X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

GAPDH antibody [6C5]

RRID:AB_2107448

Antibody ID

AB_2107448

Target Antigen

GAPDH antibody [6C5] human, mouse, rat, baboon, chicken, dog, fish, monkey, pig, rabbit, xenopus laevis, zebrafish, porcine, canine, non-human primate, rat, human, zebrafish/fish, chicken/bird, mouse, xenopus/amphibian, rabbit

Proper Citation

(Abcam Cat# ab8245, RRID:AB_2107448)

Clonality

monoclonal antibody

Comments

validation status unknown, seller recommendations provided in 2012: ELISA, ICC, ICC/IF, IHC-Fr, WB; Immunocytochemistry; Immunoprecipitation; Other; Western Blot; ELISA; Immunohistochemistry - frozen; Immunofluorescence; Immunohistochemistry; Chromatography

Host Organism

mouse

Vendor

Abcam

The Temporal Dynamics of Arc Expression Regulate Cognitive Flexibility.

  • Wall MJ
  • Neuron
  • 2018 Jun 27

Literature context:


Abstract:

Neuronal activity regulates the transcription and translation of the immediate-early gene Arc/Arg3.1, a key mediator of synaptic plasticity. Proteasome-dependent degradation of Arc tightly limits its temporal expression, yet the significance of this regulation remains unknown. We disrupted the temporal control of Arc degradation by creating an Arc knockin mouse (ArcKR) where the predominant Arc ubiquitination sites were mutated. ArcKR mice had intact spatial learning but showed specific deficits in selecting an optimal strategy during reversal learning. This cognitive inflexibility was coupled to changes in Arc mRNA and protein expression resulting in a reduced threshold to induce mGluR-LTD and enhanced mGluR-LTD amplitude. These findings show that the abnormal persistence of Arc protein limits the dynamic range of Arc signaling pathways specifically during reversal learning. Our work illuminates how the precise temporal control of activity-dependent molecules, such as Arc, regulates synaptic plasticity and is crucial for cognition.

Funding information:
  • NICHD NIH HHS - R21 HD065269(United States)
  • NIGMS NIH HHS - R25 GM109442()
  • NINDS NIH HHS - R00 NS076364()
  • NINDS NIH HHS - R01 NS085093()

Cerebellar learning properties are modulated by the CRF receptor in granular cells.

  • Ezra-Nevo G
  • J. Neurosci.
  • 2018 Jun 22

Literature context:


Abstract:

Corticotropin-releasing factor (CRF) and its type 1 receptor (CRFR1) play an important role in the responses to stressful challenges. Despite the well-established expression of CRFR1 in granular cells (GrCs), its role in procedural motor performance and memory formation remains elusive. To investigate the role of CRFR1 expression in cerebellar GrCs, we used a mouse model depleted of CRFR1 in these cells. We detected changes in the cellular learning mechanisms in GrCs depleted of CRFR1 in that they showed changes in intrinsic excitability and long-term synaptic plasticity. Moreover, male mice depleted of CRFR1 specifically in GrCs showed accelerated Pavlovian associative eye-blink conditioning, but no differences in baseline motor performance, locomotion or fear and anxiety-related behaviors. Last, we analyzed cerebella transcriptome of KO and control mice and detected prominent alterations in the expression of calcium signaling pathways components. Our findings shed light on the interplay between stress-related central mechanisms and cerebellar motor conditioning, highlighting the role of the CRF system in regulating particular forms of cerebellar learning.SIGNIFICANCE STATEMENTAlthough it is known that CRFR1 is highly expressed in the cerebellum, little attention has been given to its role in cerebellar functions in the behaving animal. Moreover, most of the attention was directed to the effect of CRF on Purkinje cells at the cellular level, and to this date, almost no data exist on the role of this stress-related receptor in other cerebellar structures. Here, we explored the behavioral and cellular effect of GrCs specific ablation of CRFR1 We found a profound effect on learning, both at the cellular and behavioral levels, without affecting baseline motor skills.

Funding information:
  • NCI NIH HHS - U01 CA105490(United States)

ZMYND10 functions in a chaperone relay during axonemal dynein assembly.

  • Mali GR
  • Elife
  • 2018 Jun 19

Literature context:


Abstract:

Molecular chaperones promote the folding and macromolecular assembly of a diverse set of 'client' proteins. How ubiquitous chaperone machineries direct their activities towards specific sets of substrates is unclear. Through the use of mouse genetics, imaging and quantitative proteomics we uncover that ZMYND10 is a novel co-chaperone that confers specificity for the FKBP8-HSP90 chaperone complex towards axonemal dynein clients required for cilia motility. Loss of ZMYND10 perturbs the chaperoning of axonemal dynein heavy chains, triggering broader degradation of dynein motor subunits. We show that pharmacological inhibition of FKBP8 phenocopies dynein motor instability associated with the loss of ZMYND10 in airway cells and that human disease-causing variants of ZMYND10 disrupt its ability to act as an FKBP8-HSP90 co-chaperone. Our study indicates that Primary Ciliary Dyskinesia (PCD), caused by mutations in dynein assembly factors disrupting cytoplasmic pre-assembly of axonemal dynein motors, should be considered a cell-type specific protein-misfolding disease.

Funding information:
  • Medical Research Council - MRC_UU_12018/26()
  • NCI NIH HHS - R44 CA165312(United States)

Treatment with antioxidants ameliorates oxidative damage in a mouse model of propionic acidemia.

  • Rivera-Barahona A
  • Mol. Genet. Metab.
  • 2018 May 18

Literature context:


Abstract:

Oxidative stress contributes to the pathogenesis of propionic acidemia (PA), a life threatening disease caused by the deficiency of propionyl CoA-carboxylase, in the catabolic pathway of branched-chain amino acids, odd-number chain fatty acids and cholesterol. Patients develop multisystemic complications including seizures, extrapyramidal symptoms, basal ganglia deterioration, pancreatitis and cardiomyopathy. The accumulation of toxic metabolites results in mitochondrial dysfunction, increased reactive oxygen species and oxidative damage, all of which have been documented in patients' samples and in a hypomorphic mouse model. Here we set out to investigate whether treatment with a mitochondria-targeted antioxidant, MitoQ, or with the natural polyphenol resveratrol, which is reported to have antioxidant and mitochondrial activation properties, could ameliorate the altered redox status and its functional consequences in the PA mouse model. The results show that oral treatment with MitoQ or resveratrol decreases lipid peroxidation and the expression levels of DNA repair enzyme OGG1 in PA mouse liver, as well as inducing tissue-specific changes in the expression of antioxidant enzymes. Notably, treatment decreased the cardiac hypertrophy marker BNP that is found upregulated in the PA mouse heart. Overall, the results provide in vivo evidence to justify more in depth investigations of antioxidants as adjuvant therapy in PA.

A Glial Signature and Wnt7 Signaling Regulate Glioma-Vascular Interactions and Tumor Microenvironment.

  • Griveau A
  • Cancer Cell
  • 2018 May 14

Literature context:


Abstract:

Gliomas comprise heterogeneous malignant glial and stromal cells. While blood vessel co-option is a potential mechanism to escape anti-angiogenic therapy, the relevance of glial phenotype in this process is unclear. We show that Olig2+ oligodendrocyte precursor-like glioma cells invade by single-cell vessel co-option and preserve the blood-brain barrier (BBB). Conversely, Olig2-negative glioma cells form dense perivascular collections and promote angiogenesis and BBB breakdown, leading to innate immune cell activation. Experimentally, Olig2 promotes Wnt7b expression, a finding that correlates in human glioma profiling. Targeted Wnt7a/7b deletion or pharmacologic Wnt inhibition blocks Olig2+ glioma single-cell vessel co-option and enhances responses to temozolomide. Finally, Olig2 and Wnt7 become upregulated after anti-VEGF treatment in preclinical models and patients. Thus, glial-encoded pathways regulate distinct glioma-vascular microenvironmental interactions.

Funding information:
  • Intramural NIH HHS - ES016005(United States)

Sustained activation of ERK1/2 MAPK in Schwann cells causes corneal neurofibroma.

  • Bargagna-Mohan P
  • J. Neurosci. Res.
  • 2018 Apr 17

Literature context:


Abstract:

Recent studies have shown that constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in Schwann cells (SCs) increases myelin thickness in transgenic mice. In this secondary analysis, we report that these transgenic mice develop a postnatal corneal neurofibroma with the loss of corneal transparency by age six months. We show that expansion of non-myelinating SCs, under the control of activated ERK1/2, also drive myofibroblast differentiation that derives from both SC precursors and resident corneal keratocytes. Further, these mice also harbor activated mast cells in the central cornea, which contributes to pathological corneal neovascularization and fibrosis. This breach of corneal avascularity and immune status is associated with the growth of the tumor pannus, resulting in a corneal stroma that is nearly four times its normal size. In corneas with advanced disease, some axons became ectopically myelinated, and the disruption of Remak bundles is evident. To determine whether myofibroblast differentiation was linked to vimentin, we examined the levels and phosphorylation status of this fibrotic biomarker. Concomitant with the early upregulation of vimentin, a serine 38-phosphorylated isoform of vimentin (pSer38vim) increased in SCs, which was attributed primarily to the soluble fraction of protein-not the cytoskeletal portion. However, the overexpressed pSer38vim became predominantly cytoskeletal with the growth of the corneal tumor. Our findings demonstrate an unrecognized function of ERK1/2 in the maintenance of corneal homeostasis, wherein its over-activation in SCs promotes corneal neurofibromas. This study is also the first report of a genetically engineered mouse that spontaneously develops a corneal tumor.

Funding information:
  • NEI NIH HHS - R01 EY016782()
  • NINDS NIH HHS - R01 NS038878()
  • NINDS NIH HHS - R21 NS081948()

The Histone Chaperones ASF1 and CAF-1 Promote MMS22L-TONSL-Mediated Rad51 Loading onto ssDNA during Homologous Recombination in Human Cells.

  • Huang TH
  • Mol. Cell
  • 2018 Mar 1

Literature context:


Abstract:

The access-repair-restore model for the role of chromatin in DNA repair infers that chromatin is a mere obstacle to DNA repair. However, here we show that blocking chromatin assembly, via knockdown of the histone chaperones ASF1 or CAF-1 or a mutation that prevents ASF1A binding to histones, hinders Rad51 loading onto ssDNA during homologous recombination. This is a consequence of reduced recruitment of the Rad51 loader MMS22L-TONSL to ssDNA, resulting in persistent RPA foci, extensive DNA end resection, persistent activation of the ATR-Chk1 pathway, and cell cycle arrest. In agreement, histones occupy ssDNA during DNA repair in yeast. We also uncovered DNA-PKcs-dependent DNA damage-induced ASF1A phosphorylation, which enhances chromatin assembly, promoting MMS22L-TONSL recruitment and, hence, Rad51 loading. We propose that transient assembly of newly synthesized histones onto ssDNA serves to recruit MMS22L-TONSL to efficiently form the Rad51 nucleofilament for strand invasion, suggesting an active role of chromatin assembly in homologous recombination.

Funding information:
  • Intramural NIH HHS - (United States)
  • NCI NIH HHS - R01 CA095641()

Systematic Discovery of RNA Binding Proteins that Regulate MicroRNA Levels.

  • Nussbacher JK
  • Mol. Cell
  • 2018 Mar 15

Literature context:


Abstract:

RNA binding proteins (RBPs) interact with primary, precursor, and mature microRNAs (miRs) to influence mature miR levels, which in turn affect critical aspects of human development and disease. To understand how RBPs contribute to miR biogenesis, we analyzed human enhanced UV crosslinking followed by immunoprecipitation (eCLIP) datasets for 126 RBPs to discover miR-encoding genomic loci that are statistically enriched for RBP binding. We find that 92% of RBPs interact directly with at least one miR locus, and that some interactions are cell line specific despite expression of the miR locus in both cell lines evaluated. We validated that ILF3 and BUD13 directly interact with and stabilize miR-144 and that BUD13 suppresses mir-210 processing to the mature species. We also observed that DDX3X regulates primary miR-20a, while LARP4 stabilizes precursor mir-210. Our approach to identifying regulators of miR loci can be applied to any user-defined RNA annotation, thereby guiding the discovery of uncharacterized regulators of RNA processing.

Funding information:
  • Howard Hughes Medical Institute - 5T32GM007454(United States)

Methylation of glucocorticoid receptor gene promoter modulates morphine dependence and accompanied hypothalamus-pituitary-adrenal axis dysfunction.

  • Zhu J
  • J. Neurosci. Res.
  • 2018 Mar 12

Literature context:


Abstract:

Previous studies demonstrated that dysfunction of the hypothalamus-pituitary-adrenal (HPA) axis played an important role in morphine dependence. Nonetheless, the molecular mechanism underlying morphine-induced HPA axis dysfunction and morphine dependence remains unclear. In the current study, 5'-aza-2'-deoxycytidine (5-aza), an inhibitor of DNA methyltransferases (DNMTs), was used to examine the effects of glucocorticoid receptor (GR) promoter 17 methylation on chronic morphine-induced HPA axis dysfunction and behavioral changes in rats and the underlying mechanism. Our results showed that chronic but not acute morphine downregulated the expression of nuclear GR protein and GR exon 17 variant mRNA, and upregulated the methylation of GR 17 exon promoter in the hippocampus of rats. Meanwhile, 5-aza per se had no effect on observed molecular and behavior change. In contrast, pretreatment of 5-aza into rat hippocampus reversed chronic morphine-induced hypermethylation of GR 17 promoter and decrease in GR expression. Moreover, pretreatment of 5-aza attenuated chronic morphine-enhanced HPA axis reactivity and the naloxone-precipitated somatic signs in morphine-dependent rats. Our results suggest that chronic morphine induced hypermethylation of GR 17 promoter, which then downregulated the expression of hippocampal GR, and was thus involved in chronic morphine-induced dysfunction of the HPA axis and the modulation of morphine dependence. Moreover, chronic morphine-induced hypermethylation of GR 17 promoter may be at least partially due to the increase in hippocampal DNMT 1 expression and its binding at GR 17 promoter in the rat hippocampus. © 2016 Wiley Periodicals, Inc.

Funding information:
  • NIDCD NIH HHS - R01 DC00189(United States)

Dynamic Ligand Discrimination in the Notch Signaling Pathway.

  • Nandagopal N
  • Cell
  • 2018 Feb 8

Literature context:


Abstract:

The Notch signaling pathway comprises multiple ligands that are used in distinct biological contexts. In principle, different ligands could activate distinct target programs in signal-receiving cells, but it is unclear how such ligand discrimination could occur. Here, we show that cells use dynamics to discriminate signaling by the ligands Dll1 and Dll4 through the Notch1 receptor. Quantitative single-cell imaging revealed that Dll1 activates Notch1 in discrete, frequency-modulated pulses that specifically upregulate the Notch target gene Hes1. By contrast, Dll4 activates Notch1 in a sustained, amplitude-modulated manner that predominantly upregulates Hey1 and HeyL. Ectopic expression of Dll1 or Dll4 in chick neural crest produced opposite effects on myogenic differentiation, showing that ligand discrimination can occur in vivo. Finally, analysis of chimeric ligands suggests that ligand-receptor clustering underlies dynamic encoding of ligand identity. The ability of the pathway to utilize ligands as distinct communication channels has implications for diverse Notch-dependent processes.

Funding information:
  • NEI NIH HHS - EY012135(United States)

Actin nucleator Spire 1 is a regulator of ectoplasmic specialization in the testis.

  • Wen Q
  • Cell Death Dis
  • 2018 Feb 12

Literature context:


Abstract:

Germ cell differentiation during the epithelial cycle of spermatogenesis is accompanied by extensive remodeling at the Sertoli cell-cell and Sertoli cell-spermatid interface to accommodate the transport of preleptotene spermatocytes and developing spermatids across the blood-testis barrier (BTB) and the adluminal compartment of the seminiferous epithelium, respectively. The unique cell junction in the testis is the actin-rich ectoplasmic specialization (ES) designated basal ES at the Sertoli cell-cell interface, and the apical ES at the Sertoli-spermatid interface. Since ES dynamics (i.e., disassembly, reassembly and stabilization) are supported by actin microfilaments, which rapidly converts between their bundled and unbundled/branched configuration to confer plasticity to the ES, it is logical to speculate that actin nucleation proteins play a crucial role to ES dynamics. Herein, we reported findings that Spire 1, an actin nucleator known to polymerize actins into long stretches of linear microfilaments in cells, is an important regulator of ES dynamics. Its knockdown by RNAi in Sertoli cells cultured in vitro was found to impede the Sertoli cell tight junction (TJ)-permeability barrier through changes in the organization of F-actin across Sertoli cell cytosol. Unexpectedly, Spire 1 knockdown also perturbed microtubule (MT) organization in Sertoli cells cultured in vitro. Biochemical studies using cultured Sertoli cells and specific F-actin vs. MT polymerization assays supported the notion that a transient loss of Spire 1 by RNAi disrupted Sertoli cell actin and MT polymerization and bundling activities. These findings in vitro were reproduced in studies in vivo by RNAi using Spire 1-specific siRNA duplexes to transfect testes with Polyplus in vivo-jetPEI as a transfection medium with high transfection efficiency. Spire 1 knockdown in the testis led to gross disruption of F-actin and MT organization across the seminiferous epithelium, thereby impeding the transport of spermatids and phagosomes across the epithelium and perturbing spermatogenesis. In summary, Spire 1 is an ES regulator to support germ cell development during spermatogenesis.

Funding information:
  • NICHD NIH HHS - HD007520(United States)

NADH Shuttling Couples Cytosolic Reductive Carboxylation of Glutamine with Glycolysis in Cells with Mitochondrial Dysfunction.

  • Gaude E
  • Mol. Cell
  • 2018 Feb 15

Literature context:


Abstract:

The bioenergetics and molecular determinants of the metabolic response to mitochondrial dysfunction are incompletely understood, in part due to a lack of appropriate isogenic cellular models of primary mitochondrial defects. Here, we capitalize on a recently developed cell model with defined levels of m.8993T>G mutation heteroplasmy, mTUNE, to investigate the metabolic underpinnings of mitochondrial dysfunction. We found that impaired utilization of reduced nicotinamide adenine dinucleotide (NADH) by the mitochondrial respiratory chain leads to cytosolic reductive carboxylation of glutamine as a new mechanism for cytosol-confined NADH recycling supported by malate dehydrogenase 1 (MDH1). We also observed that increased glycolysis in cells with mitochondrial dysfunction is associated with increased cell migration in an MDH1-dependent fashion. Our results describe a novel link between glycolysis and mitochondrial dysfunction mediated by reductive carboxylation of glutamine.

Funding information:
  • NIAID NIH HHS - K08 AI076429-03(United States)

T3 and Glucose Coordinately Stimulate ChREBP-Mediated Ucp1 Expression in Brown Adipocytes From Male Mice.

  • Katz LS
  • Endocrinology
  • 2018 Jan 1

Literature context:


Abstract:

Increasing brown adipose tissue (BAT) activity is regarded as a potential treatment of obese, hyperglycemic patients with metabolic syndrome. Triiodothyronine (T3) is known to stimulate BAT activity by increasing mitochondrial uncoupling protein 1 (Ucp1) gene transcription, leading to increased thermogenesis and decreased body weight. Here we report our studies on the effects of T3 and glucose in two mouse models and in mouse immortalized brown preadipocytes in culture. We identified carbohydrate response element binding protein (ChREBP) as a T3 target gene in BAT by RNA sequencing and studied its effects in brown adipocytes. We found that ChREBP was upregulated by T3 in BAT in both hyperglycemic mouse models. In brown preadipocytes, T3 and glucose synergistically and dose dependently upregulated Ucp1 messenger RNA 1000-fold compared with low glucose concentrations. Additionally, we observed increased ChREBP and Ucp1 protein 11.7- and 19.9-fold, respectively, along with concomitant induction of a hypermetabolic state. Moreover, downregulation of ChREBP inhibited T3 and glucose upregulation of Ucp1 100-fold, whereas overexpression of ChREBP upregulated Ucp1 5.2-fold. We conclude that T3 and glucose signaling pathways coordinately regulate the metabolic state of BAT and suggest that ChREBP is a target for therapeutic regulation of BAT activity.

Abrogating Mitochondrial Dynamics in Mouse Hearts Accelerates Mitochondrial Senescence.

  • Song M
  • Cell Metab.
  • 2017 Dec 5

Literature context:


Abstract:

Mitochondrial fusion and fission are critical to heart health; genetically interrupting either is rapidly lethal. To understand whether it is loss of, or the imbalance between, fusion and fission that underlies observed cardiac phenotypes, we engineered mice in which Mfn-mediated fusion and Drp1-mediated fission could be concomitantly abolished. Compared to fusion-defective Mfn1/Mfn2 cardiac knockout or fission-defective Drp1 cardiac knockout mice, Mfn1/Mfn2/Drp1 cardiac triple-knockout mice survived longer and manifested a unique pathological form of cardiac hypertrophy. Over time, however, combined abrogation of fission and fusion provoked massive progressive mitochondrial accumulation that severely distorted cardiomyocyte sarcomeric architecture. Mitochondrial biogenesis was not responsible for mitochondrial superabundance, whereas mitophagy was suppressed despite impaired mitochondrial proteostasis. Similar but milder defects were observed in aged hearts. Thus, cardiomyopathies linked to dynamic imbalance between fission and fusion are temporarily mitigated by forced mitochondrial adynamism at the cost of compromising mitochondrial quantity control and accelerating mitochondrial senescence.

Funding information:
  • NHLBI NIH HHS - R01 HL059888()
  • NHLBI NIH HHS - R01 HL128071()
  • NHLBI NIH HHS - R35 HL135736()
  • NICHD NIH HHS - R01-HD45595(United States)

TGF-β contamination of purified recombinant GDF15.

  • Olsen OE
  • PLoS ONE
  • 2017 Dec 6

Literature context:


Abstract:

Purified recombinant proteins for use in biomedical research are invaluable to investigate protein function. However, purity varies in protein batches made in mammalian expression systems, such as CHO-cells or HEK293-cells. This study points to caution while investigating effects of proteins related to the transforming growth factor (TGF)-β superfamily. TGF-β itself is a very potent cytokine and has effects on cells in the femtomolar range. Thus, even very small amounts of contaminating TGF-β in purified protein batches may influence the experimental results given that receptors for TGF-β are present. When we attempted to characterize possible receptors for the TGF-β superfamily ligand GDF15, striking similarities between GDF15-induced activities and known TGF-β activities were found. However, differences between batches of GDF15 were a concern and finally led us to the conclusion that the measured effects were caused by TGF-β and not by GDF15. Our results emphasize that purified recombinant proteins must be used with caution and warrant proper controls. Notably, some conclusions made about GDF15 in already published papers may not be supported by the results shown. Awareness about this issue in the scientific community may prevent spreading of false positive results.

Funding information:
  • NIH HHS - R24-OD-011199(United States)

System-wide Benefits of Intermeal Fasting by Autophagy.

  • Martinez-Lopez N
  • Cell Metab.
  • 2017 Dec 5

Literature context:


Abstract:

Autophagy failure is associated with metabolic insufficiency. Although caloric restriction (CR) extends healthspan, its adherence in humans is poor. We established an isocaloric twice-a-day (ITAD) feeding model wherein ITAD-fed mice consume the same food amount as ad libitum controls but at two short windows early and late in the diurnal cycle. We hypothesized that ITAD feeding will provide two intervals of intermeal fasting per circadian period and induce autophagy. We show that ITAD feeding modifies circadian autophagy and glucose/lipid metabolism that correlate with feeding-driven changes in circulating insulin. ITAD feeding decreases adiposity and, unlike CR, enhances muscle mass. ITAD feeding drives energy expenditure, lowers lipid levels, suppresses gluconeogenesis, and prevents age/obesity-associated metabolic defects. Using liver-, adipose-, myogenic-, and proopiomelanocortin neuron-specific autophagy-null mice, we mapped the contribution of tissue-specific autophagy to system-wide benefits of ITAD feeding. Our studies suggest that consuming two meals a day without CR could prevent the metabolic syndrome.

Funding information:
  • NCI NIH HHS - P30 CA013330()
  • NIA NIH HHS - P01 AG031782()
  • NIA NIH HHS - P30 AG038072()
  • NIA NIH HHS - R01 AG043517()
  • NIA NIH HHS - R37 AG018381()
  • NIA NIH HHS - T32 AG023475()
  • NIDDK NIH HHS - P30 DK020541()
  • NIDDK NIH HHS - P30 DK026687()
  • NIDDK NIH HHS - P30 DK041296()
  • NIDDK NIH HHS - R01 DK033823()
  • NIDDK NIH HHS - R01 DK105441()
  • NIMH NIH HHS - P50 MH096890(United States)

Prostaglandin E2 promotes neural proliferation and differentiation and regulates Wnt target gene expression.

  • Wong CT
  • J. Neurosci. Res.
  • 2017 Nov 29

Literature context:


Abstract:

Prostaglandin E2 (PGE2 ) is an endogenous lipid molecule that regulates important physiological functions, including calcium signaling, neuronal plasticity, and immune responses. Exogenous factors such as diet, exposure to immunological agents, toxic chemicals, and drugs can influence PGE2 levels in the developing brain and have been associated with autism disorders. This study seeks to determine whether changes in PGE2 level can alter the behavior of undifferentiated and differentiating neuroectodermal (NE-4C) stem cells and whether PGE2 signaling impinges on the Wnt/β-catenin pathways. We show that PGE2 increases proliferation of undifferentiated NE-4C stem cells. PGE2 also promotes the progression of NE-4C stem cell differentiation into neuronal-lineage cells, which is apparent by accelerated appearance of neuronal clusters (neurospheres) and earlier expression of the neuronal marker microtubule-associated protein tau. Furthermore, PGE2 alters the expression of downstream Wnt-regulated genes previously associated with neurodevelopmental disorders. In undifferentiated stem cells, PGE2 downregulates Ptgs2 expression and upregulates Mmp9 and Ccnd1 expression. In differentiating neuronal cells, PGE2 causes upregulation of Wnt3, Tcf4, and Ccnd1. The convergence of the PGE2 and the Wnt pathways is also apparent through increased expression of active β-catenin, a key signaling component of the Wnt/β-catenin pathways. This study provides novel evidence that PGE2 influences progression of neuronal development and influences Wnt target gene expression. We discuss how these findings could have potential implications for neurodevelopmental disorders such as autism. © 2016 Wiley Periodicals, Inc.

An Eya1-Notch axis specifies bipotential epibranchial differentiation in mammalian craniofacial morphogenesis.

  • Zhang H
  • Elife
  • 2017 Nov 15

Literature context:


Abstract:

Craniofacial morphogenesis requires proper development of pharyngeal arches and epibranchial placodes. We show that the epibranchial placodes, in addition to giving rise to cranial sensory neurons, generate a novel lineage-related non-neuronal cell population for mouse pharyngeal arch development. Eya1 is essential for the development of epibranchial placodes and proximal pharyngeal arches. We identify an Eya1-Notch regulatory axis that specifies both the neuronal and non-neuronal commitment of the epibranchial placode, where Notch acts downstream of Eya1 and promotes the non-neuronal cell fate. Notch is regulated by the threonine phosphatase activity of Eya1. Eya1 dephosphorylates p-threonine-2122 of the Notch1 intracellular domain (Notch1 ICD), which increases the stability of Notch1 ICD and maintains Notch signaling activity in the non-neuronal epibranchial placodal cells. Our data unveil a more complex differentiation program in epibranchial placodes and an important role for the Eya1-Notch axis in craniofacial morphogenesis.

Funding information:
  • NHLBI NIH HHS - T32 HL007088(United States)

Involvement of CRFR1 in the Basolateral Amygdala in the Immediate Fear Extinction Deficit.

  • Hollis F
  • eNeuro
  • 2017 Oct 31

Literature context:


Abstract:

Several animal and clinical studies have highlighted the ineffectiveness of fear extinction sessions delivered shortly after trauma exposure. This phenomenon, termed the immediate extinction deficit, refers to situations in which extinction programs applied shortly after fear conditioning may result in the reduction of fear behaviors (in rodents, frequently measured as freezing responses to the conditioned cue) during extinction training, but failure to consolidate this reduction in the long term. The molecular mechanisms driving this immediate extinction resistance remain unclear. Here we present evidence for the involvement of the corticotropin releasing factor (CRF) system in the basolateral amygdala (BLA) in male Wistar rats. Intra-BLA microinfusion of the CRFR1 antagonist NBI30775 enhances extinction recall, whereas administration of the CRF agonist CRF6-33 before delayed extinction disrupts recall of extinction. We link the immediate fear extinction deficit with dephosphorylation of GluA1 glutamate receptors at Ser845 and enhanced activity of the protein phosphatase calcineurin in the BLA. Their reversal after treatment with the CRFR1 antagonist indicates their dependence on CRFR1 actions. These findings can have important implications for the improvement of therapeutic approaches to trauma, as well as furthering our understanding of the neurobiological mechanisms underlying fear-related disorders.

Funding information:
  • NINDS NIH HHS - R01 NS027881(United States)

Control of Cell Shape, Neurite Outgrowth, and Migration by a Nogo-A/HSPG Interaction.

  • Kempf A
  • Dev. Cell
  • 2017 Oct 9

Literature context:


Abstract:

Heparan sulfate proteoglycans (HSPGs) critically modulate adhesion-, growth-, and migration-related processes. Here, we show that the transmembrane protein, Nogo-A, inhibits neurite outgrowth and cell spreading in neurons and Nogo-A-responsive cell lines via HSPGs. The extracellular, active 180 amino acid Nogo-A region, named Nogo-A-Δ20, binds to heparin and brain-derived heparan sulfate glycosaminoglycans (GAGs) but not to the closely related chondroitin sulfate GAGs. HSPGs are required for Nogo-A-Δ20-induced inhibition of adhesion, cell spreading, and neurite outgrowth, as well as for RhoA activation. Surprisingly, we show that Nogo-A-Δ20 can act via HSPGs independently of its receptor, Sphingosine-1-Phosphate receptor 2 (S1PR2). We thereby identify the HSPG family members syndecan-3 and syndecan-4 as functional receptors for Nogo-A-Δ20. Finally, we show in explant cultures ex vivo that Nogo-A-Δ20 promotes the migration of neuroblasts via HSPGs but not S1PR2.

The X-Linked Autism Protein KIAA2022/KIDLIA Regulates Neurite Outgrowth via N-Cadherin and δ-Catenin Signaling.

  • Gilbert J
  • eNeuro
  • 2017 Oct 31

Literature context:


Abstract:

Our previous work showed that loss of the KIAA2022 gene protein results in intellectual disability with language impairment and autistic behavior (KIDLIA, also referred to as XPN). However, the cellular and molecular alterations resulting from a loss of function of KIDLIA and its role in autism with severe intellectual disability remain unknown. Here, we show that KIDLIA plays a key role in neuron migration and morphogenesis. We found that KIDLIA is distributed exclusively in the nucleus. In the developing rat brain, it is expressed only in the cortical plate and subplate region but not in the intermediate or ventricular zone. Using in utero electroporation, we found that short hairpin RNA (shRNA)-mediated knockdown of KIDLIA leads to altered neuron migration and a reduction in dendritic growth and disorganized apical dendrite projections in layer II/III mouse cortical neurons. Consistent with this, in cultured rat neurons, a loss of KIDLIA expression also leads to suppression of dendritic growth and branching. At the molecular level, we found that KIDLIA suppression leads to an increase in cell-surface N-cadherin and an elevated association of N-cadherin with δ-catenin, resulting in depletion of free δ-catenin in the cytosolic compartment. The reduced availability of cytosolic δ-catenin leads to elevated RhoA activity and reduced actin dynamics at the dendritic growth cone. Furthermore, in neurons with KIDLIA knockdown, overexpression of δ-catenin or inhibition of RhoA rescues actin dynamics, dendritic growth, and branching. These findings provide the first evidence on the role of the novel protein KIDLIA in neurodevelopment and autism with severe intellectual disability.

Funding information:
  • NIDA NIH HHS - K01 DA029044(United States)

Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses.

  • Hamperl S
  • Cell
  • 2017 Aug 10

Literature context:


Abstract:

Conflicts between transcription and replication are a potent source of DNA damage. Co-transcriptional R-loops could aggravate such conflicts by creating an additional barrier to replication fork progression. Here, we use a defined episomal system to investigate how conflict orientation and R-loop formation influence genome stability in human cells. R-loops, but not normal transcription complexes, induce DNA breaks and orientation-specific DNA damage responses during conflicts with replication forks. Unexpectedly, the replisome acts as an orientation-dependent regulator of R-loop levels, reducing R-loops in the co-directional (CD) orientation but promoting their formation in the head-on (HO) orientation. Replication stress and deregulated origin firing increase the number of HO collisions leading to genome-destabilizing R-loops. Our findings connect DNA replication to R-loop homeostasis and suggest a mechanistic basis for genome instability resulting from deregulated DNA replication, observed in cancer and other disease states.

Funding information:
  • NIGMS NIH HHS - R01 GM119334()

Transcription Factor CREM Mediates High Glucose Response in Cardiomyocytes and in a Male Mouse Model of Prolonged Hyperglycemia.

  • Barbati SA
  • Endocrinology
  • 2017 Jul 1

Literature context:


Abstract:

This study aims at investigating the epigenetic landscape of cardiomyocytes exposed to elevated glucose levels. High glucose (30 mM) for 72 hours determined some epigenetic changes in mouse HL-1 and rat differentiated H9C2 cardiomyocytes including upregulation of class I and III histone deacetylase protein levels and activity, inhibition of histone acetylase p300 activity, increase in histone H3 lysine 27 trimethylation, and reduction in H3 lysine 9 acetylation. Gene expression analysis focused on cardiotoxicity revealed that high glucose induced markers associated with tissue damage, fibrosis, and cardiac remodeling such as Nexilin (NEXN), versican, cyclic adenosine 5'-monophosphate-responsive element modulator (CREM), and adrenoceptor α2A (ADRA2). Notably, the transcription factor CREM was found to be important in the regulation of cardiotoxicity-associated genes as assessed by specific small interfering RNA and chromatin immunoprecipitation experiments. In CD1 mice, made hyperglycemic by streptozotoicin (STZ) injection, cardiac structural alterations were evident at 6 months after STZ treatment and were associated with a significant increase of H3 lysine 27 trimethylation and reduction of H3 lysine 9 acetylation. Consistently, NEXN, CREM, and ADRA2 expression was significantly induced at the RNA and protein levels. Confocal microscopy analysis of NEXN localization showed this protein irregularly distributed along the sarcomeres in the heart of hyperglycemic mice. This evidence suggested a structural alteration of cardiac Z-disk with potential consequences on contractility. In conclusion, high glucose may alter the epigenetic landscape of cardiac cells. Sildenafil, restoring guanosine 3', 5'-cyclic monophosphate levels, counteracted the increase of CREM and NEXN, providing a protective effect in the presence of hyperglycemia.

PTEN controls glandular morphogenesis through a juxtamembrane β-Arrestin1/ARHGAP21 scaffolding complex.

  • Javadi A
  • Elife
  • 2017 Jul 27

Literature context:


Abstract:

PTEN controls three-dimensional (3D) glandular morphogenesis by coupling juxtamembrane signaling to mitotic spindle machinery. While molecular mechanisms remain unclear, PTEN interacts through its C2 membrane-binding domain with the scaffold protein β-Arrestin1. Because β-Arrestin1 binds and suppresses the Cdc42 GTPase-activating protein ARHGAP21, we hypothesize that PTEN controls Cdc42 -dependent morphogenic processes through a β-Arrestin1-ARHGAP21 complex. Here, we show that PTEN knockdown (KD) impairs β-Arrestin1 membrane localization, β-Arrestin1-ARHGAP21 interactions, Cdc42 activation, mitotic spindle orientation and 3D glandular morphogenesis. Effects of PTEN deficiency were phenocopied by β-Arrestin1 KD or inhibition of β-Arrestin1-ARHGAP21 interactions. Conversely, silencing of ARHGAP21 enhanced Cdc42 activation and rescued aberrant morphogenic processes of PTEN-deficient cultures. Expression of the PTEN C2 domain mimicked effects of full-length PTEN but a membrane-binding defective mutant of the C2 domain abrogated these properties. Our results show that PTEN controls multicellular assembly through a membrane-associated regulatory protein complex composed of β-Arrestin1, ARHGAP21 and Cdc42.

Sam68 Allows Selective Targeting of Human Cancer Stem Cells.

  • Benoit YD
  • Cell Chem Biol
  • 2017 Jul 20

Literature context:


Abstract:

Targeting of human cancer stem cells (CSCs) requires the identification of vulnerabilities unique to CSCs versus healthy resident stem cells (SCs). Unfortunately, dysregulated pathways that support transformed CSCs, such as Wnt/β-catenin signaling, are also critical regulators of healthy SCs. Using the ICG-001 and CWP family of small molecules, we reveal Sam68 as a previously unappreciated modulator of Wnt/β-catenin signaling within CSCs. Disruption of CBP-β-catenin interaction via ICG-001/CWP induces the formation of a Sam68-CBP complex in CSCs that alters Wnt signaling toward apoptosis and differentiation induction. Our study identifies Sam68 as a regulator of human CSC vulnerability.

G6pd Deficiency Does Not Affect the Cytosolic Glutathione or Thioredoxin Antioxidant Defense in Mouse Cochlea.

  • White K
  • J. Neurosci.
  • 2017 Jun 7

Literature context:


Abstract:

Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway; it catalyzes the conversion of glucose-6-phosphate to 6-phosphogluconate and NADP+ to NADPH and is thought to be the principal source of NADPH for the cytosolic glutathione and thioredoxin antioxidant defense systems. We investigated the roles of G6PD in the cytosolic antioxidant defense in the cochlea of G6pd hypomorphic mice that were backcrossed onto normal-hearing CBA/CaJ mice. Young G6pd-deficient mice displayed a significant decrease in cytosolic G6PD protein levels and activities in the inner ears. However, G6pd deficiency did not affect the cytosolic NADPH redox state, or glutathione or thioredoxin antioxidant defense in the inner ears. No histological abnormalities or oxidative damage was observed in the cochlea of G6pd hemizygous males or homozygous females. Furthermore, G6pd deficiency did not affect auditory brainstem response hearing thresholds, wave I amplitudes or wave I latencies in young males or females. In contrast, G6pd deficiency resulted in increased activities and protein levels of cytosolic isocitrate dehydrogenase 1, an enzyme that catalyzes the conversion of isocitrate to α-ketoglutarate and NADP+ to NADPH, in the inner ear. In a mouse inner ear cell line, knockdown of Idh1, but not G6pd, decreased cell growth rates, cytosolic NADPH levels, and thioredoxin reductase activities. Therefore, under normal physiological conditions, G6pd deficiency does not affect the cytosolic glutathione or thioredoxin antioxidant defense in mouse cochlea. Under G6pd deficiency conditions, isocitrate dehydrogenase 1 likely functions as the principal source of NADPH for cytosolic antioxidant defense in the cochlea.SIGNIFICANCE STATEMENT Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway; it catalyzes the conversion of glucose-6-phosphate to 6-phosphogluconate and NADP+ to NADPH and is thought to be the principal source of NADPH for the cytosolic glutathione and thioredoxin antioxidant defense systems. In the current study, we show that, under normal physiological conditions, G6pd deficiency does not affect the cytosolic glutathione or thioredoxin antioxidant defense in the mouse cochlea. However, under G6pd deficiency conditions, isocitrate dehydrogenase 1 likely functions as the principal source of NADPH for cytosolic antioxidant defense in the cochlea.

Funding information:
  • NIA NIH HHS - P30 AG028740()
  • NIDCD NIH HHS - R01 DC012552()
  • NIDCD NIH HHS - R01 DC014437()
  • NIDCD NIH HHS - R03 DC011840()

A Systems Biology Approach Identifies FUT8 as a Driver of Melanoma Metastasis.

  • Agrawal P
  • Cancer Cell
  • 2017 Jun 12

Literature context:


Abstract:

Association of aberrant glycosylation with melanoma progression is based mainly on analyses of cell lines. Here we present a systems-based study of glycomic changes and corresponding enzymes associated with melanoma metastasis in patient samples. Upregulation of core fucosylation (FUT8) and downregulation of α-1,2 fucosylation (FUT1, FUT2) were identified as features of metastatic melanoma. Using both in vitro and in vivo studies, we demonstrate FUT8 is a driver of melanoma metastasis which, when silenced, suppresses invasion and tumor dissemination. Glycoprotein targets of FUT8 were enriched in cell migration proteins including the adhesion molecule L1CAM. Core fucosylation impacted L1CAM cleavage and the ability of L1CAM to support melanoma invasion. FUT8 and its targets represent therapeutic targets in melanoma metastasis.

Funding information:
  • NCI NIH HHS - R01 CA202027()

Aging Triggers Cytoplasmic Depletion and Nuclear Translocation of the E3 Ligase Mahogunin: A Function for Ubiquitin in Neuronal Survival.

  • Benvegnù S
  • Mol. Cell
  • 2017 May 4

Literature context:


Abstract:

A decline in proteasome function is causally connected to neuronal aging and aging-associated neuropathologies. By using hippocampal neurons in culture and in vivo, we show that aging triggers a reduction and a cytoplasm-to-nucleus redistribution of the E3 ubiquitin ligase mahogunin (MGRN1). Proteasome impairment induces MGRN1 monoubiquitination, the key post-translational modification for its nuclear entry. One potential mechanism for MGRN1 monoubiquitination is via progressive deubiquitination at the proteasome of polyubiquitinated MGRN1. Once in the nucleus, MGRN1 potentiates the transcriptional cellular response to proteotoxic stress. Inhibition of MGRN1 impairs ATF3-mediated neuronal responsiveness to proteosomal stress and increases neuronal stress, while increasing MGRN1 ameliorates signs of neuronal aging, including cognitive performance in old animals. Our results imply that, among others, the strength of neuronal survival in a proteasomal deterioration background, like during aging, depends on the fine-tuning of ubiquitination-deubiquitination.

Densin-180 Controls the Trafficking and Signaling of L-Type Voltage-Gated Cav1.2 Ca2+ Channels at Excitatory Synapses.

  • Wang S
  • J. Neurosci.
  • 2017 May 3

Literature context:


Abstract:

Voltage-gated Cav1.2 and Cav1.3 (L-type) Ca2+ channels regulate neuronal excitability, synaptic plasticity, and learning and memory. Densin-180 (densin) is an excitatory synaptic protein that promotes Ca2+-dependent facilitation of voltage-gated Cav1.3 Ca2+ channels in transfected cells. Mice lacking densin (densin KO) exhibit defects in synaptic plasticity, spatial memory, and increased anxiety-related behaviors-phenotypes that more closely match those in mice lacking Cav1.2 than Cav1.3. Therefore, we investigated the functional impact of densin on Cav1.2. We report that densin is an essential regulator of Cav1.2 in neurons, but has distinct modulatory effects compared with its regulation of Cav1.3. Densin binds to the N-terminal domain of Cav1.2, but not that of Cav1.3, and increases Cav1.2 currents in transfected cells and in neurons. In transfected cells, densin accelerates the forward trafficking of Cav1.2 channels without affecting their endocytosis. Consistent with a role for densin in increasing the number of postsynaptic Cav1.2 channels, overexpression of densin increases the clustering of Cav1.2 in dendrites of hippocampal neurons in culture. Compared with wild-type mice, the cell surface levels of Cav1.2 in the brain, as well as Cav1.2 current density and signaling to the nucleus, are reduced in neurons from densin KO mice. We conclude that densin is an essential regulator of neuronal Cav1 channels and ensures efficient Cav1.2 Ca2+ signaling at excitatory synapses.SIGNIFICANCE STATEMENT The number and localization of voltage-gated Cav Ca2+ channels are crucial determinants of neuronal excitability and synaptic transmission. We report that the protein densin-180 is highly enriched at excitatory synapses in the brain and enhances the cell surface trafficking and postsynaptic localization of Cav1.2 L-type Ca2+ channels in neurons. This interaction promotes coupling of Cav1.2 channels to activity-dependent gene transcription. Our results reveal a mechanism that may contribute to the roles of Cav1.2 in regulating cognition and mood.

Funding information:
  • NIDCD NIH HHS - R01 DC009433()
  • NIDCD NIH HHS - R55 DC009433()
  • NIMH NIH HHS - R01 MH063232()
  • NINDS NIH HHS - R01 NS017660()
  • NINDS NIH HHS - R01 NS028710()
  • NINDS NIH HHS - R01 NS084190()

NF-κB regulates neuronal ankyrin-G via a negative feedback loop.

  • König HG
  • Sci Rep
  • 2017 Feb 9

Literature context:


Abstract:

The axon initial segment (AIS) is a neuronal compartment defined by ankyrin-G expression. We here demonstrate that the IKK-complex co-localizes and interacts with the cytoskeletal anchor protein ankyrin-G in immunoprecipitation and proximity-ligation experiments in cortical neurons. Overexpression of the 270 kDa variant of ankyrin-G suppressed, while gene-silencing of ankyrin-G expression increased nuclear factor-κB (NF-κB) activity in primary neurons, suggesting that ankyrin-G sequesters the transcription factor in the AIS. We also found that p65 bound to the ank3 (ankyrin-G) promoter sequence in chromatin immunoprecipitation analyses thereby increasing ank3 expression and ankyrin-G levels at the AIS. Gene-silencing of p65 or ankyrin-G overexpression suppressed ank3 reporter activity. Collectively these data demonstrate that p65/NF-κB controls ankyrin-G levels via a negative feedback loop, thereby linking NF-κB signaling with neuronal polarity and axonal plasticity.

Funding information:
  • NIMH NIH HHS - R37 MH063105(United States)

Single-Molecule Analysis of mtDNA Replication Uncovers the Basis of the Common Deletion.

  • Phillips AF
  • Mol. Cell
  • 2017 Feb 2

Literature context:


Abstract:

Mutations in mtDNA lead to muscular and neurological diseases and are linked to aging. The most frequent aberrancy is the "common deletion" that involves a 4,977-bp region flanked by 13-bp repeats. To investigate the basis of this deletion, we developed a single-molecule mtDNA combing method. The analysis of replicating mtDNA molecules provided in vivo evidence in support of the asymmetric mode of replication. Furthermore, we observed frequent fork stalling at the junction of the common deletion, suggesting that impaired replication triggers the formation of this toxic lesion. In parallel experiments, we employed mito-TALENs to induce breaks in distinct loci of the mitochondrial genome and found that breaks adjacent to the 5' repeat trigger the common deletion. Interestingly, this process was mediated by the mitochondrial replisome independent of canonical DSB repair. Altogether, our data underscore a unique replication-dependent repair pathway that leads to the mitochondrial common deletion.

Cell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortex.

  • Zhang X
  • Cell
  • 2016 Aug 25

Literature context:


Abstract:

Alternative splicing is prevalent in the mammalian brain. To interrogate the functional role of alternative splicing in neural development, we analyzed purified neural progenitor cells (NPCs) and neurons from developing cerebral cortices, revealing hundreds of differentially spliced exons that preferentially alter key protein domains-especially in cytoskeletal proteins-and can harbor disease-causing mutations. We show that Ptbp1 and Rbfox proteins antagonistically govern the NPC-to-neuron transition by regulating neuron-specific exons. Whereas Ptbp1 maintains apical progenitors partly through suppressing a poison exon of Flna in NPCs, Rbfox proteins promote neuronal differentiation by switching Ninein from a centrosomal splice form in NPCs to a non-centrosomal isoform in neurons. We further uncover an intronic human mutation within a PTBP1-binding site that disrupts normal skipping of the FLNA poison exon in NPCs and causes a brain-specific malformation. Our study indicates that dynamic control of alternative splicing governs cell fate in cerebral cortical development.

MYC amplifications in myeloma cell lines: correlation with MYC-inhibitor efficacy.

  • Holien T
  • Oncotarget
  • 2015 Sep 8

Literature context:


Abstract:

In multiple myeloma, elevated MYC expression is related to disease initiation and progression. We found that in myeloma cell lines, MYC gene amplifications were common and correlated with MYC mRNA and protein. In primary cell samples MYC mRNA levels were also relatively high; however gene copy number alterations were uncommon. Elevated levels of MYC in primary myeloma cells have been reported to arise from complex genetic aberrations and are more common than previously thought. Thus, elevated MYC expression is achieved differently in myeloma cell lines and primary cells. Sensitivity of myeloma cell lines to the MYC inhibitor 10058-F4 correlated with MYC expression, supporting that the activity of 10058-F4 was through specific inhibition of MYC.

Funding information:
  • RRD VA - I01 RX002133(United States)

Formin 1 Regulates Ectoplasmic Specialization in the Rat Testis Through Its Actin Nucleation and Bundling Activity.

  • Li N
  • Endocrinology
  • 2015 Aug 18

Literature context:


Abstract:

During spermatogenesis, developing spermatids and preleptotene spermatocytes are transported across the adluminal compartment and the blood-testis barrier (BTB), respectively, so that spermatids line up near the luminal edge to prepare for spermiation, whereas preleptotene spermatocytes enter the adluminal compartment to differentiate into late spermatocytes to prepare for meiosis I/II. These cellular events involve actin microfilament reorganization at the testis-specific, actin-rich Sertoli-spermatid and Sertoli-Sertoli cell junction called apical and basal ectoplasmic specialization (ES). Formin 1, an actin nucleation protein known to promote actin microfilament elongation and bundling, was expressed at the apical ES but limited to stage VII of the epithelial cycle, whereas its expression at the basal ES/BTB stretched from stage III to stage VI, diminished in stage VII, and was undetectable in stage VIII tubules. Using an in vitro model of studying Sertoli cell BTB function by RNA interference and biochemical assays to monitor actin bundling and polymerization activity, a knockdown of formin 1 in Sertoli cells by approximately 70% impeded the tight junction-permeability function. This disruptive effect on the tight junction barrier was mediated by a loss of actin microfilament bundling and actin polymerization capability mediated by changes in the localization of branched actin-inducing protein Arp3 (actin-related protein 3), and actin bundling proteins Eps8 (epidermal growth factor receptor pathway substrate 8) and palladin, thereby disrupting cell adhesion. Formin 1 knockdown in vivo was found to impede spermatid adhesion, transport, and polarity, causing defects in spermiation in which elongated spermatids remained embedded into the epithelium in stage IX tubules, mediated by changes in the spatiotemporal expression of Arp3, Eps8, and palladin. In summary, formin 1 is a regulator of ES dynamics.

Funding information:
  • NIDDK NIH HHS - U24 DK059637(United States)

Activation of transient receptor potential vanilloid 3 channel suppresses adipogenesis.

  • Cheung SY
  • Endocrinology
  • 2015 Jun 18

Literature context:


Abstract:

The present study shows that activation of the transient receptor potential vanilloid 3 channel (TRPV3) suppresses adipocyte differentiation. We also found that a major functional catechin compound in green tea and cocoa, (-)-epicatechin, exerts antiadipogenic effects in the adipocytes through direct activation of TRPV3. TRPV3 was detected in the 3T3-L1 adipocytes using immunohistochemistry and semiquantitative PCR. TRPV3 activation by activators (-)-epicatechin and diphenylborinic anhydride was determined using live cell fluorescent Ca(2+) imaging and patch-clamp electrophysiology. Using RNA interference, immunoblotting, and Oil red O staining, we found that the TRPV3 agonists prevented adipogenesis by inhibiting the phosphorylation of insulin receptor substrate 1, the downstream phosphoinositide 3-kinase/Akt/forkhead box protein O1 axis, and the expression of the adipogenic genes peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α. TRPV3 overexpression hindered adipogenesis in the 3T3-L1 cells. In vivo studies showed that chronic treatment with the TRPV3 activators prevented adipogenesis and weight gain in the mice fed on high-fat diets. Moreover, TRPV3 expression was reduced in the visceral adipose tissue from mice fed on high-fat diets and obese (ob/ob) and diabetic (db/m(+)) mice. In conclusion, our study illustrates the antiadipogenic role of TRPV3 in the adipocytes.

Funding information:
  • Austrian Science Fund FWF - V 216(Austria)
  • NCI NIH HHS - CA133346(United States)

Activin A inhibits BMP-signaling by binding ACVR2A and ACVR2B.

  • Olsen OE
  • Cell Commun. Signal
  • 2015 Jun 6

Literature context:


Abstract:

BACKGROUND: Activins are members of the TGF-β family of ligands that have multiple biological functions in embryonic stem cells as well as in differentiated tissue. Serum levels of activin A were found to be elevated in pathological conditions such as cachexia, osteoporosis and cancer. Signaling by activin A through canonical ALK4-ACVR2 receptor complexes activates the transcription factors SMAD2 and SMAD3. Activin A has a strong affinity to type 2 receptors, a feature that they share with some of the bone morphogenetic proteins (BMPs). Activin A is also elevated in myeloma patients with advanced disease and is involved in myeloma bone disease. RESULTS: In this study we investigated effects of activin A binding to receptors that are shared with BMPs using myeloma cell lines with well-characterized BMP-receptor expression and responses. Activin A antagonized BMP-6 and BMP-9, but not BMP-2 and BMP-4. Activin A was able to counteract BMPs that signal through the type 2 receptors ACVR2A and ACVR2B in combination with ALK2, but not BMPs that signal through BMPR2 in combination with ALK3 and ALK6. CONCLUSIONS: We propose that one important way that activin A regulates cell behavior is by antagonizing BMP-ACVR2A/ACVR2B/ALK2 signaling.

α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2.

  • Kett LR
  • J. Neurosci.
  • 2015 Apr 8

Literature context:


Abstract:

Accumulating evidence from genetic and biochemical studies implicates dysfunction of the autophagic-lysosomal pathway as a key feature in the pathogenesis of Parkinson's disease (PD). Most studies have focused on accumulation of neurotoxic α-synuclein secondary to defects in autophagy as the cause of neurodegeneration, but abnormalities of the autophagic-lysosomal system likely mediate toxicity through multiple mechanisms. To further explore how endolysosomal dysfunction causes PD-related neurodegeneration, we generated a murine model of Kufor-Rakeb syndrome (KRS), characterized by early-onset Parkinsonism with additional neurological features. KRS is caused by recessive loss-of-function mutations in the ATP13A2 gene encoding the endolysosomal ATPase ATP13A2. We show that loss of ATP13A2 causes a specific protein trafficking defect, and that Atp13a2 null mice develop age-related motor dysfunction that is preceded by neuropathological changes, including gliosis, accumulation of ubiquitinated protein aggregates, lipofuscinosis, and endolysosomal abnormalities. Contrary to predictions from in vitro data, in vivo mouse genetic studies demonstrate that these phenotypes are α-synuclein independent. Our findings indicate that endolysosomal dysfunction and abnormalities of α-synuclein homeostasis are not synonymous, even in the context of an endolysosomal genetic defect linked to Parkinsonism, and highlight the presence of α-synuclein-independent neurotoxicity consequent to endolysosomal dysfunction.

Funding information:
  • NINDS NIH HHS - R01 NS090390(United States)

Ezrin is an actin binding protein that regulates sertoli cell and spermatid adhesion during spermatogenesis.

  • Gungor-Ordueri NE
  • Endocrinology
  • 2014 Oct 20

Literature context:


Abstract:

During spermatogenesis, the transport of spermatids and the release of sperms at spermiation and the remodeling of the blood-testis barrier (BTB) in the seminiferous epithelium of rat testes require rapid reorganization of the actin-based cytoskeleton. However, the mechanism(s) and the regulatory molecule(s) remain unexplored. Herein we report findings that unfold the functional significance of ezrin in the organization of the testis-specific adherens junction at the spermatid-Sertoli cell interface called apical ectoplasmic specialization (ES) in the adluminal compartment and the Sertoli cell-cell interface known as basal ES at the BTB. Ezrin is expressed at the basal ES/BTB in all stages, except from late VIII to IX, of the epithelial cycle. Its knockdown by RNA interference (RNAi) in vitro perturbs the Sertoli cell tight junction-permeability barrier via a disruption of the actin microfilaments in Sertoli cells, which in turn impeded basal ES protein (eg, N-cadherin) distribution, perturbing the BTB function. These findings were confirmed by a knockdown study in vivo. However, the expression of ezrin at the apical ES is restricted to stage VIII of the cycle and limited only between step 19 spermatids and Sertoli cells. A knockdown of ezrin in vivo by RNAi was found to impede spermatid transport, causing defects in spermiation in which spermatids were embedded deep inside the epithelium, and associated with a loss of spermatid polarity. Also, ezrin was associated with residual bodies and phagosomes, and its knockdown by RNAi in the testis also impeded the transport of residual bodies/phagosomes from the apical to the basal compartment. In summary, ezrin is involved in regulating actin microfilament organization at the ES in rat testes.

Funding information:
  • European Research Council - 309271(International)

Substance P exacerbates dopaminergic neurodegeneration through neurokinin-1 receptor-independent activation of microglial NADPH oxidase.

  • Wang Q
  • J. Neurosci.
  • 2014 Sep 10

Literature context:


Abstract:

Although dysregulated substance P (SP) has been implicated in the pathophysiology of Parkinson's disease (PD), how SP affects the survival of dopaminergic neurons remains unclear. Here, we found that mice lacking endogenous SP (TAC1(-/-)), but not those deficient in the SP receptor (neurokinin-1 receptor, NK1R), were more resistant to lipopolysaccharide (LPS)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral dopaminergic neurodegeneration than wild-type controls, suggesting a NK1R-independent toxic action of SP. In vitro dose-response studies revealed that exogenous SP enhanced LPS- and 1-methyl-4-phenylpyridinium (MPP(+))-induced dopaminergic neurodegeneration in a bimodal manner, peaking at submicromolar and subpicomolar concentrations, but was substantially less effective at intermediate concentrations. Mechanistically, the actions of submicromolar levels of SP were NK1R-dependent, whereas subpicomolar SP-elicited actions required microglial NADPH oxidase (NOX2), the key superoxide-producing enzyme, but not NK1R. Subpicomolar concentrations of SP activated NOX2 by binding to the catalytic subunit gp91(phox) and inducing membrane translocation of the cytosolic subunits p47(phox) and p67(phox). The importance of NOX2 was further corroborated by showing that inhibition or disruption of NOX2 blocked subpicomolar SP-exacerbated neurotoxicity. Together, our findings revealed a critical role of microglial NOX2 in mediating the neuroinflammatory and dopaminergic neurodegenerative effects of SP, which may provide new insights into the pathogenesis of PD.

Funding information:
  • NINDS NIH HHS - 5R01NS039444(United States)

Protection against high-fat diet-induced obesity in Helz2-deficient male mice due to enhanced expression of hepatic leptin receptor.

  • Yoshino S
  • Endocrinology
  • 2014 Sep 25

Literature context:


Abstract:

Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for the treatment of obesity with hepatosteatosis.

Funding information:
  • NIDDK NIH HHS - DK081546(United States)
  • NINDS NIH HHS - R37 NS037096(United States)

Antiandrogen flutamide protects male mice from androgen-dependent toxicity in three models of spinal bulbar muscular atrophy.

  • Renier KJ
  • Endocrinology
  • 2014 Jul 21

Literature context:


Abstract:

Spinal and bulbar muscular atrophy (SBMA) is a late-onset, progressive neurodegenerative disease linked to a polyglutamine (polyQ) expansion in the androgen receptor (AR). Men affected by SBMA show marked muscle weakness and atrophy, typically emerging midlife. Given the androgen-dependent nature of this disease, one might expect AR antagonists to have therapeutic value for treating SBMA. However, current work from animal models suggests otherwise, raising questions about whether polyQ-expanded AR exerts androgen-dependent toxicity through mechanisms distinct from normal AR function. In this study, we asked whether the nonsteroidal AR antagonist flutamide, delivered via a time-release pellet, could reverse or prevent androgen-dependent AR toxicity in three different mouse models of SBMA: the AR97Q transgenic (Tg) model, a knock-in (KI) model, and a myogenic Tg model. We find that flutamide protects mice from androgen-dependent AR toxicity in all three SBMA models, preventing or reversing motor dysfunction in the Tg models and significantly extending the life span in KI males. Given that flutamide effectively protects against androgen-dependent disease in three different mouse models of SBMA, our data are proof of principle that AR antagonists have therapeutic potential for treating SBMA in humans and support the notion that toxicity caused by polyQ-expanded AR uses at least some of the same mechanisms as normal AR before diverging to produce disease and muscle atrophy.

Funding information:
  • NINDS NIH HHS - R01 NS085387(United States)

Activity-dependent regulation of dendritic complexity by semaphorin 3A through Farp1.

  • Cheadle L
  • J. Neurosci.
  • 2014 Jun 4

Literature context:


Abstract:

Dendritic arbors are complex neuronal structures that receive and process synaptic inputs. One mechanism regulating dendrite differentiation is Semaphorin/Plexin signaling, specifically through binding of soluble Sema3A to Neuropilin/PlexinA coreceptors. Here we show that the protein Farp1 [FERM, RhoGEF (ARHGEF), and pleckstrin domain protein 1], a Rac1 activator previously identified as a synaptogenic signaling protein, contributes to establishing dendrite tip number and total dendritic branch length in maturing rat neurons and is sufficient to promote dendrite complexity. Aiming to define its upstream partners, our results support that Farp1 interacts with the Neuropilin-1/PlexinA1 complex and colocalizes with PlexinA1 along dendritic shafts. Functionally, Farp1 is required by Sema3A to promote dendritic arborization of hippocampal neurons, and Sema3A regulates dendritic F-actin distribution via Farp1. Unexpectedly, Sema3A also requires neuronal activity to promote dendritic complexity, presumably because silencing neurons leads to a proteasome-dependent reduction of PlexinA1 in dendrites. These results provide new insights into how activity and soluble cues cooperate to refine dendritic morphology through intracellular signaling pathways.

[Extrahepatic portal hypertension in a child].

  • Kacić M
  • Lijec Vjesn
  • 1973 Jul 11

Literature context:


Abstract:

Funding information:
  • NIMH NIH HHS - R37 MH049428(United States)