry and by Western blotting that xCT is widely expressed in the central nervous system of both sexes. The labeling specificity was validated using tissue from xCT knockout mice as controls. Astrocytes were selectively labeled, but showed greatly varying labeling intensities. This astroglial heterogeneity resulted in an astrocyte domain-like labeling pattern. Strong xCT labeling was also found in the leptomeninges, along some blood vessels, in selected circumventricular organs and in a subpopulation of tanycytes residing the lateral walls of the ventral third ventricle. Neurons, oligodendrocytes and resting microglia, as well as reactive microglia induced by glutamine synthetase deficiency, were unlabeled. The concentration of xCT protein in hippocampus was compared with that of the EAAT3 glutamate transporter by immunoblotting using a chimeric xCT-EAAT3 protein to normalize xCT and EAAT3 labeling intensities. The immunoblots suggested an xCT/EAAT3 ratio close to one (0.75 ± 0.07; average ± SEM; n = 4) in adult C57BL6 mice. CONCLUSIONS: xCT is present in select blood/brain/CSF interface areas and in an astrocyte subpopulation, in sufficient quantities to support the notion that system xc- provides physiologically relevant transport activity.

Funding information:
  • NIMH NIH HHS - P50 MH106934(United States)

Activating the regenerative potential of Müller glia cells in a regeneration-deficient retina.

  • Lust K
  • Elife
  • 2018 Jan 29

Literature context:


Abstract:

Regeneration responses in animals are widespread across phyla. To identify molecular players that confer regenerative capacities to non-regenerative species is of key relevance for basic research and translational approaches. Here, we report a differential response in retinal regeneration between medaka (Oryzias latipes) and zebrafish (Danio rerio). In contrast to zebrafish, medaka Müller glia (olMG) cells behave like progenitors and exhibit a restricted capacity to regenerate the retina. After injury, olMG cells proliferate but fail to self-renew and ultimately only restore photoreceptors. In our injury paradigm, we observed that in contrast to zebrafish, proliferating olMG cells do not maintain sox2 expression. Sustained sox2 expression in olMG cells confers regenerative responses similar to those of zebrafish MG (drMG) cells. We show that a single, cell-autonomous factor reprograms olMG cells and establishes a regeneration-like mode. Our results position medaka as an attractive model to delineate key regeneration factors with translational potential.

Funding information:
  • NIMH NIH HHS - R01 MH073991(United States)

Life-Long Neurogenic Activity of Individual Neural Stem Cells and Continuous Growth Establish an Outside-In Architecture in the Teleost Pallium.

  • Furlan G
  • Curr. Biol.
  • 2017 Nov 6

Literature context:


Abstract:

Spatiotemporal variations of neurogenesis are thought to account for the evolution of brain shape. In the dorsal telencephalon (pallium) of vertebrates, it remains unresolved which ancestral neurogenesis mode prefigures the highly divergent cytoarchitectures that are seen in extant species. To gain insight into this question, we developed genetic tools to generate here the first 4-dimensional (3D + birthdating time) map of pallium construction in the adult teleost zebrafish. Using a Tet-On-based genetic birthdating strategy, we identify a "sequential stacking" construction mode where neurons derived from the zebrafish pallial germinal zone arrange in outside-in, age-related layers from a central core generated during embryogenesis. We obtained no evidence for overt radial or tangential neuronal migrations. Cre-lox-mediated tracing, which included following Brainbow clones, further demonstrates that this process is sustained by the persistent neurogenic activity of individual pallial neural stem cells (NSCs) from embryo to adult. Together, these data demonstrate that the spatiotemporal control of NSC activity is an important driver of the macroarchitecture of the zebrafish adult pallium. This simple mode of pallium construction shares distinct traits with pallial genesis in mammals and non-mammalian amniotes such as birds or reptiles, suggesting that it may exemplify the basal layout from which vertebrate pallial architectures were elaborated.

Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye.

  • Kanow MA
  • Elife
  • 2017 Sep 13

Literature context:


Abstract:

Here we report multiple lines of evidence for a comprehensive model of energy metabolism in the vertebrate eye. Metabolic flux, locations of key enzymes, and our finding that glucose enters mouse and zebrafish retinas mostly through photoreceptors support a conceptually new model for retinal metabolism. In this model, glucose from the choroidal blood passes through the retinal pigment epithelium to the retina where photoreceptors convert it to lactate. Photoreceptors then export the lactate as fuel for the retinal pigment epithelium and for neighboring Müller glial cells. We used human retinal epithelial cells to show that lactate can suppress consumption of glucose by the retinal pigment epithelium. Suppression of glucose consumption in the retinal pigment epithelium can increase the amount of glucose that reaches the retina. This framework for understanding metabolic relationships in the vertebrate retina provides new insights into the underlying causes of retinal disease and age-related vision loss.

Funding information:
  • NEI NIH HHS - F32 EY006641()
  • NEI NIH HHS - P30 EY001730()
  • NEI NIH HHS - R01 EY006641()
  • NEI NIH HHS - R01 EY017863()
  • NEI NIH HHS - R01 EY026020()
  • NEI NIH HHS - R01 EY026030()
  • NEI NIH HHS - T32 EY007031()
  • NIDDK NIH HHS - P30 DK017047()
  • NIGMS NIH HHS - R01 GM072881(United States)

Deletion of the Thyroid Hormone-Activating Type 2 Deiodinase Rescues Cone Photoreceptor Degeneration but Not Deafness in Mice Lacking Type 3 Deiodinase.

  • Ng L
  • Endocrinology
  • 2017 Jun 1

Literature context:


Abstract:

Type 2 deiodinase amplifies and type 3 deiodinase depletes levels of the active form of thyroid hormone, triiodothyronine. Given the opposing activities of these enzymes, we tested the hypothesis that they counteract each other's developmental functions by investigating whether deletion of type 2 deiodinase (encoded by Dio2) modifies sensory phenotypes in type 3 deiodinase-deficient (Dio3-/-) mice. Dio3-/- mice display degeneration of retinal cones, the photoreceptors that mediate daylight and color vision. In Dio2-/- mice, cone function was largely normal but deletion of Dio2 in Dio3-/- mice markedly recovered cone numbers and electroretinogram responses, suggesting counterbalancing roles for both enzymes in cone survival. Both Dio3-/- and Dio2-/- strains exhibit deafness with cochlear abnormalities. In Dio3-/-;Dio2-/- mice, deafness was exacerbated rather than alleviated, suggesting unevenly balanced actions by these enzymes during auditory development. Dio3-/- mice also exhibit an atrophic thyroid gland, low thyroxine, and high triiodothyronine levels, but this phenotype was ameliorated in Dio3-/-;Dio2-/- mice, indicating counterbalancing roles for the enzymes in determining the thyroid hormone status. The results suggest that the composite action of these two enzymes is a critical determinant in visual and auditory development and in setting the systemic thyroid hormone status.

Funding information:
  • NIDDK NIH HHS - R01 DK095908()

RS9, a novel Nrf2 activator, attenuates light-induced death of cells of photoreceptor cells and Müller glia cells.

  • Inoue Y
  • J. Neurochem.
  • 2017 Jun 27

Literature context:


Abstract:

The retina is highly sensitive to oxidative stress because of its high consumption of oxygen associated with the phototransductional processes. Recent findings have suggested that oxidative stress is involved in the pathology of age-related macular degeneration, a progressive degeneration of the central retina. A well-known environmental risk factor is light exposure, as excessive and continuous light exposure can damage photoreceptors. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a transcriptional factor that controls antioxidative responses and phase 2 enzymes. Thus, we hypothesized that RS9, a specific activator of Nrf2, decreases light-induced retinal cell death in vivo and in vitro. Nrf2 was detected in the nucleus of the 661W cells exposed to RS9 and also after light exposure, and the Nrf2-antioxidant response element binding was increased in 661W cells after exposure to RS9. Consequentially, the expression of the phase 2 enzyme's mRNAs of Ho-1, Nqo-1, and Gclm genes was increased in 661W cells after exposure to RS9. Furthermore, RS9 decreased the light-induced death of 661W cells (2500 lux, 24 h), and also reduced the functional damages and the histological degeneration of the nuclei in the outer nuclear layer or the retina in the in vivo studies (8000 lux, 3 h). Heme oxygenase-1 was increased after light exposure, and Nrf2 was translocated into the nucleus after light exposure in vivo. Silencing of Ho-1 reduced the protective effects of RS9 against light-induced death of 661W cells. These findings indicate that RS9 has therapeutic potential for retinal diseases that are aggravated by light exposure.

Distribution of ELOVL4 in the Developing and Adult Mouse Brain.

  • Sherry DM
  • Front Neuroanat
  • 2017 May 16

Literature context:


Abstract:

ELOngation of Very Long chain fatty acids (ELOVL)-4 is essential for the synthesis of very long chain-fatty acids (fatty acids with chain lengths ≥ 28 carbons). The functions of ELOVL4 and its very long-chain fatty acid products are poorly understood at present. However, mutations in ELOVL4 cause neurodevelopmental or neurodegenerative diseases that vary according to the mutation and inheritance pattern. Heterozygous inheritance of different ELOVL4 mutations causes Stargardt-like Macular Dystrophy or Spinocerebellar Ataxia type 34. Homozygous inheritance of ELOVL4 mutations causes more severe disease characterized by seizures, intellectual disability, ichthyosis, and premature death. To better understand ELOVL4 and very long chain fatty acid function in the brain, we examined ELOVL4 expression in the mouse brain between embryonic day 18 and postnatal day 60 by immunolabeling using ELOVL4 and other marker antibodies. ELOVL4 was widely expressed in a region- and cell type-specific manner, and was restricted to cell bodies, consistent with its known localization to endoplasmic reticulum. ELOVL4 labeling was most prominent in gray matter, although labeling also was present in some cells located in white matter. ELOVL4 was widely expressed in the developing brain by embryonic day 18 and was especially pronounced in regions underlying the lateral ventricles and other neurogenic regions. The basal ganglia in particular showed intense ELOVL4 labeling at this stage. In the postnatal brain, cerebral cortex, hippocampus, cerebellum, thalamus, hypothalamus, midbrain, pons, and medulla all showed prominent ELOVL4 labeling, although ELOVL4 distribution was not uniform across all cells or subnuclei within these regions. In contrast, the basal ganglia showed little ELOVL4 labeling in the postnatal brain. Double labeling studies showed that ELOVL4 was primarily expressed by neurons, although presumptive oligodendrocytes located in white matter tracts also showed labeling. Little or no ELOVL4 labeling was present in astrocytes or radial glial cells. These findings suggest that ELOVL4 and its very long chain fatty acid products are important in many parts of the brain and that they are particularly associated with neuronal function. Specific roles for ELOVL4 and its products in oligodendrocytes and myelin and in cellular proliferation, especially during development, are possible.

Migrating Interneurons Secrete Fractalkine to Promote Oligodendrocyte Formation in the Developing Mammalian Brain.

  • Voronova A
  • Neuron
  • 2017 May 3

Literature context:


Abstract:

During development, newborn interneurons migrate throughout the embryonic brain. Here, we provide evidence that these interneurons act in a paracrine fashion to regulate developmental oligodendrocyte formation. Specifically, we show that medial ganglionic eminence (MGE) interneurons secrete factors that promote genesis of oligodendrocytes from glially biased cortical precursors in culture. Moreover, when MGE interneurons are genetically ablated in vivo prior to their migration, this causes a deficit in cortical oligodendrogenesis. Modeling of the interneuron-precursor paracrine interaction using transcriptome data identifies the cytokine fractalkine as responsible for the pro-oligodendrocyte effect in culture. This paracrine interaction is important in vivo, since knockdown of the fractalkine receptor CX3CR1 in embryonic cortical precursors, or constitutive knockout of CX3CR1, causes decreased numbers of oligodendrocyte progenitor cells (OPCs) and oligodendrocytes in the postnatal cortex. Thus, in addition to their role in regulating neuronal excitability, interneurons act in a paracrine fashion to promote the developmental genesis of oligodendrocytes.

Amyloid Precursor Protein in Drosophila Glia Regulates Sleep and Genes Involved in Glutamate Recycling.

  • Farca Luna AJ
  • J. Neurosci.
  • 2017 Apr 19

Literature context:


Abstract:

Amyloid precursor protein (App) plays a crucial role in Alzheimer's disease via the production and deposition of toxic β-amyloid peptides. App is heavily expressed in neurons, the focus of the vast majority of studies investigating its function. Meanwhile, almost nothing is known about App's function in glia, where it is also expressed, and can potentially participate in the regulation of neuronal physiology. In this report, we investigated whether Appl, the Drosophila homolog of App, could influence sleep-wake regulation when its function is manipulated in glial cells. Appl inhibition in astrocyte-like and cortex glia resulted in higher sleep amounts and longer sleep bout duration during the night, while overexpression had the opposite effect. These sleep phenotypes were not the result of developmental defects, and were correlated with changes in expression in glutamine synthetase (GS) in astrocyte-like glia and in changes in the gap-junction component innexin2 in cortex glia. Downregulating both GS and innexin2, but not either one individually, resulted in higher sleep amounts, similarly to Appl inhibition. Consistent with these results, the expression of GS and innexin2 are increased following sleep deprivation, indicating that GS and innexin2 genes are dynamically linked to vigilance states. Interestingly, the reduction of GS expression and the sleep phenotype observed upon Appl inhibition could be rescued by increasing the expression of the glutamate transporter dEaat1. In contrast, reducing dEaat1 expression severely disrupted sleep. These results associate glutamate recycling, sleep, and a glial function for the App family proteins.SIGNIFICANCE STATEMENT The amyloid precursor protein (App) has been intensively studied for its implication in Alzheimer's disease (AD). The attributed functions of App are linked to the physiology and cellular biology of neurons where the protein is predominantly expressed. Consequences on glia in AD are generally thought to be secondary effects of the pathology in neurons. Researchers still do not know whether App plays a role in glia in nonpathological conditions. We report here that glial App plays a role in physiology and in the regulation of sleep/wake, which has been shown recently to be involved in AD pathology. These results also associate glutamate recycling and sleep regulation, adding further complexity to the physiological role of App and to its implication in AD.

Embryonic origin and lineage hierarchies of the neural progenitor subtypes building the zebrafish adult midbrain.

  • Galant S
  • Dev. Biol.
  • 2016 Dec 1

Literature context:


Abstract:

Neurogenesis in the post-embryonic vertebrate brain varies in extent and efficiency between species and brain territories. Distinct neurogenesis modes may account for this diversity, and several neural progenitor subtypes, radial glial cells (RG) and neuroepithelial progenitors (NE), have been identified in the adult zebrafish brain. The neurogenic sequences issued from these progenitors, and their contribution to brain construction, remain incompletely understood. Here we use genetic tracing techniques based on conditional Cre recombination and Tet-On neuronal birthdating to unravel the neurogenic sequence operating from NE progenitors in the zebrafish post-embryonic optic tectum. We reveal that a subpopulation of her5-positive NE cells of the posterior midbrain layer stands at the top of a neurogenic hierarchy involving, in order, the amplification pool of the tectal proliferation zone (TPZ), followed by her4-positive RG cells with transient neurogenic activity. We further demonstrate that the adult her5-positive NE pool is issued in lineage from an identically located NE pool expressing the same gene in the embryonic neural tube. Finally, we show that these features are reminiscent of the neurogenic sequence and embryonic origin of the her9-positive progenitor NE pool involved in the construction of the lateral pallium at post-embryonic stages. Together, our results highlight the shared recruitment of an identical neurogenic strategy by two remote brain territories, where long-lasting NE pools serve both as a growth zone and as the life-long source of young neurogenic RG cells.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BBD5231861(United Kingdom)

Congenital Anophthalmia and Binocular Neonatal Enucleation Differently Affect the Proteome of Primary and Secondary Visual Cortices in Mice.

  • Laramée ME
  • PLoS ONE
  • 2016 Jul 14

Literature context:


Abstract:

In blind individuals, visually deprived occipital areas are activated by non-visual stimuli. The extent of this cross-modal activation depends on the age at onset of blindness. Cross-modal inputs have access to several anatomical pathways to reactivate deprived visual areas. Ectopic cross-modal subcortical connections have been shown in anophthalmic animals but not in animals deprived of sight at a later age. Direct and indirect cross-modal cortical connections toward visual areas could also be involved, yet the number of neurons implicated is similar between blind mice and sighted controls. Changes at the axon terminal, dendritic spine or synaptic level are therefore expected upon loss of visual inputs. Here, the proteome of V1, V2M and V2L from P0-enucleated, anophthalmic and sighted mice, sharing a common genetic background (C57BL/6J x ZRDCT/An), was investigated by 2-D DIGE and Western analyses to identify molecular adaptations to enucleation and/or anophthalmia. Few proteins were differentially expressed in enucleated or anophthalmic mice in comparison to sighted mice. The loss of sight affected three pathways: metabolism, synaptic transmission and morphogenesis. Most changes were detected in V1, followed by V2M. Overall, cross-modal adaptations could be promoted in both models of early blindness but not through the exact same molecular strategy. A lower metabolic activity observed in visual areas of blind mice suggests that even if cross-modal inputs reactivate visual areas, they could remain suboptimally processed.

Neuronal and glial differentiation during lizard (Gallotia galloti) visual system ontogeny.

  • Romero-Alemán MM
  • J. Comp. Neurol.
  • 2012 Jul 1

Literature context:


Abstract:

We studied the histogenesis of the lizard visual system (E30 to adulthood) by using a selection of immunohistochemical markers that had proved relevant for other vertebrates. By E30, the Pax6(+) pseudostratified retinal epithelium shows few newborn retinal ganglion cells (RGCs) in the centrodorsal region expressing neuron- and synaptic-specific markers such as betaIII-tubulin (Tuj1), synaptic vesicle protein-2 (SV2), and vesicular glutamate transporter-1 (VGLUT1). Concurrently, pioneer RGC axons run among the Pax2(+) astroglia in the optic nerve and reach the superficial optic tectum. Between E30 and E35, the optic chiasm and optic tract remain acellular, but the latter contains radial processes with subpial endfeet expressing vimentin (Vim). From E35, neuron- and synaptic-specific stainings spread in the retina and optic tectum, whereas retinal Pax6, and Tuj1/SV2 in RGC axons decrease. Müller glia and abundant optic nerve glia express a variety of glia-specific markers until adulthood. Subpopulations of optic nerve glia are also VGLUT1(+) and cluster differentiation-44 (CD44)-positive but cytokeratin-negative, unlike the case in other regeneration-competent species. Specifically, coexpression of CD44/Vim and glutamine synthetase (GS)/VGLUT1 reflects glial specialization, insofar as most CD44(+) glia are GS(-). In the adult optic tract and tectum, radial glia and free astroglia coexist. The latter show different immunocharacterization (Pax2(-)/CD44(-) /Vim(-)) compared with that in the optic nerve. We conclude that upregulation of Tuj1 and SV2 is required for axonal outgrowth and search for appropriate targets, whereas Pax2(+) optic nerve astroglia and Vim(+) radial glia may aid in early axonal guidance. Spontaneous axonal regrowth seems to succeed despite the heterogeneous mammalian-like glial environment in the lizard optic nerve.

Funding information:
  • NIGMS NIH HHS - R01-GM084947(United States)
  • NIMH NIH HHS - R15 MH099590(United States)

Distinct nuclear localization patterns of DNA methyltransferases in developing and mature mammalian retina.

  • Nasonkin IO
  • J. Comp. Neurol.
  • 2011 Jul 1

Literature context:


Abstract:

DNA methyltransferases--DNMT1, DNMT3a, and DNMT3b--produce methylation patterns that dynamically regulate chromatin remodeling and gene expression. The vertebrate retina provides an ideal model to elucidate molecular control of neurogenesis as all neuronal cell types and Müller glia are generated in a conserved order from common pools of progenitor cells. As a prelude to exploring epigenetic regulation of mammalian retinal development, we investigated the expression of Dnmt1, Dnmt3a, and Dnmt3b in the mouse retina from embryonic day (E) 10.5 to 10 months of age. High levels of transcripts for all three Dnmt genes were observed in early stages of retinal differentiation, with significantly reduced expression after birth. Although DNMT1 protein is abundant in retinal progenitors at E10.5, it becomes restricted to postmitotic cells by E15.5. Most cells in the postnatal retina show nuclear immunostaining of DNMT1; however, the photoreceptors exhibit distinctive patterns. In rods, weak expression of DNMT1 is detected in perinuclear region and in the nucleus, whereas a strong nuclear labeling is evident in cones. DNMT3a and DNMT3b show a discrete pattern in developing retina with high expression at E11.5, little or no immunostaining by E15.5, and then postnatal expression overlapping with DNMT1 in early born neurons (ganglion, amacrine and horizontal cells, and cones). Robust nuclear localization of DNMTs in cones compared to rods suggests a potential role of DNA methylation in differential remodeling of chromatin in these two specialized neurons. Our studies indicate that DNA methyltransferases contribute to the establishment and maturation of cell fates during retinal development.

Funding information:
  • British Heart Foundation - RG/13/5/30112(United Kingdom)

Cannabinoid receptor type 1 expression during postnatal development of the rat retina.

  • Zabouri N
  • J. Comp. Neurol.
  • 2011 May 1

Literature context:


Abstract:

Cannabinoid receptor type 1 (CB1R) participates in developmental processes in the central nervous system (CNS). The rodent retina represents an interesting and valuable model for studying CNS development, because it contains well-identified cell types with clearly established and distinct developmental timelines. Very little is known about the distribution or function of CB1R in the developing retina. In this study, we investigated the expression pattern of CB1R in the rat retina during all stages of postnatal development. Western blots were performed on retinal tissue at different time points between P1 and adulthood. In order to identify the cells expressing the receptor and the age at which this expression started, immunohistochemical co-staining was carried out for CB1R and markers of the different cell types comprising the retina. CB1R was already present at P1 in various cell types, i.e., ganglion, amacrine, horizontal, and mitotic cells. In the course of development, it appeared in cone photoreceptors and bipolar cells. For some cell types (bipolar, Müller, and some amacrine cells), CB1R was transiently expressed, suggesting a potential role of this receptor in developmental processes, such as migration, morphological changes, sub-identity acquisition, and patterned retinal spontaneous activity. Our results also indicated that CB1R is largely expressed in the adult retina (cone photoreceptors and horizontal, most amacrine, and retinal ganglion cells), and may therefore contribute to retinal functions. Overall these results indicate that, as shown in other structures of the brain, CB1R could play an instrumental role in the development and function of the retina.

Funding information:
  • NIMH NIH HHS - R01 MH076136(United States)

Spatiotemporal fate map of neurogenin1 (Neurog1) lineages in the mouse central nervous system.

  • Kim EJ
  • J. Comp. Neurol.
  • 2011 May 1

Literature context:


Abstract:

Neurog1 (Ngn1, Neurod3, neurogenin1) is a basic helix-loop-helix (bHLH) transcription factor essential for neuronal differentiation and subtype specification during embryogenesis. Due to the transient expression of Neurog1 and extensive migration of neuronal precursors, it has been challenging to understand the full complement of Neurog1 lineage cells throughout the central nervous system (CNS). Here we labeled and followed Neurog1 lineages using inducible Cre-flox recombination systems with Neurog1-Cre and Neurog1-CreER(T2) BAC (bacterial artificial chromosome) transgenic mice. Neurog1 lineage cells are restricted to neuronal fates and contribute to diverse but discrete populations in each brain region. In the forebrain, Neurog1 lineages include mitral cells and glutamatergic interneurons in the olfactory bulb, pyramidal and granule neurons in the hippocampus, and pyramidal cells in the cortex. In addition, most of the thalamus, but not the hypothalamus, arises from Neurog1 progenitors. Although Neurog1 lineages are largely restricted to glutamatergic neurons, there are multiple exceptions including Purkinje cells and other GABAergic neurons in the cerebellum. This study provides the first overview of the spatiotemporal fate map of Neurog1 lineages in the CNS.

Funding information:
  • Canadian Institutes of Health Research - 202452(Canada)

Astroglial structures in the zebrafish brain.

  • Grupp L
  • J. Comp. Neurol.
  • 2010 Nov 1

Literature context:


Abstract:

To understand components shaping the neuronal environment we studied the astroglial cells in the zebrafish brain using immunocytochemistry for structural and junctional markers, electron microscopy including freeze fracturing, and probed for the water channel protein aquaporin-4. Glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) showed largely overlapping immunoreactivity: GFAP in the main glial processes and GS in main processes and smaller branches. Claudin-3 immunoreactivity was spread in astroglial cells along their major processes. The ventricular lining was immunoreactive for the tight-junction associated protein ZO-1, in the telencephalon located on the dorsal, lateral, and medial surface due to the everting morphogenesis. In the tectum, subpial glial endfeet were also positive for ZO-1. Correspondingly, electron microscopy revealed junctional complexes between subpial glial endfeet. However, in freeze-fracture analysis tight junctional strands were not found between astroglial membranes, either in the optic tectum or in the telencephalon. Occurrence of aquaporin-4, the major astrocytic water channel in mammals, was demonstrated by polymerase chain reaction (PCR) analysis and immunocytochemistry in tectum and telencephalon. Localization of aquaporin-4 was not polarized but distributed along the entire radial extent of the cell. Interestingly, their membranes were devoid of the orthogonal arrays of particles formed by aquaporin-4 in mammals. Finally, we investigated astroglial cells in proliferative areas. Brain lipid basic protein, a marker of early glial differentiation but not GS, were present in some proliferation zones, whereas cells lining the ventricle were positive for both markers. Thus, astroglial cells in the zebrafish differ in many aspects from mammalian astrocytes.

Funding information:
  • Intramural NIH HHS - (United States)
  • Wellcome Trust - 087737(United Kingdom)

Conditional gene expression and lineage tracing of tuba1a expressing cells during zebrafish development and retina regeneration.

  • Ramachandran R
  • J. Comp. Neurol.
  • 2010 Oct 15

Literature context:


Abstract:

The tuba1a gene encodes a neural-specific α-tubulin isoform whose expression is restricted to the developing and regenerating nervous system. By using zebrafish as a model system for studying CNS regeneration, we recently showed that retinal injury induces tuba1a gene expression in Müller glia that reentered the cell cycle. However, because of the transient nature of tuba1a gene expression during development and regeneration, it was not possible to trace the lineage of the tuba1a-expressing cells with a reporter directly under the control of the tuba1a promoter. To overcome this limitation, we generated tuba1a:CreER(T2) and β-actin2:loxP-mCherrry-loxP-GFP double transgenic fish that allowed us to label tuba1a-expressing cells conditionally and permanently via ligand-induced recombination. During development, recombination revealed transient tuba1a expression in not only neural progenitors but also cells that contribute to skeletal muscle, heart, and intestine. In the adult, recombination revealed tuba1a expression in brain, olfactory neurons, and sensory cells of the lateral line, but not in the retina. After retinal injury, recombination showed tuba1a expression in Müller glia that had reentered the cell cycle, and lineage tracing indicated that these cells are responsible for regenerating retinal neurons and glia. These results suggest that tuba1a-expressing progenitors contribute to multiple cell lineages during development and that tuba1a-expressing Müller glia are retinal progenitors in the adult.

Funding information:
  • NIGMS NIH HHS - R01 GM077138(United States)

Expression of neuronal markers, synaptic proteins, and glutamine synthetase in the control and regenerating lizard visual system.

  • Romero-Alemán MM
  • J. Comp. Neurol.
  • 2010 Oct 1

Literature context:


Abstract:

Spontaneous regrowth of retinal ganglion cell (RGC) axons occurs after optic nerve (ON) transection in the lizard Gallotia galloti. To gain more insight into this event we performed an immunohistochemical study on selected neuron and glial markers, which proved useful for analyzing the axonal regrowth process in different regeneration models. In the control lizards, RGCs were beta-III tubulin- (Tuj1) and HuCD-positive. The vesicular glutamate transporter-1 (VGLUT1) preferentially stained RGCs and glial somata rather than synaptic layers. In contrast, SV2 and vesicular GABA/glycine transporter (VGAT) labeling was restricted to both plexiform layers. Strikingly, the strong expression of glutamine synthetase (GS) in both Müller glia processes and macroglial somata revealed a high glutamate metabolism along the visual system. Upregulation of Tuj1 and HuCD in the surviving RGCs was observed at all the timepoints studied (1, 3, 6, 9, and 12 months postlesion). The significant rise of Tuj1 in the optic nerve head and optic tract (OTr) by 1 and 6 months postlesion, respectively, suggests an increase of the beta-III tubulin transport and incorporation into newly formed axons. Persistent Tuj1(+) and SV2(+) puncta and swellings were abnormally observed in putative degenerating/dystrophic fibers. Unexpectedly, neuron-like cells of obscure significance were identified in the control and regenerating ON-OTr. We conclude that: 1) the persistent upregulation of Tuj1 and HuCD favors the long-lasting axonal regrowth process; 2) the latter succeeded despite the ectopia and dystrophy of some regrowing fibers; and 3) maintenance of the glutamate-glutamine cycle contributes to the homeostasis and plasticity of the system.

Funding information:
  • NIBIB NIH HHS - R01 EB000219-11(United States)

A novel model of retinal ablation demonstrates that the extent of rod cell death regulates the origin of the regenerated zebrafish rod photoreceptors.

  • Montgomery JE
  • J. Comp. Neurol.
  • 2010 Mar 15

Literature context:


Abstract:

The adult zebrafish retina continuously produces rod photoreceptors from infrequent Müller glial cell division, yielding neuronal progenitor cells that migrate to the outer nuclear layer and become rod precursor cells that are committed to differentiate into rods. Retinal damage models suggested that rod cell death induces regeneration from rod precursor cells, whereas loss of any other retinal neurons activates Müller glia proliferation to produce pluripotent neuronal progenitors that can generate any other neuronal cell type in the retina. We tested this hypothesis by creating two transgenic lines that expressed the E. coli nitroreductase enzyme fused to EGFP (NTR-EGFP) in only rods. Treating transgenic adults with metronidazole resulted in two rod cell death models. First, killing all rods throughout the Tg(zop:nfsB-EGFP)(nt19) retina induced robust Müller glial proliferation, which yielded clusters of neuronal progenitor cells. In contrast, ablating only a subset of rods across the Tg(zop:nfsB-EGFP)(nt20) retina led to rod precursor, but not Müller glial, cell proliferation. We propose that two different criteria determine whether rod cell death will induce a regenerative response from the Müller glia rather than from the resident rod precursor cells in the ONL. First, there must be a large amount of rod cell death to initiate Müller glia proliferation. Second, the rod cell death must be acute, rather than chronic, to stimulate regeneration from the Müller glia. This suggests that the zebrafish retina possesses mechanisms to quantify the amount and timing of rod cell death.

Spatiotemporal characteristics of astroglial death in the rat hippocampo-entorhinal complex following pilocarpine-induced status epilepticus.

  • Kim DS
  • J. Comp. Neurol.
  • 2008 Dec 10

Literature context:


Abstract:

Recently we reported that astroglial loss and subsequent gliogenesis in the dentate gyrus play a role in epileptogenesis following pilocarpine-induced status epilepticus (SE). In the present study we investigated whether astroglial damages in the hippocampo-entorhinal complex following SE are relevant to pathological or electrophysiological properties of temporal lobe epilepsy. Astroglial loss/damage was observed in the entorhinal cortex and the CA1 region at 4 weeks and 8 weeks after SE, respectively. These astroglial responses in the hippocampo-entorhinal cortex were accompanied by hyperexcitability of the CA1 region (impairment of paired-pulse inhibition and increase in excitability ratio). Unlike the dentate gyrus and the entorhinal cortex, CA1 astroglial damage was protected by conventional anti-epileptic drugs. alpha-Aminoadipic acid (a specific astroglial toxin) infusion into the entorhinal cortex induced astroglial damage and changed the electrophysiological properties in the CA1 region. Astroglial regeneration in the dentate gyrus and the stratum oriens of the CA1 region was found to originate from gliogenesis, while that in the entorhinal cortex and stratum radiatum of the CA1 region originated from in situ proliferation. These findings suggest that regional specific astroglial death/regeneration patterns may play an important role in the pathogenesis of temporal lobe epilepsy.

Funding information:
  • NIDDK NIH HHS - P01 DK26741(United States)

The transcriptome of retinal Müller glial cells.

  • Roesch K
  • J. Comp. Neurol.
  • 2008 Jul 10

Literature context:


Abstract:

Müller glial cells are the major type of glia in the mammalian retina. To identify the molecular machinery that defines Müller glial cell identity and function, single cell gene expression profiling was performed on Affymetrix microarrays. Identification of a cluster of genes expressed at high levels suggests a Müller glia core transcriptome, which likely underlies many of the functions of Müller glia. Expression of components of the cell cycle machinery and the Notch pathway, as well as of growth factors, chemokines, and lipoproteins might allow communication between Müller glial cells and the neurons that they support, including modulation of neuronal activity. This approach revealed a set of transcripts that were not previously characterized in (Müller) glia; validation of the expression of some of these genes was performed by in situ hybridization. Genes expressed exclusively by Müller glia were identified as novel markers. In addition, a novel BAC transgenic mouse that expresses Cre in Müller glia cells was generated. The molecular fingerprint of Müller glia provides a foundation for further studies of Müller glia development and function in normal and diseased states.

Identification of molecular markers of bipolar cells in the murine retina.

  • Kim DS
  • J. Comp. Neurol.
  • 2008 Apr 10

Literature context:


Abstract:

Retinal bipolar neurons serve as relay interneurons that connect rod and cone photoreceptor cells to amacrine and ganglion cells. They exhibit diverse morphologies essential for correct routing of photoreceptor cell signals to specific postsynaptic amacrine and ganglion cells. The development and physiology of these interneurons have not been completely defined molecularly. Despite previous identification of genes expressed in several bipolar cell subtypes, molecules that mark each bipolar cell type still await discovery. In this report, novel genetic markers of murine bipolar cells were found. Candidates were initially generated by using microarray analysis of single bipolar cells and mining of retinal serial analysis of gene expression (SAGE) data. These candidates were subsequently tested for expression in bipolar cells by RNA in situ hybridization. Ten new molecular markers were identified, five of which are highly enriched in their expression in bipolar cells within the adult retina. Double-labeling experiments using probes for previously characterized subsets of bipolar cells were performed to identify the subtypes of bipolar cells that express the novel markers. Additionally, the expression of bipolar cell genes was analyzed in Bhlhb4 knockout retinas, in which rod bipolar cells degenerate postnatally, to delineate further the identity of bipolar cells in which novel markers are found. From the analysis of Bhlhb4 mutant retinas, cone bipolar cell gene expression appears to be relatively unaffected by the degeneration of rod bipolar cells. Identification of molecular markers for the various subtypes of bipolar cells will lead to greater insights into the development and function of these diverse interneurons.

Funding information:
  • NCRR NIH HHS - R24RR024790(United States)

Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study.

  • Gargini C
  • J. Comp. Neurol.
  • 2007 Jan 10

Literature context:


Abstract:

Retinal degeneration 10 (rd10) mice are a model of autosomal recessive retinitis pigmentosa (RP), identified by Chang et al. in 2002 (Vision Res. 42:517-525). These mice carry a spontaneous mutation of the rod-phosphodiesterase (PDE) gene, leading to a rod degeneration that starts around P18. Later, cones are also lost. Because photoreceptor degeneration does not overlap with retinal development, and light responses can be recorded for about a month after birth, rd10 mice mimic typical human RP more closely than the well-known rd1 mutants. The aim of this study is to provide a comprehensive analysis of the morphology and function of the rd10 mouse retina during the period of maximum photoreceptor degeneration, thus contributing useful data for exploiting this novel model to study RP. We analyzed the morphology and survival of retinal cells in rd10 mice of various ages with quantitative immunocytochemistry and confocal microscopy; we also studied retinal function with the electroretinogram (ERG), recorded between P18 and P30. We found that photoreceptor death (peaking around P25) is accompanied and followed by dendritic retraction in bipolar and horizontal cells, which eventually undergo secondary degeneration. ERG reveals alterations in the physiology of the inner retina as early as P18 (before any obvious morphological change of inner neurons) and yet consistently with a reduced band amplification by bipolar cells. Thus, changes in the rd10 retina are very similar to what was previously found in rd1 mutants. However, an overall slower decay of retinal structure and function predicts that rd10 mice might become excellent models for rescue approaches.

Funding information:
  • NCI NIH HHS - P01CA24014(United States)