Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

CDP (C-20) antibody


Antibody ID


Target Antigen

CDP (C-20) mouse, rat, human, mouse, human, rat

Proper Citation

(Santa Cruz Biotechnology Cat# sc-6327, RRID:AB_2087003)


polyclonal antibody


Discontinued: 2016; validation status unknown check with seller; recommendations: Immunofluorescence; Western Blot; Immunoprecipitation; ELISA; WB, IP, IF, ELISA

Host Organism



Santa Cruz Biotechnology

Cat Num


Publications that use this research resource

hPSC Modeling Reveals that Fate Selection of Cortical Deep Projection Neurons Occurs in the Subplate.

  • Ozair MZ
  • Cell Stem Cell
  • 2018 Jul 5

Literature context:


Cortical deep projection neurons (DPNs) are implicated in neurodevelopmental disorders. Although recent findings emphasize post-mitotic programs in projection neuron fate selection, the establishment of primate DPN identity during layer formation is not well understood. The subplate lies underneath the developing cortex and is a post-mitotic compartment that is transiently and disproportionately enlarged in primates in the second trimester. The evolutionary significance of subplate expansion, the molecular identity of its neurons, and its contribution to primate corticogenesis remain open questions. By modeling subplate formation with human pluripotent stem cells (hPSCs), we show that all classes of cortical DPNs can be specified from subplate neurons (SPNs). Post-mitotic WNT signaling regulates DPN class selection, and DPNs in the caudal fetal cortex appear to exclusively derive from SPNs. Our findings indicate that SPNs have evolved in primates as an important source of DPNs that contribute to cortical lamination prior to their known role in circuit formation.

Funding information:
  • NIAID NIH HHS - AI020211(United States)

αII Spectrin Forms a Periodic Cytoskeleton at the Axon Initial Segment and Is Required for Nervous System Function.

  • Huang CY
  • J. Neurosci.
  • 2017 Nov 22

Literature context:


Spectrins form a submembranous cytoskeleton proposed to confer strength and flexibility to neurons and to participate in ion channel clustering at axon initial segments (AIS) and nodes of Ranvier. Neuronal spectrin cytoskeletons consist of diverse β subunits and αII spectrin. Although αII spectrin is found in neurons in both axonal and somatodendritic domains, using proteomics, biochemistry, and superresolution microscopy, we show that αII and βIV spectrin interact and form a periodic AIS cytoskeleton. To determine the role of spectrins in the nervous system, we generated Sptan1f/f mice for deletion of CNS αII spectrin. We analyzed αII spectrin-deficient mice of both sexes and found that loss of αII spectrin causes profound reductions in all β spectrins. αII spectrin-deficient mice die before 1 month of age and have disrupted AIS and many other neurological impairments including seizures, disrupted cortical lamination, and widespread neurodegeneration. These results demonstrate the importance of the spectrin cytoskeleton both at the AIS and throughout the nervous system.SIGNIFICANCE STATEMENT Spectrin cytoskeletons play diverse roles in neurons, including assembly of excitable domains such as the axon initial segment (AIS) and nodes of Ranvier. However, the molecular composition and structure of these cytoskeletons remain poorly understood. Here, we show that αII spectrin partners with βIV spectrin to form a periodic cytoskeleton at the AIS. Using a new αII spectrin conditional knock-out mouse, we show that αII spectrin is required for AIS assembly, neuronal excitability, cortical lamination, and to protect against neurodegeneration. These results demonstrate the broad importance of spectrin cytoskeletons for nervous system function and development and have important implications for nervous system injuries and diseases because disruption of the spectrin cytoskeleton is a common molecular pathology.

Mutation of the BiP/GRP78 gene causes axon outgrowth and fasciculation defects in the thalamocortical connections of the mammalian forebrain.

  • Favero CB
  • J. Comp. Neurol.
  • 2013 Feb 15

Literature context:


Proper development of axonal connections is essential for brain function. A forward genetic screen for mice with defects in thalamocortical development previously isolated a mutant called baffled. Here we describe the axonal defects of baffled in further detail and identify a point mutation in the Hspa5 gene, encoding the endoplasmic reticulum chaperone BiP/GRP78. This hypomorphic mutation of BiP disrupts proper development of the thalamocortical axon projection and other forebrain axon tracts, as well as cortical lamination. In baffled mutant brains, a reduced number of thalamic axons innervate the cortex by the time of birth. Thalamocortical and corticothalamic axons are delayed, overfasciculated, and disorganized along their pathway through the ventral telencephalon. Furthermore, dissociated mutant neurons show reduced axon extension in vitro. Together, these findings demonstrate a sensitive requirement for the endoplasmic reticulum chaperone BiP/GRP78 during axon outgrowth and pathfinding in the developing mammalian brain.

Funding information:
  • NIGMS NIH HHS - R21-GM084008(United States)